Subscriber access provided by MONASH UNIVERSITY
Article
A Strategy for the Synthesis of Anthraquinone based Aryl-C-Glycosides Namrata Anand, Kapil Upadhyaya, Arya Ajay, Rohit Mahar, Sanjeev K. Shukla, Brijesh Kumar, and Rama Pati Tripathi J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo302589t • Publication Date (Web): 25 Apr 2013 Downloaded from http://pubs.acs.org on April 28, 2013
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 47
The Journal of Organic Chemistry
1 2 3
A Strategy for the Synthesis of Anthraquinone based Aryl-C-Glycosides 4 5 6 7
Namrata Anand†, Kapil Upadhyaya†, Arya Ajay†, Rohit Mahar ‡, Sanjeev K. Shukla‡, Brijesh Kumar‡, and Rama Pati Tripathi*† 8 10
9 †
12
Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226001, India
13
‡
15
14
1
Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow 226001, India
16 17
rpt.cdri @gmail.com 19
18
ABSTRACT: 20 21 2 23 24 25 26 28
27
An efficient and simple strategy for the synthesis of diverse range of anthraquinone based aryl30
29
C-glycosides has been developed. It involves the sequential Diels-Alder reaction and oxidative 32
31
aromatization with the preformed glycosyl diene and dienophiles. The glycosyl dienes were 3 35
34
obtained from simple sugars by tandem one pot substitution and elimination reaction. 36 37 38 39 40 41 42 43 4 45 46 47 48 49 50 51 52 53 54 5 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 3
2
INTRODUCTION: 5
4
Secondary metabolites, frequently available as glycosides, produced by plants and 6 8
7
microorganisms have been the most important chemical entities till date as bioactives. The aryl10
9
C-glycosides, both of synthetic and natural origins, are of great significance1 in medicinal 1 12
chemistry owing to their stability towards the enzymatic and chemical hydrolysis as compared to 13 14
the O-glycosides.2 They are well known antibiotics, potent enzyme inhibitors and possess a wide 17
16
15
range of biological activities.3 Currently several aryl-C-glycosides as SGLT2 inhibitors are 19
18
undergoing clinical trials for the treatment of diabetes and related complications. 4 The 20 2
21
angucycline group of glycosides with anthraquinone as aglycon part are endowed with 24
23
anticancer, antibacterial, antiviral, enzyme inhibitory, and platelet aggregation inhibition 25 26
activities.3 27 29
28
Synthesis of anthraquinone based aryl-C-glycosides has been the focus of several leading 31
30
research groups for quite some time.5 In view of the structural complexity of aglycones, the 32 34
3
control of regiochemistry in glycosylation of a polysubstituted aromatic precursor to get the 36
35
desired aryl-C-glycosides is a crucial issue. To overcome this, the benzannulation or 38
37
cycloaddition strategies for glycosylated aromatics have played key roles.6 Suzuki’s group has 39 41
40
developed elegant methods for the total synthesis of gilvocarcin and ravidomycin using 43
42
cycloaddition reaction of sugar bearing benzyne and substituted furans7. Later on furan-benzyne 4 45
cycloaddition to get aryl-C-glycosides was extended by Martin’s group with benzyne precursors 46 48
47
as quinone equivalents to get the aryl-C-glycosides.8 A sequential intermolecular enyne 50
49
metathesis of C-alkynyl glycosides with ethylene and subsequent Diels-Alder reaction followed 51 52
by aromatization reaction9, and Diels-Alder reactions of preformed C-pentadienyl glycosides 53 5
54
with quinones10 were also used for the synthesis of aryl-C-glycosides. Thus, the direct Diels56 57 58 59 60 ACS Paragon Plus Environment
Page 2 of 47
Page 3 of 47
The Journal of Organic Chemistry
1 3
2
Alder reaction of dienyl glycosides with quinones has rarely been used to get aryl-C-glycosides 5
4
