2D-Coordination Polymer Containing Interconnected 82-Membered

A two-dimensional coordination polymer, [(n-Bu3Sn)4(μ-L)2(4,4′-bipy)]n, containing interconnected 82-membered macrocyles has been assembled in a ...
0 downloads 0 Views 3MB Size
Communication pubs.acs.org/crystal

2D-Coordination Polymer Containing Interconnected 82-Membered Organotin Macrocycles Vadapalli Chandrasekhar*,†,‡ and Chandrajeet Mohapatra† †

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, 21, Brindavan Colony, Narsingi, Hyderabad 500075, India



S Supporting Information *

ABSTRACT: A two-dimensional coordination polymer [(n-Bu3Sn)4(μ-L)2(4,4′-bipy)]n (1) was prepared in a reaction between (n-Bu3Sn)2O, (E)-5-(pyridin-4-yl-methyleneamino)isophthalic acid (LH2), and 4,4′-bipyridine (4,4′-bipy). The structure of 1 is built by the interlinking of 82-membered macrocyles. The generation of the 2D coordination polymer is facilitated by the multisite coordination capability of the dianionic ligand (L2−) as well as involvement of 4,4′-bipyridine as an ancillary ligand.

O

that the reaction of organotin substrates with a long dicarboxylic acid in conjunction with a linker such as 4,4′bipyridine could lead to an increase in the size of the macrocycle within a coordination polymer network. Accordingly, we have investigated the reactions of (n-Bu3Sn)2O with (E)-5-(pyridin-4-yl-methyleneamino)isophthalic acid (LH2) and 4,4′-bipyridine and generated a 2D coordination polymer [(n-Bu3Sn)4(μ-L)2(4,4′-bipy)]n (1), possessing a 82-membered macrocycle as a structure building block. To the best of our knowledge, this is the largest macrocyclic system present in any organotin coordination polymer. The reaction of (n-Bu3Sn)2O with (E)-5-(pyridin-4-ylmethyleneamino)isophthalic acid (LH2) and 4,4′-bipyridine in a 1:1:1 ratio affords a 2D coordination polymer [(n-Bu3Sn)4(μL)2(4,4′-bipy)]n (1) (Scheme 1) (see also the Supporting Information) 1 crystallized in a P21/n space group. The asymmetric unit of 1 contains two organotin units connected by a completely deprotonated ligand (L2−). One-half of the ancillary 4,4′bipyridine ligand is also connected to one of the organotin centers (Sn1) (Figure S1a of the Supporting Information). Both the tin atoms (Sn1 and Sn2) present in the asymmetric unit are five-coordinate in a distorted trigonal bipyramidal (tbp) geometry with one oxygen and one nitrogen in apical positions [Sn2−O1(2.137(5)Å), Sn2−N2(2.553(5)Å), O1−Sn2− N2(171.67(19)°); Sn1−O3(2.135(5)Å), Sn1−N3(2.607(6)Å), O3−Sn1−N3(177.72(19)°)] (Figures S1, panels b and c, of the Supporting Information). The crystal structure of 1 is depicted

rganooxotin compounds have been attracting interest for several reasons, including an enormous structural diversity that is present in this family.1 Second there have also been efforts to utilize stannoxane cores as scaffolds to build functional peripheries.2 In most of these instances the organostannoxane in question is prepared by the reaction of an appropriate organotin oxide/hydroxide/oxide-hydroxide with a protic acid.3−5 The rich structural diversity generated in these systems has prompted us and others to explore the reactions of organotin substrates with dicarboxylic acids.6 These reactions also assume importance because of the fact that many metal−organic frameworks (MOFs) are built from transition metal complex nodes and dicarboxylate linkers,7 and corresponding systems with maingroup elements/complexes are sparse.8,9 From our research group, we have explored the reactions of organotin compounds with pyrazole-dicarboxylic acids as well as pyridine-dicarboxylic acids and have shown the formation of novel macrocycles and coordination polymers.9a,b Potentially, such systems could have several interesting applications. Thus, recently we have reported the first example of selective gas adsorption (H2 and CO2 over N2) by a 4-connected 3-fold interpenetrated triorganotin coordination polymer with sqc-topology.9c In view of such an interest we have recently reported a 2D coordination polymer, containing triorganotin units, possessing interconnected 36-membered tetranuclear macrocyclic rings.9d Ma and co-workers had previously reported a 2D coordination polymer containing a 60-membered organotin macrocycle.10 It was of interest to us to see if we could access a larger-sized macrocycle within a coordination polymer. During our studies on molecular transition metal phosphonates, we have observed that ancillary nitrogen ligands play an important role in directing the structure of the product.11 We reasoned © XXXX American Chemical Society

