14 A Computer Model for Calculating Physical and Thermodynamic Properties of Synthetic Gas Process
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
Streams GRANT M. WILSON and MARK D. WEINER Brigham Young University, Provo, UT 84602
This paper describes our progress to date on development of a computer model based on a thermodynamically-consistent correlation that will accurately and reliably predict enthalpies, entropies, densities and ultimately K-values for synthetic gas systems over the range of typical synthetic gas processing conditions. A review of various gasification processes is given in Table 1. This table shows that process operating temperatures range from 550º to 3000ºF. The gasification of liquid hydrocarbons is done at temperatures ranging from 550ºF to 1000ºF, while coal gasification processes operate at temperatures from 500ºF to 3000ºF. Gasification pressures range from ambient to 1500 psia, and may be extended to 4000 psia. The principal chemical reactions of these processes can be characterized by the following equations. C Η + H O -> H + CO
(1)
CO + H 0 -> H + C0
(2)
x
y
2
2
CO +
2
2
3H
2
2
->
CH
4
+
HO 2
(3)
In some cases hydrogen is produced by reactions 1 and 2, and then the feedstock is hydrogenated to produce gas and oil. High operating temperatures are achieved either by pre-heating the reactants or by partial combustion using oxygen or air. Reactor products and by-products therefore consist of the following compounds. Hydrogen Carbon monoxide Carbon dioxide
Argon Hydrogen sulfide Carbonyl sulfide 256
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
1700-3000 500-1870
l i q u i d hyd.
l i q u i d hyd.
l i q u i d hyd.
coal
coal
coal
coal
coal
coal
c o a l o r coke
c o a l or coke
coal
coal
Gasynthan
JGC MethaneR i c h Gas (MRG)
Shell Gasification
Agglomerating Gasification
Bi-Gas
CO^ Acceptor
Coal S o l u t i o n Gasification
Hydrane
Lurgi-SNG/Coal
Molten S a l t C o a l Gasification
Koppers-Totzek
U-Gas
Winkler G a s i f i c a t i o n
Burner
l i q u i d hyd.
CRG Hydrogasification
2000
700-1900
2900
1700
600-1850
1450-1800
not given
1600-2100
not given
not given
550-750
600-1000
Feedstock
Process (5) Temp. °F
not given
300-350
not given
1200
1500
1000
not g i v e n
150
1000-1500
100-400
not given
not g i v e n
300-500
375
Pressure, p s i a
Table 1, Process C o n d i t i o n s of Various G a s i f i c a t i o n Methods
Product
3
3
4
H /CO
2
H /C0
2
H /C0
SNG, 950 B t u / f t
3
SNG, 950 + B t u / f t
95% CH
3
SNG, 1000 + B t u / f t
SNG, 950 + B t u / f t
SNG, 900 B t u / f t
2
H /C0
2
98% CH. 4 50% H , 45% CO
97% CH. 4 98% CH. 4
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
3
1
I—
S3
to
s 9°
ο
Co
Ο a
S"
(S
S*
CO
M
w
α
>
F ο
nix
258
P H A S E EQUILIBRIA A N D
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
Water Methane Nitrogen Oxygen
F L U I D PROPERTIES IN
C H E M I C A L INDUSTRY
Ammonia Light hydrocarbons Heavy hydrocarbons
The prediction and correlation of energy requirements, heat exchanger duty, chemical equilibria, and separation equilibria requires a knowledge of the enthalpy, compressibility, fugacity, and vapor-liquid equilibrium properties of these compounds and their mixtures. Existing prediction methods apply primarily to hydrocarbon mixtures at relatively low temperatures and their application to mixtures containing significant concentrations of water, CO , H S, and COS at high temperatures is questionable. Thus, accurate prediction methods are needed either by modification of existing methods or by development of new methods. A discussion of various alternatives for development of a new prediction method is given in the next section of this report. 2
2
Possibilities for New Prediction Methods Equation-of-state methods appear to be the most likely candidates for reliable accurate data. They are capable of predicting enthalpy, entropy, density, fugacity, vapor-liquid, and liquid-liquid data from one equation in regions where both low and high densities are encountered. Rapid computation requires that the equation be simple yet accurate without computational difficulties in areas surrounding the c r i t i c a l point. Possible candidates for this purpose are the following. 1. Modify existing correlations based on the Redlich-Kwong equation of state. a) Mark V (P-V-T, Inc., Houston, Texas) b) Soave (1) method 2. Adapt the BWR equation 3. Develop new equations of state Correlations based on the Redlich-Kwong equation of state have a "built i n " volume-dependence limitation. The equation has the right form for non-polar compounds but not for polar compounds. For example, i f one correlates the solubility of CO2 in water at 77 F; then one would expect that the correlation should also predict the solubility of water in CO2. This is not the case, since the predicted solubility of water in CO2 at liquid-liquid saturation i s 2.1 mole percent instead of the measured value of 0.25 mole percent (2). This represents a factor-of-eight prediction error. No amount of change of the temperature parameters w i l l correct this error because i t is related to the volume dependence of the equation. Since water is a principal component of synthetic gas processes, an accurate prediction of this mixture seems essential. The BWR equation has not been adequately tested for predicting
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
14.
