A Computational Study of Semiconducting Benzobisthiazoles

Oct 10, 2012 - The present work will be helpful to understand and rationally design molecules .... Journal of Molecular Graphics and Modelling 2014 51...
0 downloads 0 Views 2MB Size
A Computational Study of Semiconducting Benzobisthiazoles: Analysis of the Substituent Effects on the Electronic Structure, Solid State Interactions and Charge Transport Properties using DFT methods. N. L. Janaki, B. Priyanka, Anup Thomas and K. Bhanuprakash* Inorganic and Physical Chemistry Division Indian Institute of Chemical Technology, Hyderabad-500 607 India

Supporting Information

S

N S

r15

r10 r11

S

r14

N

F F

r26

F

r25

r24 r23

r17

S r13

S r22 S

r18

r12

r10

S

S r 16

r20

N

S

r10

S

N

r14

r11

S r12

S r13

r21

r12 r13 r11 S r14 r10

r11 r12

r 14 S r13

N

r19

r27 F

N

N

S

S

N

F

S

F

S

FigureS1: Molecular structures of 2- 4 &7 with bond numbering.

TableS1: Comparison of optimized geometries of 2- 4 &7 with crystal geometries.a Bonds 2b 3 r10(C-C) 1.377(1.359/1.385) 1.368(1.383)

4 1.38(1.360)

7 1.382(1.420)

r11(C-C) 1.423(1.425/1.411) 1.419(1.417)

1.41(1.416)

1.417(1.423)

r12(C-C) 1.373(1.379/1.383) 1.391(1.391) 1.381(1.388) 1.369(1.333)

a

r13(C-S)

1.717(1.695/1.725) 1.726(1.724) 1.735(1.721) 1.715(1.699)

r14(C-S)

1.734(1.754/1.73)

r15(C-C)

1.505(1.491/1.53)

-

-

-

r16(C-S)

-

1.735(1.727)

-

-

r17(C-S)

-

1.737(1.729)

-

-

r18(C-C)

-

1.369(1.358)

-

-

r19(C-C) r20(C-C) r21(C-C) r22(C-C) r23(C-C) r24(C-C) r25(C-C) r26(C-C) r27(C-F)

-

1.428(1.437) 1.503(1.504) 1.501(1.501) -

1.466(1.479) 1.405(1.382) 1.388(1.379) 1.395(1.397) 1.503(1.502) 1.351(1.342)

-

1.759(1.759) 1.733(1.731) 1.741(1.716)

Experimental values (Ǻ) given in parenthesis [ 35-38].b This crystal has two orthogonal half units A and B in the asymmetric unit which differ in geometry- experimental values are given in the order (A/ B). Computed values are obtained using B3LYP/6311G(d,p) for C,N,H,F and 6-311G(3df,3pd) for S

TableS2:Theoretical estimation of VEA,AEA of 1- 4 &7 obtained at the B3LYP/6311+G(d,p)for C,N,H,F and 6-311+G(3pd ,3df) for S. Molecule

VEA(eV)

AEA(eV)

1 2 3 4 7

-0.29 -1.14 -1.30 -1.88 -0.69

-0.43 -1.25 -1.39 -2.04 -0.95

S2a

S2b

FigureS2a&S2b: Changes in geometrical parameters upon oxidation (cation) and reduction (anion) for 1- 4 &7 obtained at B3LYP/6-311G(d,p) for C,N,H,F and 6311G(3df,3pd) for S. See Scheme1 for bond numbering.

FigureS3: The contributions of vibrations to the geometry relaxation of 1- 4 &7 molecules. TableS3. Theoretical estimation of the reorganization energies (meV) λ-(electron transport) of 1- 4 &7 along with λ3, and λ4 obtained at the B3LYP/6-311+G(d,p)for C,N,H,F and 6-311+G(3pd ,3df) for S. Molecule 1 2 3 4 7

λ3 142 105 088 162 266

λ4 149 103 090 137 135

λ291 208 178 300 -

TableS4: Transfer Integrals obtained using ESID method for molecules 1- 4 & 7 in meV at B3LYP/6-311G (d,p) level of theory. db Molecule Dimer 3.86 t1,1 t1,2 7.05 1 t1,3 6.05 t1,4 8.81 t1,5 8.75 5.34 t1,1 t’1,1 5.34 2 t1,2 9.18 t1,3 6.46 t1,4 7.50 t1,1 7.73 3 t1,2 11.28 t1,1 6.02 4 t1,2 4.73 9.92 t1,1 7 t1,2 13.17 t1,3 7.25 b

JH 62 2 11 151 28 193 104 118 30 26 67 51 8 113 16 141

JL 28 1 11 167 42 34 23 22 148 87 32 49 31 117 3 11 145

d (Å) represents intermolecular center-to-center distance.

FigureS4: Frontier Molecular orbitals of the dimers(1-4 and 7) in different pathways obtained at B3LYP/6-311G(d,p) level of theory.

TableS5: Uncorrected interaction energies and counterpoise (CP) correction in kcal/mol for 1- 4 & 7 using B2PLYP-D with 6-311G(d,p) basis set for C,N,H,F and 6311G(3df,3pd) for S.

Molecule

1

2

3 4 7

Dimer

∆E (B2PLYP-D) Uncorrected

t1,1

-11.7

CP 3.8

t1,2

-0.5

0.1

t1,3

-4.6

1.8

t1,4

-5.1

1.4

t1,5

-2.2

0.7

t1,1

-23.6

7.6

t’1,1

-20.9

5.8

t1,2

-6.7

1.6

t1,3

-5.7

2.0

t1,4

-3.6

1.2

t1,1

-27.7

7.9

t1,2 t1,1 t1,2

-6.2 -18.4 -28.5

2.0

t1,1

-3.9

0.8

t1,2

-2.3

0.8

t1,3

-9.9

2.7

5.5 9.3

References: 39 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.;Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.;Li, X.;Hratchian,H. P.; Izmaylov,A. F.; Bloino, J.; Zheng,G.;Sonnenberg, J. L.; Hada, M.; Ehara,M.; Toyota, K.; Fukuda,R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,O.; Nakai, H.;Vreven, T.;Montgomery, J. A., Jr.; Peralta, J.E.;Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K.N.; Staroverov, V. N.; Keith ,T.;Kobayashi, R.; Normand, J.; Raghavachari,K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,M.;Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.;Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann,R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G.A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.;Farkas, € O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2010. 65 Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Corso, A. D.; Gironcoli, S. d.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. J. Phys.: Condens. Matter 2009, 21, 395502.(Also available via the Internet at http://www.quantum-espresso.org.)