[ (P~~PCH~PP~~)&~RU=C=C=C(Y)R]PF - American Chemical Society

Jul 15, 1995 - (P~~PCH~PP~~)&~RU=C=C=C(Y)R]PF~ and Acetylide. Complexes by Activation of Prop-2-yn-1-01s. Daniel Touchard, Nadine Pirio, and ...
0 downloads 0 Views 1MB Size
Organometallics 1995, 14, 4920-4928

4920

Synthesis of Di- and Monosubstituted Allenylidene-Ruthenium [(P~~PCH~PP~~)&~RU=C=C=C(Y)R]PF~ and Acetylide Complexes by Activation of Prop-2-yn-1-01s Daniel Touchard, Nadine Pirio, and Pierre H. DixneuP Laboratoire de Chimie de Coordination Orgunique, URA CNRS 415, Campus de Beaulieu, Universiti de Rennes, 35042 Rennes, France Received March 23, 1995@ The reaction of cis-RuCWdppm)z, 1 (dppm = PhzPCHzPPhz), with HCN!--C(OH)Rz and &IPF~, NaPFs affords stable 3,3-disubstituted allenylidenes [ ( ~ ~ ~ ~ ) Z C ~ R U = C = C = = C3a-e. The activation of monosubstituted propargyl alcohols with 1 and NaPF6 allows the general RIPF (RG= Ar), 6 access to stable secondary allenylidenes [ ( ~ ~ ~ ~ ) Z C ~ R U = C = C = C ( H )4f-i (R = (E)-CH-CHPh) or that to ( ~ ~ ~ ~ ) z C ~ R ~ = C = C H - C H6.= CComplex H Z ~ P 1F reacts ~ with HCH!-C(=CHz)CH3, promotes the 1,4migration of the (HCIC) proton, and gives [(~~~~)ZC~RU=C--C==CM~ZIPF~, 3e, which can be deprotonated at the C(4) carbon. Allenylidene 3a (R = Ph) easily adds nucleophile at the C(3) carbon to give the acetylide (dppm)zClRu-CW-CPhz(OMe), 9a, with MeONa, and (dppm)zClRu-C=C-CPhzH, 12a, with NaBH4. By contrast, secondary allenylidenes 4f,g,i with MeONa give mixed hydride acetylide complexes truns-(dppm)z(H)Ru-C=C-CH(OMe)R, 10, and with NaBH4 (dppm)z(Cl)Ru-C=C-CHZR.

Introduction Since the discovery of the first vinylidene metal complex,l the chemistry of metal-containing heteroallenes M=C=CRz has experienced important developments due to the discovery of general methods of access,2 especially directly from terminal alkynes and ruthenium c o m ~ l e x e s , ~and - ~ due to their use for the preparation of a variety of carbenes2v6or carbynes.' The involvement of M=C=CHR species in selective catalytic transformations of terminal alkynes8 constitutes the most promising aspect of vinylidene-metal complexes. By contrast, the chemistry of their allenylidene homologues M=FC=C=CRZis only beginning to be studied, even though the first allenylidene-metal complexes @Abstractpublished in Advance ACS Abstracts, July 15, 1995. (1)King, R. B.; Saran, M. S. Chem. Commun. 1972,1052;J . Am. Chem. SOC.1972,95,1817. (2)(a) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983, 22,59.(b) Bruce, M. I. Chem. Rev. 1991,91,197.(c) Antonova, A. B.; Johansson, A. A. Russ. Chem. Rev. 1989,58,693. (3)(a) Bruce, M. I.; Wallis, R. C. J. Organomet. Chem. 1978,161, C1. (b) Bruce, M. I.; Wallis, R. C. Aust. J . Chem. 1979,32,1471.(c) Bruce, M. I.; Swincer, A. G.; Wallis, R. C. J . Organomet. Chem. 1979, 171,C5. (d) Bruce, M. I.; Koutsantonis, G. A. Aust. J . Chem. 1991,44, 207.(e) Bullock, R. M. J. Chem. Soc., Chem. Commun. 1989,3,165. (0Lomprey, J. R.; Selegue, J . P. J . Am. Chem. Soc. 1992,114, 5518. (g) Consiglio, G.; Morandini, F. Inorg. Chim. Acta 1987,127,79. (h) Consiglio, G,Morandini, F.; Ciani, G. F.; Sironi, A. Organometallics 1986,5,1976.(i) Morandini, F.; Consiglio, G.; Sironi, A.; Moret, M. J . Organomet. Chem. 1988,356,C79. (i) Werner, H.; Stark, A.; Shulz, M.; Wolf, J . Organometallics 1992, 11, 1126. (k) Gamasa, M. P.; Gimeno, J.; Martin-Vaca, B. M.; Borge, J.; Garcia-Granda, S.; PerezCarreiio, E. Organometallics 1994,13,4045. (4)(a)Touchard, D.; Haquette, P.; Pirio, N.; Toupet, L; Dixneuf, P. H. Organometallics 1993, 12, 3132. (b) Touchard, D.; Morice, C.; Cadiermo, V.; Haquette, P.; Toupet, L.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1994,859.(c) Faulker, C. W.; Inghan, S. L.; Khan, M. S.; Lewis, J.;Long, N. J.;Raithby, P. R. J. Organomet. Chem. 1994, 482,139. (5) Le Lagadec, R.; Roman, E.; Toupet, L.; Muller, U.; Dixneuf, P. H. organometallics 1994,13,5030 and references cited therein. (6)Le Bozec, H.; Ouzzine, K.; Dixneuf, P. H. Organometallics 1991, 10,2768. (7)Kim, H. P.; Angelici, R. J.Adu. Organomet. Chem. 1987,27,51.