WILSON
AND
Synthetic Gas Process Streams
WEINER
259
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
the p r o p e r t i e s of p o l a r and non-polar compounds. The author has some doubts whether i t would be s u i t a b l e . A second disadvantage i s t h a t the BWR equation has so many constants t h a t i t takes about f i v e times the computer time r e q u i r e d by the Redlich-Kwong equation. What i s needed then i s a new equation comparable i n comput a t i o n speed to e x i s t i n g Redlich-Kwong c o r r e l a t i o n s , but w i t h the c a p a b i l i t y of c o r r e l a t i n g the p r o p e r t i e s of both p o l a r and nonp o l a r mixtures. A new m o d i f i e d Van der Waals equation which meets these requirements i s d e s c r i b e d i n the next s e c t i o n of t h i s r e p o r t . A New M o d i f i e d Van der Waals Equation f o r Both P o l a r and Non-Polar Compounds and T h e i r M i x t u r e s Van Laar (3>4) used the Van der Waals equation to d e r i v e the now w i d e l y used Van Laar equation f o r c a l c u l a t i n g a c t i v i t y c o e f f i c i e n t s i n n o n - i d e a l mixtures. His d e r i v e d equation i s as f o l l o w s .
ln
Y
£ n
l
b l
2
+
(
^2 = x
V
x b/
(
= x.
2
Tx b/ V
l b l
2
where b = Van der Waals b
a
a
= 1_ RT
1
a
l' 2
=
V
a
_^1 _ 2 2 b b
k
;
1
a
n
2
^
e rW a a
^
s
a
As d e r i v e d , the equation gave only approximate r e s u l t s ; but i t was found that by making the b s and a s e m p i r i c a l parameters a l a r g e number of mixtures could be a c c u r a t e l y c o r r e l a t e d . Of course, by t h i s method the parameters l o s e t h e i r p h y s i c a l s i g n i f i c a n c e as parameters i n the Van der Waals equation. N e v e r t h e l e s s , the equat i o n has proved to be a very u s e f u l equation, and i s now more a p p r o p r i a t e l y w r i t t e n i n the f o l l o w i n g form. T
T
x S l n
l n
Y
Y
(
l- x
2 -
I x s / 1 12 S
l S l
(x
B
2
T x s / 2 12 S
l S l
B
2
where S, B = e m p i r i c a l
3
4
parameters.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
260
P H A S E EQUILIBRIA
A N D F L U I D PROPERTIES
IN C H E M I C A L INDUSTRY
I f the o r i g i n a l Van Laar equation came from the Van der Waals equation, then what equation of s t a t e corresponds to the e m p i r i c a l Van Laar equation? I f t h i s equation of s t a t e were known, one would have an equation of s t a t e w i t h e m p i r i c a l parameters to a d j u s t f o r a s s y m e t r i c n o n - i d e a l behavior i n mixtures. The authors b e l i e v e t h a t such an equation i s d e r i v a b l e by assuming t h a t v o i d spaces i n a f l u i d can be considered as a d d i t i o n a l component of a mixture. When t h i s method i s used w i t h the e m p i r i c a l Van Laar equation, then the f o l l o w i n g m o d i f i e d Van der Waals (M-VDW) equation i s produced. (See the appendix for details.) S x S (A
V Z Z x .1 k
PV _ _ V
3
V - b
/RT) 3
J
K
(V + S-b)
where b = molecular-volume parameter analogous to Van der Waals b A j k = energy parameter analogous to Van der Waals jk S = symmetry parameter from the e m p i r i c a l Van Laar equation B = Zxibi i S = ExiSi i A
This equation reduces to the form of the Van der Waals equation when S equals b. Thus the model i s i n agreement w i t h the o r i g i n a l Van Laar equation when S = b; t h i s confirms the method by which i t was d e r i v e d . The parameters Sj and Ajj/RT have been assumed to be temperature dependent as f o l l o w s . Tc. £
n
(
=
yv
C
(
j ~T
1 )
( 6 )
Tc. S
A
j j j
/
R
T
=
A
+
3
("T ) 1
Tc. +
Y
("T ) 1
+
Tc. 6
(
"T
1
)
+
Tc. . A
( 7 )
00
Equation (6) i s s i g n i f i c a n t because i t shows that as T -> then Sj b j . T h i s means that the equation approaches the Van der Waals form a t h i g h temperatures. The parameter S can be considered to be the e f f e c t i v e volume of a molecule r e s u l t i n g from i n t e r a c t i o n f o r c e s between the molecules. The t r a j e c t o r y of a molecule passing a c e n t r a l molecule i s changed as a r e s u l t of molecular i n t e r a c t i o n s , and passing molecules thus c o l l i d e more f r e q u e n t l y w i t h the c e n t r a l molecule than would otherwise be expected. When t h i s happens, the e f f e c t i v e s i z e of the molecule i s l a r g e r than i t s a c t u a l s i z e . At h i g h temperatures, the molecular i n t e r a c t i o n s
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
14.