Received: September 12, 2013 Revised: October 2, 2013

A

dx.doi.org/10.1021/cg401363p | Cryst. Growth Des. XXXX, XXX, XXX−XXX

Crystal Growth & Design

Communication

Figure 1. (a) 2D polymeric structure of 1. (b) Octanuclear 82-membered macrocycle of 1. (c) Intermetallic distances involved in the octanuclear macrocycle of 1. (d) Distorted honeycomb-like network of 1 (butyl groups are deleted for clarity).

two tetranuclear subunits to generate an octanuclear 82-membered macrocycle (Figure 1b). The intermetallic distances in this octanuclear macrocycle are: Sn1*−Sn1** (30.840 Å), Sn1#− Sn1## (33.430 Å), Sn2*−Sn2** (35.679 Å), and Sn2#−Sn2## (29.950 Å) (Figure 1c). The 2D polymeric structure of 1 also

in Figure 1, which reveals it to be a 2D coordination polymer (Figure 1a). Each L2− ligand binds to three different tin centers through its two carboxylate and one pyridyl nitrogen atom in a 3.10110 coordination mode (Figure 1a and Chart S1 of the Supporting Information). The bipyridine ligands assist in linking B

dx.doi.org/10.1021/cg401363p | Cryst. Growth Des. XXXX, XXX, XXX−XXX

Crystal Growth & Design

Communication

Scheme 1

Figure 2. (a) Wavelike individual 2D coordination polymer generated as result of twisting of the ligand with dihedral angle 25.3(2)°. (b) Figure showing 1D channels generated by layering of individual polymers of 1 along the crystallographic a axis (butyl groups are deleted for clarity).

does not undergo any substantial weight loss up to ∼160 °C; from this temperature to 400 °C, nearly 78% weight loss is seen. Finally, at 600 °C, the char residue is only about 20% (Figure S4 of the Supporting Information). In conclusion, we have successfully synthesized a 2D coordination polymer 1, containing triorganotin units, using a Schiff-base dicarboxylic ligand and 4,4′-bipyridine as the ligands. Compound 1 contains interconnected 82-membered macrocycles, the largest among coordination polymers of organotin compounds reported in literature.

shows a distorted honeycomb-like network along the crystallographic c axis (Figure 1d). Interestingly, in 1, the two aromatic rings of the ligand are twisted around the CHN bond and possess a dihedral angle 25.3(2)° between them (Figure S2 of the Supporting Information). This results in a wavelike supramolecular structural feature (Figure 2a). Additional supramolecular interactions involving C−H---O hydrogen bonding9b (Figure S3a of the Supporting Information) results in the generation of onedimensional (1D) channels along the crystallographic a axis (Figure 2b). Thermogravimetric analysis of 1 reveals that it C

