A Computational Study of Semiconducting Benzobisthiazoles: Analysis of the Substituent Effects on the Electronic Structure, Solid State Interactions and Charge Transport Properties using DFT methods. N. L. Janaki, B. Priyanka, Anup Thomas and K. Bhanuprakash* Inorganic and Physical Chemistry Division Indian Institute of Chemical Technology, Hyderabad-500 607 India
Supporting Information
S
N S
r15
r10 r11
S
r14
N
F F
r26
F
r25
r24 r23
r17
S r13
S r22 S
r18
r12
r10
S
S r 16
r20
N
S
r10
S
N
r14
r11
S r12
S r13
r21
r12 r13 r11 S r14 r10
r11 r12
r 14 S r13
N
r19
r27 F
N
N
S
S
N
F
S
F
S
FigureS1: Molecular structures of 2- 4 &7 with bond numbering.
TableS1: Comparison of optimized geometries of 2- 4 &7 with crystal geometries.a Bonds 2b 3 r10(C-C) 1.377(1.359/1.385) 1.368(1.383)
4 1.38(1.360)
7 1.382(1.420)
r11(C-C) 1.423(1.425/1.411) 1.419(1.417)
1.41(1.416)
1.417(1.423)
r12(C-C) 1.373(1.379/1.383) 1.391(1.391) 1.381(1.388) 1.369(1.333)
a
r13(C-S)
1.717(1.695/1.725) 1.726(1.724) 1.735(1.721) 1.715(1.699)
r14(C-S)
1.734(1.754/1.73)
r15(C-C)
1.505(1.491/1.53)
-
-
-
r16(C-S)
-
1.735(1.727)
-
-
r17(C-S)
-
1.737(1.729)
-
-
r18(C-C)
-
1.369(1.358)
-
-
r19(C-C) r20(C-C) r21(C-C) r22(C-C) r23(C-C) r24(C-C) r25(C-C) r26(C-C) r27(C-F)
-
1.428(1.437) 1.503(1.504) 1.501(1.501) -
1.466(1.479) 1.405(1.382) 1.388(1.379) 1.395(1.397) 1.503(1.502) 1.351(1.342)
-
1.759(1.759) 1.733(1.731) 1.741(1.716)
Experimental values (Ǻ) given in parenthesis [ 35-38].b This crystal has two orthogonal half units A and B in the asymmetric unit which differ in geometry- experimental values are given in the order (A/ B). Computed values are obtained using B3LYP/6311G(d,p) for C,N,H,F and 6-311G(3df,3pd) for S
TableS2:Theoretical estimation of VEA,AEA of 1- 4 &7 obtained at the B3LYP/6311+G(d,p)for C,N,H,F and 6-311+G(3pd ,3df) for S. Molecule
VEA(eV)
AEA(eV)
1 2 3 4 7
-0.29 -1.14 -1.30 -1.88 -0.69
-0.43 -1.25 -1.39 -2.04 -0.95
S2a
S2b
FigureS2a&S2b: Changes in geometrical parameters upon oxidation (cation) and reduction (anion) for 1- 4 &7 obtained at B3LYP/6-311G(d,p) for C,N,H,F and 6311G(3df,3pd) for S. See Scheme1 for bond numbering.
FigureS3: The contributions of vibrations to the geometry relaxation of 1- 4 &7 molecules. TableS3. Theoretical estimation of the reorganization energies (meV) λ-(electron transport) of 1- 4 &7 along with λ3, and λ4 obtained at the B3LYP/6-311+G(d,p)for C,N,H,F and 6-311+G(3pd ,3df) for S. Molecule 1 2 3 4 7
λ3 142 105 088 162 266
λ4 149 103 090 137 135
λ291 208 178 300 -
TableS4: Transfer Integrals obtained using ESID method for molecules 1- 4 & 7 in meV at B3LYP/6-311G (d,p) level of theory. db Molecule Dimer 3.86 t1,1 t1,2 7.05 1 t1,3 6.05 t1,4 8.81 t1,5 8.75 5.34 t1,1 t’1,1 5.34 2 t1,2 9.18 t1,3 6.46 t1,4 7.50 t1,1 7.73 3 t1,2 11.28 t1,1 6.02 4 t1,2 4.73 9.92 t1,1 7 t1,2 13.17 t1,3 7.25 b
JH 62 2 11 151 28 193 104 118 30 26 67 51 8 113 16 141
JL 28 1 11 167 42 34 23 22 148 87 32 49 31 117 3 11 145
d (Å) represents intermolecular center-to-center distance.
FigureS4: Frontier Molecular orbitals of the dimers(1-4 and 7) in different pathways obtained at B3LYP/6-311G(d,p) level of theory.
TableS5: Uncorrected interaction energies and counterpoise (CP) correction in kcal/mol for 1- 4 & 7 using B2PLYP-D with 6-311G(d,p) basis set for C,N,H,F and 6311G(3df,3pd) for S.
Molecule
1
2
3 4 7
Dimer
∆E (B2PLYP-D) Uncorrected
t1,1
-11.7
CP 3.8
t1,2
-0.5
0.1
t1,3
-4.6
1.8
t1,4
-5.1
1.4
t1,5
-2.2
0.7
t1,1
-23.6
7.6
t’1,1
-20.9
5.8
t1,2
-6.7
1.6
t1,3
-5.7
2.0
t1,4
-3.6
1.2
t1,1
-27.7
7.9
t1,2 t1,1 t1,2
-6.2 -18.4 -28.5
2.0
t1,1
-3.9
0.8
t1,2
-2.3
0.8
t1,3
-9.9
2.7
5.5 9.3
References: 39 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.;Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.;Li, X.;Hratchian,H. P.; Izmaylov,A. F.; Bloino, J.; Zheng,G.;Sonnenberg, J. L.; Hada, M.; Ehara,M.; Toyota, K.; Fukuda,R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,O.; Nakai, H.;Vreven, T.;Montgomery, J. A., Jr.; Peralta, J.E.;Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K.N.; Staroverov, V. N.; Keith ,T.;Kobayashi, R.; Normand, J.; Raghavachari,K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,M.;Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.;Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann,R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G.A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.;Farkas, € O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2010. 65 Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Corso, A. D.; Gironcoli, S. d.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. J. Phys.: Condens. Matter 2009, 21, 395502.(Also available via the Internet at http://www.quantum-espresso.org.)