WILSON
AND
WEINER
Synthetic Gas Process Streams
261
become s m a l l compared to the k i n e t i c energy of the molecules and the t r a j e c t o r y of a molecule i s n e g l i g i b l y a l t e r e d . When t h i s happens, the e f f e c t i v e s i z e of a molecule i s the same as the a c t u a l s i z e of the molecule. The parameter A j j has the u n i t s of energy per u n i t volume and i s analogous to the square of the s o l u b i l i t y parameter i n the Scatchard-Hildebrand equation. Numerous t e s t s of the ScatchardH i l d e r b r a n d equation have shown that there i s s i g n i f i c a n c e to the s o l u b i l i t y parameter. P r e v i o u s l y , there has been no way to i n t e r p r e t t h i s type of parameter from an equation of s t a t e . This new M-VDW equation could provide t h i s opportunity. P r e l i m i n a r y s t u d i e s show that the M-VDW equation can be adjusted to a c c u r a t e l y p r e d i c t the p h y s i c a l p r o p e r t i e s of water, hydrogen, carbon d i o x i d e and methane. Comparisons w i t h e x p e r i mental data are given i n Tables 2 to 21. Tables 2 to 5 give comparisons between experimental and p r e d i c t e d l i q u i d molar volume, vapor pressure, and saturated vapor c o m p r e s s i b i l i t y f a c t o r data f o r these compounds. These are p r e l i m i n a r y r e s u l t s , nevert h e l e s s the agreement between experimental and p r e d i c t e d data from the M-VDW equation are q u i t e good. With some exceptions, l i q u i d molar volumes are p r e d i c t e d w i t h i n about ±2%. This could be improved by assuming a s m a l l temperature dependence of the b parameter. Vapor pressure data appear to be p r e d i c t e d to b e t t e r than ±1%, and saturated vapor c o m p r e s s i b i l i t y f a c t o r s are accur a t e l y p r e d i c t e d except at c o n d i t i o n s c l o s e to the c r i t i c a l temperature where t h i s property changes q u i t e d r a s t i c a l l y w i t h only s m a l l changes i n temperature. The p r e d i c t i o n of these p r o p e r t i e s presumably can be improved by a d j u s t i n g e i t h e r the A or S parameters. One important c o n c l u s i o n from these comparisons i s that water p r o p e r t i e s can be p r e d i c t e d w i t h accuracy comparable to other non-polar compounds. This r e s u l t i s important i n d e t e r mining the s u i t a b i l i t y of the M-VDW f o r c o r r e l a t i n g and p r e d i c t i n g the p r o p e r t i e s of mixtures c o n t a i n i n g p o l a r and non-polar compounds. Tables 2 to 5 compare p r o p e r t i e s at temperatures below the c r i t i c a l temperature of the compounds. Tables 6 to 9 extend the comparisons to temperatures above the c r i t i c a l temperatures. The t a b l e s compare experimental and p r e d i c t e d c o m p r e s s i b i l i t y f a c t o r data. D e v i a t i o n s between experimental and p r e d i c t e d data are s m a l l except i n regions near the c r i t i c a l p o i n t . A l l equations of s t a t e tend to d e v i a t e i n t h i s r e g i o n , and the authors b e l i e v e the accuracy i s comparable to p r e d i c t i o n s from other equations of state. From past experience, the authors have found that i f other p h y s i c a l p r o p e r t i e s such as vapor pressure and c o m p r e s s i b i l i t y f a c t o r are a c c u r a t e l y p r e d i c t e d ; then enthalpy w i l l be a c c u r a t e l y p r e d i c t e d . This was found to be so i n t h i s case as i s shown i n Tables 10 to 15. Tables 20, 11, and 12 compare published and c a l c u l a t e d enthalpy data i n the s a t u r a t i o n regions f o r water, CO2
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
.4231
.4252
600
-0.49
1543
680.8
.3623
.3675
500
-1.41
.3280
.3358
400
67.01 247.3
-1.97
.3082
.3144
300
11.53
.949
Exp^
-2.32
-0.23
.2993
.3000
200
%Diff
4.13
M-VDW
.3026
.2906
100°F
Temperature
P
Ex
L i q u i d Molar Volume f t 3 / l b --mole
0.29 1.66
.9012 .8143 .6914
.8986 .8010 .6468