were made by Fischel.9 and BerkelO in 1976, and despite their potential in synthesis due to both their cumulene and M-C functionalities. Allenylidene-metal complexes have been prepared from Fischer type carbenes, which are a,p-unsaturated carbenes formed by heteroatom group elimination a t the C(1) carbon with Lewis a ~ i d s and , ~ recently by addition of amine to alkynyl carbenes.l' The addition of a ( 0 3 skeleton also leads to allenylidene derivatives, such as by reaction of LizC3Phz with TiClzCpZlz or [C=C-CR2012- dianion on addition to group 6 metal, manganese, and iron carbonyl complexes followed by oxygen elimination.1°J3J4 There is no doubt that the most general route to allenylidenemetal complexes is based on the direct activation of tertiary propargyl alcohol derivatives directly with 16electron metal species (eq 1). The process involves the ~

~~

(8)(a) Landon, S. J.; Shulman, P. M.; Geoffroy, G. L. J . Am. Chem. SOC. 1986, 107, 6739. (b) Mah6, R.; Dixneuf, P. H.; Ucolier, S. Tetrahedron Lett. 1986,27,6333.(c) Mah6, R.; Sasaki, Y.; Bruneau, C.; Dixneuf, P. H. J . Org. Chem. 1989,54,1518.(d) Hofer, J.; Doucet, H.; Bruneau, C.; Dixneuf, P. H. Tetrahedron Lett. 1991,32,7409.(e) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J.Am. Chem. Soc. 1991,113,9604.(0 Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Johar, P. S. Bull. Chem. SOC.Jpn. 1993,66,987.(g) Bianchini, C.; Peruzzini, M.; Frediani, P. J. Am. Chem. SOC.1991,113, 5453.(h) Trost, B. M.; Kottirsch, G. J. Am. Chem. Soc. 1990,112,2816. (i) Doucet, H.; Hofer, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1993,850.(i) Trost, B. M.; Dyker, G.; Kulawiec, R. J. J . Am. Chem. Soc. 1990,112,7809.(k) Trost, B. M.; Kulawiec, R. J. J. Am. Chem. SOC.1992,114,5579.(1) Trost, B. M.; Kulawiec, R. J.; (m) Trost, B. M.; Flygare, Hammes, A. Tetrahedron Lett. 1993,34,587. J. A. J. Am. Chem. Soc. 1992,114,5476. (n) Rappert, T.; Yamamoto, A. Organometallics 1994,13,4984. (0)Bianchini, C.; Frediani, P.; Masi, D.; Peruzzini, M.; Zanobini, F. Organometallics 1994,13,4616. (9)Fischer, E.0.; Kalder, H.-J.; Franck, A.; Kijhler, F. H.; Huttner, G. Angew. Chem., Int. Ed. Engl. 1976,15,623. (10)Berke, H.Angew. Chem., Int. Ed. Engl. 1976,15,624. (11)(a)Duetsch, M.; Stein, F.; Lackmann, R.; Pohl, E.; Herbst-Irmer, R.; de Meijere, A. Chem. Ber. 1992,125,2051.(b) Stein, F.; Duetsch, M.; Noltemeyer, M.; de Meijere, A. Synlett 1993,486.(c) Stein, F.; Duetsch, M.; Pohl, E.; Herbst-Inner, R.; de Meijere, A. Organometallics 1993,12,2556.(d) Aumann, R. Chem. Ber. 1992,125,2773. (12)Binger, P.; Miiller, P.; Wenz, R.; Mynott, R. Angew. Chem., Int. Ed. Engl. 1990,29,1037.