dx.doi.org/10.1021/cg401363p | Cryst. Growth Des. XXXX, XXX, XXX−XXX

Crystal Growth & Design



Communication

(c) Nitschke, J. R. Acc. Chem. Res. 2007, 40, 103. (d) MacGillivray, L. R.; Papaefstathiou, G. S.; Frišcǐ ć, T.; Hamilton, T. D.; Dejan-Krešimir, B.; Chu, Q.; Varshney, D. B.; Georgiev, I. G. Acc. Chem. Res. 2008, 41, 280. (e) Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523. (f) Zhao, X.; Xiao, B.; Fletcher, J. A.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Science 2004, 306, 1012. (g) Ferey, G.; MellotDraznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040. (h) Chandler, B. D.; Enright, G. D.; Udachin, K. A.; Pawsey, S.; Ripmeester, J. A.; Cramb, D. T.; Shimizu, G. K. H. Nat. Mater. 2008, 7, 229. (i) Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. (j) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. (k) Zou, R.-Q.; Sakurai, H.; Xu, Q. Angew. Chem., Int. Ed. 2006, 45, 2542. (l) Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353. (m) Ohba, M.; Okawa, H. Coord. Chem. Rev. 2000, 198, 313. (n) Shiga, T.; Okawa, H.; Kitagawa, S.; Ohba, M. J. Am. Chem. Soc. 2006, 128, 16426. (8) (a) Garcı ́a-Zarracino, R.; Ramos-Quińones, J.; Höpfl, H. Inorg. Chem. 2003, 42, 3835. (b) Garcia-Zarracino, R.; Höpfl, H. Angew. Chem., Int. Ed. 2004, 43, 1507. (c) Garcı ́a-Zarracino, R.; Höpfl, H. J. Am. Chem. Soc. 2005, 127, 3120. (d) Garcia-Zarracino, R.; Höpfl, H. Appl. Organomet. Chem. 2005, 19, 451. (e) Zhang, R.; Ren, Y.; Wang, Q.; Ma, C. J. Inorg. Organomet. Polym. 2010, 20, 399. (f) Sumida, K.; Hill, M. R.; Horike, S.; Dailly, A.; Long, J. R. J. Am. Chem. Soc. 2009, 131, 15120. (9) (a) Chandrasekhar, V.; Thirumoorthi, R.; Azhakar, R. Organometallics 2007, 26, 26. (b) Chandrasekhar, V.; Mohapatra, C.; Butcher, R. J. Cryst. Growth Des. 2012, 12, 3285. (c) Chandrasekhar, V.; Mohapatra, C.; Banerjee, R.; Mallick, A. Inorg. Chem. 2013, 52, 3579. (d) Chandrasekhar, V.; Mohapatra, C.; Metre, R. K. Cryst. Growth Des. 2013, 13, 4607. (10) Ma, C.; Wang, Q.; Zhang, R. Inorg. Chem. 2008, 47, 7060. (11) (a) Chandrasekhar, V.; Kingsley, S.; Rhatigan, B.; Lam, M. K.; Rheingold, A. L. Inorg. Chem. 2002, 41, 1030. (b) Chandrasekhar, V.; Sasikumar, P.; Boomishankar, R.; Anantharaman, G. Inorg. Chem. 2006, 45, 3344. (c) Chandrasekhar, V.; Nagarajan, L.; Clérac, R.; Ghosh, S.; Verma, S. Inorg. Chem. 2008, 47, 1067.

ASSOCIATED CONTENT

S Supporting Information *

Crystallographic information file (CIF) for compound 1, some additional diamond figures, thermogravimetric curve and PXRD for compound 1, crystal data and structure refinement parameters, and bond lengths and bond angles. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected] and [email protected]. Tel: (+91) 512-2597259. Fax: (+91) 521-259-0007/7436. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We thank the Department of Science and Technology, India, and the Council of Scientific and Industrial Research, India, for financial support. V.C. is thankful to the Department of Science and Technology for a J. C. Bose fellowship. C.M. thanks the UGC, India, for a Senior Research Fellowship.