1.12 0.80 -0.32
250.07 686.26
6.90
-0.01 .9573 .9574
0.67
67.46
1538.07
-0.09
.9872
.9881
-0.30
11.50
%Diff
-0.09
M-VDW
.9978
Exp
.9987
%Diff
Saturated Vapor C o m p r e s s i b i l i t y Factor
-0.11
.948
M-VDW
Vapor Pressure psia
Table 2, WATER, Comparison of P r e d i c t e d and Experimental L i q u i d Molar Volume, Vapor Pressure, and Saturated Vapor C o m p r e s s i b i l i t y Factor
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
3
I—I
a >
g
O X W
W H W
§
a
S
1
*i r
a
> >
S
F
w
W
to to
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
.4059
.4326
.4727
.5400
.6902
.4278
.4521
.4876
.5454
.6920
-430.87°F
-423.67
-416.47
-409.27
-402.07
smperature
M-VDW
3
-0.26
-0.99
-3.06
-4.31
-5.12
%Diff
L i q u i d Molar Volume ft /lb-mole
160.67
83.69
37.41
13.07
2.966
P
Ex ^
161.45
84.36
37.50
13.04
2.966
M-VDW
0.00
%Diff
0.49
0.80
0.24
-0.23
Vapor Pressure psia
1.23 5.52
.7164 .5446
.7077 .5161
0.31
.8304
.8278
-0.04
-0.17
%Diff
.9124
.9662
M-VDW
.9128
.9678
Exp^
Saturated Vapor Compressibility Factor
Table 3, NORMAL HYDROGEN, Comparison of P r e d i c t e d and Experimental L i q u i d Molar Volume, Vapor P r e s s u r e , and Saturated Vapor C o m p r e s s i b i l i t y Factor
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
3
85
3
o o Co
C/3
w
s
o
>
O
I—I
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
.5985
.6324
.6914
.7860
-40
0
40
(8)
-69.6°F
Temperature
EX£
.7949
.6916
.6253
.5887
M-VDW
3
1.13
0.03
-1.12
-.164
%Diff
L i q u i d Molar Volume ft /lb-mole (8)
567.3
305.8
145.87
75.15
Exp
561.9
308.2
147.2
74.7
M-VDW
%Diff
-0.95
0.78
0.91
-0.60
Vapor Pressure psia
.6714
.7923
.8713
.9142
Exp,
(8)
.6796
.7865
.8698
.9175
M-VDW
1.,22
-0,.73
-0.,17
0..36
%Diff
Saturated Vapor Compressibility Factor
Table 4, CARBON DIOXIDE, Comparison of P r e d i c t e d and Experimental L i q u i d Molar Volume, Vapor Pressure,and Saturated C o m p r e s s i b i l i t y F a c t o r
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
Hi
§ o >
— ii
I—I
c
w
to
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
-0.56 -0.61 -0.70 0.36
.8933 .8142 .7082 .5564
.898 .819 .713 .554
0.23 1.22 1.65 1.43
151.83 301.91 534.54
150.0 297.0
0.52 2.65 5.37
.7144
.8135
1.0142
.7107
.7925
.9625
-190
-160
-130
527.0
64.65
64.5
-0.56
.6524
0.21 .9483
.946
0.20
%Diff
-0.69
21.56
.6561
21.71
-220
-250
M-VDW
.9817
0.00
-1.01
.5839
-280°F
ExpW
Saturated Vapor C o m p r e s s i b i l i t y Factor
.980
%Diff
4.90
M-VDW
.6098
4.90
ExpW
.6160
%Diff
-0.75
M-VDW
Vapor Pressure psia
.5795
nperature
Exp®
3
L i q u i d Molar Volume ft /lb-mole
Table 5, METHANE, Comparison of P r e d i c t e d and Experimental L i q u i d Molar Volume, Vapor P r e s s u r e , and Saturated Vapor C o m p r e s s i b i l i t y F a c t o r
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
ss
o
a
C/3
3
B
a
>
i
3 p
266
P H A S E EQUILIBRIA
A N D F L U I D PROPERTIES
I N C H E M I C A L INDUSTRY
Table 6, WATER, Comparison of P r e d i c t e d and Experimental C o m p r e s s i b i l i t y Data i n Super Heat Region Data Obtained From (6)
700°F
1200°F
)
EXP
M-VDW
%DIFF
500
.9866
.9865
-0.01
-0.09
1000
.9727
.9733
0.06
.7969
0.68
1600
.9560
.9561
0.01
.7207
.7341
1.86
2000
.9445
.9452
0.07
2500
.6103
.6400
4.87
2500
.9302
.9315
0.14
3000
.4274
.5000
16.99
3000
.9159
.9179
0.22
4000
.1662
.1582
-4.81
4000
.8870
.8910
0.45
5000
.1940
.1834
-5.46
5000
.8579
.8644
0.76
PSIA Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
a
EXP
M-VDW
%DIFF
PSIA
500
.9443
.9422
-0.22
1000
.8809
.8801
1600
.7915
2000
1600°F
900°F PSIA
EXP
M-VDW
%DIFF
500
.9953
.9946
-0.07
-0.09
1000
.9901
.9894
-0.07
.8996
0.00
1600
.9841
.9832
-0.09
.8723
.8732
0.10
2000
.9800
.9792
-0.08
2500
.8366
.8395
0.35
2500
.9750
.9743
-0.07
3000
.7998
.8035
0.46
3000
.9699
.9695
-0.04
4000
.7221
.7289
0.94
4000
.9596
.9587
-0.09
5000
.6397
.6488
1.42
5000
.9493
.9492
-0.01
EXP
M-VDW
%DIFF
PSIA
500
.9703
.9704
0.01
1000
.9390
.9382
1600
.8996
2000
a)
T h i s i s s l i g h t l y below the c r i t i c a l temperature of 706 F.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
14.