0 1995 American Chemical Society

Synthesis of Allenylidene-Ru and Acetylide Complexes

‘-

Organometallics, Vol. 14,No. 10,1995 4921

into vinyl and carbonyl ligands.25 Except for a few recent examples involving iron,26rhodium,27and grohp Clt20H 6 metall4lZ8complexes, this preparation of allenylidenes n I directly from disubstituted prop-2-yn-1-01shas always ROH been observed with ruthenium(I1) derivatives. Ruthenium(I1) derivatives also promote the activation of conn jugated enyne to generate nonisolable allenylidene HCI CCH(R)OH o: b M=C=C/ . (CsMes)(PPh3)C1Ru+and thus the trans-(dppm)zClRu+moiety is expected t o decrease the electron deficiency of the [Ru=C=C=CR21+ group and especially that of the C(1) carbon atom. The inertness of the C(1) carbon may also be due to steric protection

S

for it was observed in the structure of trans-[(dppm)zC ~ R U = C = C H ~ ] Pthat F ~ ~four ~ phenyl groups, one on each phosphorus atom, sterically protect the C(1)carbon bonded to the ruthenium site. Indeed we shall show later that the addition of nucleophiles to complexes 3 takes place at the C(3) carbon atom. Synthesis of Secondary Allenylidene [Ru=C= C=C(HMR)I Complexes. All attempts to produce monosubstituted allenylidene-ruthenium by activation of secondary propargyl alcohols have failed. Especially RuClz(PR3)arenederivatives readily reacted with l-monosubstituted pro-2-yn-l-ols, NaPFs, and methanol to produce a variety of a,@-unsaturated and polyenyl carbenes via reactive y-monosubstituted allenylidenes,17 but the latter could never be isolated. The activation of secondary propargyl alcohols HCW-CHOHAr, 2fi, with the more electron-rich complex 1 has thus been studied. Complex 1 did react with alkynes 2f-i in dichloromethane with a slight excess of NaPFs, and stable red allenylidenes, containing one hydrogen atom a t the C(3) carbon, 4f (84%), 4g (73%), 4h (68%), and 4i (70%)were isolated (Scheme 2). Analogously, the (E)l-alkenylprop-2-yn-1-01HCW-CHOH-CH=CH-Ph, 2j, treated with complex 1 and NaPFs afforded the first y-monosubstituted alkenyl allenylidene 6 (77%) which

Organometallics, Vol. 14, No. 10, 1995 4923

Synthesis of Allenylidene-Ru and Acetylide Complexes retained the (E)-configuration of the CH-CH bond. However, the activation with 1 of the secondary alcohol containing a deprotonable methyl group HCsC-CH(OH)CH&2k, led t o a different process, and the brown unstable vinyl vinylidene-ruthenium complex 6 (63%) was obtained (Scheme 2). The latter likely results from the vinylidene 0 formationlaa (eq 2) followed by HC IC-CHOHCH,

2k

-

7

1

NaPF, 1

v

- H20l

H

- H2O

H C-CH3 I OH

./

C-