REFERENCES

(1) (a) Chandrasekhar, V.; Singh, P.; Gopal, K. In Tin Chemistry: Fundamental, Frontiers and Applications; Davies, A. G., Gielen, M., Pannell, K. H., Tiekink, E. R. T., Eds.; Wiley-VCH: Weinheim, 2008; 93. (b) Davies, A. G. Organotin Chemistry; Wiley-VCH: Weinheim, Germany, 2004. (c) Beckmann, J.; Jurkschat, K. Coord. Chem. Rev. 2001, 215, 267. (2) (a) Chandrasekhar, V.; Nagendran, S.; Bansal, S.; Kozee, M. A.; Powell, D. R. Angew. Chem., Int. Ed. 2000, 39, 1833. (b) Hahn, U.; Gégout, A.; Duhayon, C.; Coppel, Y.; Saquet, A.; Nierengarten, J. F. Chem. Commun. 2007, 516. (c) Li, S. L.; Zhang, Y. M.; Ma, J. F.; Lan, Y. Q.; Yang, J. Dalton Trans. 2008, 1000. (3) (a) Chandrasekhar, V.; Nagendran, S.; Baskar, V. Coord. Chem. Rev. 2002, 235, 1. (b) Chandrasekhar, V.; Gopal, K.; Nagendran, S.; Singh, P.; Steiner, A.; Zacchini, S.; Bickley, J. F. Chem.Eur. J. 2005, 11, 5437. (c) Chandrasekhar, V.; Thilagar, P.; Bickley, J. F.; Steiner, A. J. Am. Chem. Soc. 2005, 127, 11556. (d) Chandrasekhar, V.; Nagendran, S.; Azhakar, R.; Kumar, M. R.; Srinivasan, A.; Ray, K.; Chandrashekar, T. K.; Madhavaiah, C.; Verma, S.; Priyakumar, U. D.; Sastry, G. N. J. Am. Chem. Soc. 2005, 127, 2410. (e) Zheng, G. L.; Ma, J. F.; Su, Z. M.; Yan, L. K.; Yang, J.; Li, Y. Y.; Liu, J. F. Angew. Chem., Int. Ed. 2004, 43, 2409. (f) Zheng, G.-L.; Ma, J.-F.; Yang, J.; Li, Y.-Y.; Hao, X.-R. Chem.Eur. J. 2004, 10, 3761. (4) (a) Chandrasekhar, V.; Baskar, V.; Steiner, A.; Zacchini, S. Organometallics 2004, 23, 1390. (b) Chandrasekhar, V.; Baskar, V.; Steiner, A.; Zacchini, S. Organometallics 2002, 21, 4528. (c) Beckmann, J.; Dakternieks, D.; Duthie, A.; Mitchell, C. Organometallics 2003, 22, 2161. (d) Ribot, F.; Sanchez, C. Organometallics 2001, 20, 2593. (e) Xie, Y. P.; Ma, J. F.; Yang, J.; Su, M. Z. Dalton Trans. 2010, 39, 1568. (f) Song, S. Y.; Ma, J. F.; Yang, J.; Gao, L. L.; Su, Z. M. Organometallics 2007, 26, 2125. (5) (a) Chandrasekhar, V.; Boomishankar, R.; Singh, S.; Steiner, A.; Zacchini, S. Organometallics 2002, 21, 4575. (b) Chandrasekhar, V.; Boomishankar, R.; Gopal, K.; Sasikumar, P.; Singh, P.; Steiner, A.; Zacchini, S. Eur. J. Inorg. Chem. 2006, 4129. (c) Eychenne-Baron, C.; Ribot, F.; Steunou, N.; Sanchez, C.; Fayon, F.; Biesemans, M.; Martins, J. C.; Willem, R. Organometallics 2000, 19, 1940. (d) Prabusankar, G.; Jousseaume, B.; Toupance, T.; Allouchi, H. Dalton Trans. 2007, 3121. (e) Shankar, R.; Jain, A.; Kociok-Köhn, G.; Mahon, M. F.; Molloy, K. C. Inorg. Chem. 2010, 49, 4708. (6) (a) Chandrasekhar, V.; Thirumoorthi, R. Organometallics 2007, 26, 5415. (7) (a) Gianneschi, N. C.; Masar, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825. (b) Hosseini, M. W. Acc. Chem. Res. 2005, 38, 313. D

dx.doi.org/10.1021/cg401363p | Cryst. Growth Des. XXXX, XXX, XXX−XXX