WILSON
267
Synthetic Gas Process Streams
AND WEINER
Table 7, NORMAL HYDROGEN, Comparison of P r e d i c t e d and Experimental C o m p r e s s i b i l i t y Data i n Super Heat Region Data Obtained From (7)
-398 .47°F
-351 .67°F
)
PSIA
EXP
M-VDW
%DIFF
0.22
19.24
.9941
.9948
0.07
.7056
2.53
183.11
.9462
.9514
0.55
.2890
.2784
-3.67
454.69
.8808
.8913
1.19
443.52
.3913
.3872
-1.05
876.18
.8488
.8582
1.11
833.26
.6512
.6302
-3.22
1540.14
.9552
.9582
0.31
PSIA Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
a
EXP
M-VDW
%DIFF
17.75
.9708
.9729
150.93
.6882
221.91
-189 .67°F
-391 .27°F PSIA
EXP
M-VDW
%DIFF
EXP
M-VDW
%DIFF
19.94
.9757
.9777
0.20
80.90
1.003
1.0028
-0.02
159.45
.7803
.7935
1.69
1385.83
1.074
1.0668
-0.67
235.87
.6415
.6635
3.43
2192.64
1.132
1.1221
-0.87
368.28
.4292
.4360
1.58
3640.20
1.254
1.2398
-1.13
612.24
.5167
.5122
-0.87
5894.57
1.462
1.4552
-0.47
PSIA
80 .33°F
-380 ,47°F PSIA
M-VDW
%DIFF
1.007
1.0059
-0.11
3311.01
1.140
1.1325
-0.66
2.44
6126.76
1.266
1.2596
-0.51
.63.26
2.46
9005.71
1.396
1.3989
0.21
.6347
0.51 12526.87
1.553
1.5748
1.40
EXP
M-VDW
%DIFF
14.04
.9887
.9897
163.27
.8623
310.38
PSIA
EXP
0.10
162.39
.8726
1.19
.7287
.7465
467.33
.6174
747.00
.6315
a)
T h i s i s s l i g h t l y above the c r i t i c a l p o i n t a t -399.93°F.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
268
P H A S E EQUILIBRIA A N D F L U I D PROPERTIES IN C H E M I C A L
INDUSTRY
Table 8, CARBON DIOXIDE, Comparison of P r e d i c t e d and Experimental C o m p r e s s i b i l i t y Data i n Super Heat Region Data Obtained From (8)
400°F
100
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
PSIA
EXP
M-VDW
%DIFF
200
.9885
.9886
0.01
2.90
400
.9763
.9775
0.12
.7961
4.96
600
.9647
.9658
0.11
.6695
.7080
5.75
800
.9534
.9547
0.14
.5789
.5921
2.28
1000
.9427
.9439
0.13
EXP
M-VDW
%DIFF
PSIA
200
.9260
.9386
1.36
400
.8471
.8717
600
.7585
800 1000
600°F
140 °F PSIA
EXP
M-VDW
%DIFF
200
.9955
.9966
0.11
3.31
400
.9912
.9934
0.22
.8477
5.40
600
.9865
.9904
0.40
.7337
.7882
7.43
800
.9822
.9875
0.54
.6853
.7230
5.50
1000
.9777
.9848
0.73
EXP
M-VDW
%DIFF
PSIA
200
.9406
.9522
1.23
400
.8727
.9016
600
.8043
800 1000
1000°F
240 °F PSIA
M-VDW
%DIFF
200
.9992 1.0020
0.28
0.23
400
.9986 1.0042
0.56
.9175
0.33
600
.9979 1.0063
0.84
.8859
.8891
0.36
800
.9972 1.0085
1.13
.8564
.8605
0.48
1000
.9964 1.0108
1.45
EXP
M-VDW
%DIFF
PSIA
200
.9718
.9737
0.20
400
.9433
.9455
600
.9145
800 1000
a)
EXP
This i s s l i g h t l y above the c r i t i c a l temperature at 88°F.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
14.
WILSON
AND WEINER
Synthetic
Gas Process
269
Streams
Table 9, METHANE, Comparison of P r e d i c t e d and Experimental C o m p r e s s i b i l i t y Data i n Super Heat Region Data O b t a ined From (9) -100°F
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
PSIA
500°F EXP
M-VDW
%DIFF
100
1.0016
1.0000
-0.16
0.37
300
1.0023
1.0030
0.07
.6820
1.44
600
1.0047
1.0064
0.17
.3217
.3045
-5.35
1000
1.0095
1.0115
0.20
2000
.4646
.4350
-6.37
2000
1.0252
1.0275
0.22
PSIA
EXP
M-VDW
%DIFF
PSIA
EXP
M-VDW
100
.9694
.9706
0.12
100
1.0016
1.0021
0.05
300
.9026
.9061
0.39
300
1.0062
1.0065
0.03
600
.7924
.8009
1.07
600
1.0126
1.0131
0.05
1000
.6250
.6378
2.05
1000
1.0215
1.0222
0.07
2000
.5206
.4931
-5.28
2000
1.0440
1.0438
-0.02
EXP
M-VDW
100
.9567
.9567
300
.8588
.8620
600
.6723
1000
%DIFF
PSIA
60°F
1000°F %DIFF
1500°F PSIA
EXP
M-VDW
%DIFF
PSIA
EXP
M-VDW
%DIFF -0.05
100
.9808
.9818
0.10
100
1.0023
1.0018
300
.9405
.9439
0.36
300
1.0062
1.0056
-0.06
600
.8788
.8867
0.90
600
1.0124
1.0112
-0.12
1000
.7974
.8097
1.54
1000
1.0206
1.0188
-0.18
2000
.6777
.6696
-1.20
2000
1.0420
1.0371
-0.47
100°F PSIA 100
2000°F
EXP
M-VDW
%DIFF
PSIA
.9906
.9915
0.09
100
M-VDW
%DIFF
1.0022
1.0012
-0.10 -0.19
EXP
300
.9711
.9752
0.42
300
1.0057
1.0038
600
.9440
.9502
0.66
600
1.0115
1.0076
-0.39
1000
.9108
.9200
1.01
1000
1.0192
1.0192
-0.64
2000
.8584
.8639
0.64
2000
1.0378
1.0260
-1.14
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
270
P H A S E EQUILIBRIA
A N D F L U I D PROPERTIES
IN C H E M I C A L INDUSTRY
Table 10 Comparison of C a l c u l a t e d Water Enthalpy Data w i t h L i t e r a t u r e Data i n theS a t u r a t i o n Region (10)
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
Temp °F
Pressure PSIA
Enthalpy, BTU/LB
Calc 32.02 213.03
.089 a
40.8
LIQUID Diff Lit 0
40.8
VAPOR Calc
Lit
Diff
1080.5
1075.5
5.0
1156.6
1150.9
5.7
15.0
181.2
181.2
320.28
90.0
292.2
290.7
1.5
1191.8
1185.3
6.5
377.53
190.0
354.7
350.9
3.8
1204.9
1197.6
7.3
414.25
290.0
395.9
390.6
5.3
1210.8
1202.6
8.2
444.60
400.0
430.6
424.2
6.4
1213.8
1204.6
9.2
503.08
700.0
500.0
491.6
8.4
1214.4
1201.8
12.6
567.19
1200.0
581.4
571.9
9.5
1205.3
1184.8
20.5
613.13
1700.0
645.1
636.5
8.6
1190.5
1158.6
31.9
662.11
2400.00
722.0
719.0
3.0
1163.2
1103.7
59.5
a)
Enthalpy base adjusted to f i t the l i q u i d enthalpy a t 213.03 F
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
14.
WILSON
AND WEINER
271
Synthetic Gas Process Streams
Table 11 Comparison of C a l c u l a t e d Carbon D i o x i d e Enthalpy Data w i t h Literature"'" Data i n the S a t u r a t i o n Region (11) Temp °
Pressure
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
F
P
S
I
„ , ., , , Enthalpy, BTU/LB T
A
mTT/TT
Calc
LIQUID Lit Diff
Calc
VAPOR Lit
Diff
-69.9
75.1
-19.9
-13. 7 -6.2
138.2
136.0
2.2
-50.0
118.3
-6.4
-4. 6 -1.8
139.6
137.3
2.3
145.9
0.0
0.0
—
140.1
137.9
2.2
-20.0
215.0
12.2
9. 2
3.0
140.8
138.7
2.1
0.0
305.8
23.8
18. 8
5.0
140.9
138.9
2.0
20.0
421.8
35.3
29. 6
5.7
140.2
138.5
1.7
40.0
567.3
47.0
41. 8
5.2
138.5
136.8
1.7
60.0
747.4
59.5
55. 7
3.8
135.5
132.2
3.3
80.0
969.3
73.9
74. 0 -0.1
129.8
119.0
10.8
-40.0
a
a)
Enthalpy base adjusted to f i t the l i q u i d enthalpy a t -40°F.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
272
P H A S E EQUILIBRIA
A N D F L U I D PROPERTIES
IN C H E M I C A L INDUSTRY
Table 12 Comparison of C a l c u l a t e d Methane Enthalpy Data w i t h L i t e r a t u r e Data i n the S a t u r a t i o n Region (9)
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
Temp o/
Pressure p
s
i
„ , , „ Enthalpy, BTU/LB n m T / T
A
LIQUID Diff Lit
VAPOR Calc
Lit
Diff
—
-1706.1
-1705. 8
-0.3
13. 8
-1918. 1 -1917.4 -0.7
-1697.9
-1697. 6
-0.3
14. 7
-1917. 0 -1917.0
—
-1697.4
-1697. 5
0.1
-235
39. 0
-1897. 4 -1896.4 -1.0
-1689.2
-1689. 2
—
-210
87. 6
-1875. 6 -1875.2 -0.4
-1682.8
-1683. 0
0.2
-185
169. 7
-1852. 2 -1851.2 -1.0
-1679.5
-1679. 2
-0.3
-160
297. 0
-1825. 9 -1826.2
0.3
-1680.3
-1679. 2
-1.1
-135
482. 0
-1797. 0 -1795.3
1.3
-1688.3
-1686. 8
-1.5
673. 1
-1760. 1 -1730.0--30.1
-1708.6
-1730. 0
21.4
Calc -280
4. 90
-260 -258.,68
-116.,5
b
a
-1934. 0 -1934.0
a)
Enthalpy base a d j u s t e d to f i t the l i q u i d enthalpy at -258.68°F.
b)
C r i t i c a l p o i n t of methane.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
14.
WILSON
A N D WEINER
Synthetic Gas Process Streams
273
Table 13 Comparison of C a l c u l a t e d Water Enthalpy Data w i t h L i t e r a t u r e Data i n the Superheat Region (10) Temp °F Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
750
a
1500
a)
Pressure PSIA
Calc
1000
1361.8
1358.7
3.1
1500
1332.4
1328.0
4.4
2000
1299.6
1292.6
7.0
2500
1262.6
1250.6
12.0
3000
1218.1
1197.9
20.2
3500
1158.9
1127.1
31.8
4000
933.8
1007.4
-73.6
6000
819.4
822.9
-3.5
8000
796.1
796.6
-0.5
10000
783.8
783.8
—
15000
769.6
769.7
0.1
250
1806.4
1800.2
6.2
500
1803.2
1796.9
6.3
Enthalpy, BTU/LB Lit
Diff
750
1799.9
1793.6
6.3
1000
1796.7
1790.3
6.4
1500
1790.2
1783.7
6.5
2000
1783.8
1777.1
6.7
2500
1777.1
1770.4
6.7
3000
1770.6
1763.8
6.8
3500
1764.1
1757.2
6.9
4000
1757.6
1750.6
7.0
6000
1731.8
1724.2
7.6
8000
1706.4
1698.1
8.3
10000
1681.7
1672.8
8.9
15000
1624.6
1615.9
8.7
b
S l i g h t l y above c r i t i c a l temperature of water at 706 F.
b) The e r r o r of 6 BTU/lb i s an e r r o r i n the i d e a l gas enthalpy at 1500 F r e f e r r e d t o the l i q u i d a t 213 F. This e r r o r i s caused by a s m a l l e r r o r i n the i d e a l gas heat c a p a c i t y of water. This problem w i l l be c o r r e c t e d . Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
274
P H A S E EQUILIBRIA A N D F L U I D PROPERTIES IN C H E M I C A L
INDUSTRY
Table 14 Comprison of C a l c u l a t e d Carbon Dioxide Enthalpy w i t h L i t e r a t u r e Data i n the Superheat Region ( i i )
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
Temp °F •20
300
1000
Pressure PSIA
Calc
Enthalpy, BTU/LB Lit
Diff
1.0
152.5
151.5
1.0
10.0
152.1
151.1
1.0
25.0
151.4
150.4
1.0
50.0
150.2
149.0
1.2
100.0
147.6
146.0
1.6
200.0
141.9
139.9
2.0
1.0
219.6
218.8
0.8
10.0
219.5
218.8
0.7
25.0
219.3
218.7
0.6
50.0
218.9
218.4
0.5
100.0
218.3
217.8
0.5
200.0
216.9
216.4
0.5
400.0
214.2
214.0
0.2
600.0
211.4
211.4
0
1000.0
205.7
205.9
-0.2
1.0
399.9
399.0
0.9
10.0
399.9
399.0
0.9
25.0
399.8
399.0
0.8
50.0
399.8
398.9
0.9
100.0
399.6
398.9
0.7
200.0
399.3
398.8
0.5
400.0
398.7
398.4
0.3
600.0
398.1
398.0
0.1
397.0
397.2
-0.2
1000.0
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
14.
WILSON
A N D WEINER
Synthetic Gas Process Streams
275
Table 15 Comparison of C a l c u l a t e d Methane Enthalpy Data .th L i t e r a t u r e Data i n theSuperheat Region
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
Temp
-60
700
2200
Pressure PSIA
Calc
Enthalpy, BTU/LB Lit
Diff
1.0
-1595.7
-1595.6
-0.1
25.0
-1596.9
-1596.8
-0.1
50.0
-1598.2
-1597.9
-0.3
100.0
-1600.7
-1600.4
-0.3
200.0
-1606.0
-1605.7
-0.3
400.0
-1617.3
-1617.0
-0.3
600.0
-1630.0
-1629.8
-0.2
1000.0
-1662.0
-1661.9
-0.1
2000.0
-1727.3
-1720.8
-6.5
1.0
-1110.0
-1107.8
-2.2
25.0
-1110.1
-1107.9
-2.2
50.0
-1110.3
-1108.0
-2.3
100.0
-1110.4
-1108.3
-2.1
200.0
-1110.8
-1108.9
-1.9
400.0
-1111.5
-1109.8
-1.7
600.0
-1112.3
-1110.3
-2.0
1000.0
-1113.7
-1112.6
-1.1
2000.0
-1117.0
-1116.3
-0.7
1.0
518.5
518.6
-0.1
50.0
518.4
518.6
-0.2
100.0
518.7
518.8
-0.1
200.0
518.8
519.2
-0.4
400.0
519.0
519.8
-0.8
600.0
519.2
520.4
-1.2
1000.0
519.7
521.8
-2.1
2000.0
521.2
525.3
-4.1
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
276
P H A S E EQUILIBRIA A N D F L U I D PROPERTIES IN C H E M I C A L
INDUSTRY
Table 16, WATER, Comparison of P r e d i c t e d and Experimental Second V i r i a l C o e f f i c i e n t s
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
T°K
M-VDW
G. S. K e l l
(12) Literature — M. P. V u k a l o v i c h
353.16
-561.4
-844.4
373.16
-465.75
-453.6
423.16
-308.59
-326
-283.3
473.16
-217.35
-209
-196.1
523.16
-160.18
-152.5
-145.4
573.16
-122.2
-117.1
-112.9
623.16
-95.67
-92.38
-90.2
673.16
-76.53
-73.26
-72.4
723.16
-62.24
-59.36
-60.6
773.16
-51.29
-50.4
823.16
-42.72
-42.0
923.16
-30.33
-29.4
1073.16
-18.75
-17.0
1173.16
-13.68
-11.6
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
-316.61 -296.24 -223.46 -174.05 -151.70 -100.80 -69.99 -58.74 -49.35 -34.54 -14.64 -1.82 7.15 13.81 21.10
1. 2. 3. 4. 5. 6. 7.
E. R. K. A. K. M. B.
-46.3 -29.1
-147.4 -100.7 -69.5
1*
G. Butcher (12) S. Dadson (12, 13) E. MacCormack (L2, 13) Perez Masia (12, 13) Schafer (12, 13) P. V u k a l o v i c h (12_, 13) L. T u r l i n g t o n (12)
Primary Data Source:
203.83 209.03 233.34 258.15 273.15 323.15 373.15 398.15 423.15 473.15 573.15 673.15 773.15 873.15 1023.15
M-VDW
-70..2 -58,.4
-147. ,4
2
-50.59 -34.08 -13.58 -1.58 6.05 12.11
4
-142 -104, .3 -73,.9 -59..4 -52,.6
Literature
-156.36 -102.63 -71.85
3 -330 -302 -210
5
Table 17, CARBON DIOXIDE, Comparison of P r e d i c t e d and Experimental Second V i r i a l
-103.1 -73.1 -61.7 -52.5 -36.8 -15.9 -3.4 4.0 10.4 15.8
6
Coefficients
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
-173. ,5 -149. ,3 -104. ,5
7
278
P H A S E EQUILIBRIA A N D F L U I D PROPERTIES IN C H E M I C A L INDUSTRY
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0060.ch014
Table 18, HYDROGEN, Comparison of P r e d i c t e d and Curve F i t Experimental Second V i r i a l C o e f f i c i e n t s
T^K
M-VDW
15 25 50 100 200 300 400
-239.2 -106.0 -30.3 -1.6 9.7 13.0 14.5
Literature
(12) —
±5 ±3 ±2 ±1 ±0.5 ±0.5 ±0.5
-230 -111 -35 -1.9 11.3 14.8 15.2
Table 19, METHANE, Comparison of P r e d i c t e d and Curve F i t Experimental Second V i r i a l C o e f f i c i e n t s
T^K
M-VDW
110 150 200 250 300 400 500 600
-415.5 -204.8 -107.3 -62.7 -37.7 -11.1 2.6 11.0
(12) Literature— -344 -191 -107 -67 -42 -15.5 -0.5 8.5
±10 ±6 ±2 ±1 ±1 ±1 ±1 ±1
Table 20, P r e d i c t e d S o l u b i l i t y of Water i n Carbon Dioxide a t L i q u i d - L i q u i d S a t u r a t i o n from the M-VDW and Mark V Equations of State a t 25 C Solubility Mole % Measured (2)
Error %
0.25
Predicted
b
M-VDW
0.20
Predicted
b
Mark V
2.1
20 840
b) The CO2-H2O i n t e r a c t i o n c o e f f i c i e n t was adjusted t o f i t the measured s o l u b i l i t y of CO2 i n H2O which i s 2.55 mole % as reported by F r a n c i s . Storvick and Sandler; Phase Equilibria and Fluid Properties in the Chemical Industry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
14.
WILSON
>^
vO
O O
ON
d
rH rH
O
00
rH vO 00 00 00