possibly due to (i) difficulties to access dienyl glycosides, (ii) the drastic conditions required for 6 8
7
the cycloaddition between dienyl glycosides and quinones, (iii) cost of Grubbs’ second 10
9
generation catalyst used in metathesis reactions, and (iv) difficulty in deprotection of the 1 12
protecting groups to get the glycosides with free hydroxyl groups. Therefore, an economical, 13 15
14
environmently benign and high yield synthesis of aryl-C-glycosides is still a priority area of 17
16
research. In continuation of our ongoing research on aryl-C-glycosides11 and glycoconjugates12 18 19
as chemotherapeutics, we reported herein a robust, eco-friendly, and economical viable 20 2
21
stereoselective synthesis of anthraquinone C-glycosides involving a simple synthesis of glycosyl 24
23
dienes via Et3N catalyzed sequential O-methanesulfonylation and elimination reactions of 25 27
26
glycosyl butenols followed by sequential Diels-Alder reaction of these dienes with dienophiles 29
28
and oxidative aromatization. 30 31 32
RESULTS AND DISCUSSION: 3 35
34
The required butadienyl glycoside (3a-3o) substrates for Diels-Alder reaction were prepared 37
36
(Scheme 1) in good yields (82-93 %) with EE-stereoselectivity from preformed butenoyl 39
38
glycosides (1a-1o)13. 40 41 42 43 4 45 46 47 48 49 50 51 52 53 54
Scheme 1. Synthesis of glycosylated dienes 5 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 3
2
*(purely isolated (EE) diene was used for deacetylation and this deacetylated diene was directly used in 5
4
cycloaddition reaction) 6 8
7
Luche reduction14 of butenoyl-C-glycosides (1a-1o) with NaBH4/CeCl3.6H2O in methanol 10
9
yielded the glycosides (2a-2o) as (1:1) diastereoisomeric mixtures in excellent yields (89-97 %). 1 13
12
The latter on Et3N catalysed tandem one pot in situ methanesulfonylation and elimination 15
14
reaction provided respective dienyl glycosides (3a-3o) (Scheme 1). Optimization of this step 16 17
was made using two different sulfonylating agents tosyl chloride (TsCl) or mesyl chloride 18 20
19
(MsCl) and organic bases (DBU, DABCO or Et3N) with a model glycosyl butenol substrate 2a, 2
21
where MsCl (2 eq.)-Et3N (1.2 eq.) combination proved to be the optimum for the synthesis of 23 24
dienyl glycoside 3a (entry 5, Table 1). 25 26 28
27
Table 1 Optimization of reaction conditions for glycosyl diene 29 30 31 32 3 34 35
38
37
36
entry
alkylating agent
base
time (h)
tempb (°C)
Yield (%)
51
50
49
48
47
46
45
4
43
42
41
40
1
TsCl
TEA
4
40
nrc
2
TsCl
DBU
10
40
nr
3
TsCl
TEA
10
70
nr
4
TsCl
DABCO
10
70
nr
5
MsCl
TEA
4
40
90d
6
MsCl
DBU
4
40
50
7
MsCl
DABCO
10
40
nr
8
MsCl
DABCO
8
70
20
39
53
52
5
54
57
56
8. 58 59 60 ACS Paragon Plus Environment
Page 4 of 47
Page 5 of 47
The Journal of Organic Chemistry
1 3
2
a = all reactions were carried out in CH2Cl2( 0.4 M), b = high temperature reactions were performed in sealed tube, c 5
4
= no reaction, d = isolated yield. 6 8
7
Following the optimized reaction conditions, 3a-3o were obtained as a mixture of EE (major, 10
9
85-90 %) and ZE (minor, 10-15 %) isomers in excellent yields (Table 2). The structures of the 1 13
12
two isomers were well established by detailed NMR studies (See Supporting Information). 14 16
15
Table 2. Synthesized glycosylated dienesa (3b-3o, 4a and 4b) 17 18 20
19
entry
product
Ar
R1
R2
R3
yieldb (%)
25
24
23
2
1
3b
phenyl
H
OAc
CH2OAc
91
2
3c
4-Br-phenyl
H
OAc
CH2OAc
89
3
3d
4-Cl-phenyl
H
OAc
CH2OAc
84
4
3e
2-Cl-phenyl
H
OAc
CH2OAc
87
5
3f
4-iPr-phenyl
H
OAc
CH2OAc
92
6
3g
4-OMe-phenyl
H
OAc
CH2OAc
92
7
3h
2-naphthyl
H
OAc
CH2OAc
82
8
3i
phenyl
H
OAc
H
90
9
3j
4-Cl-phenyl
H
OAc
H
86
10
3k
4-F-phenyl
H
OAc
H
85
11
3l
4-Me-phenyl
H
OAc
H
92
12
3m
4-OMe-phenyl
H
OAc
H
91
13
3n
4-Me-phenyl
OAc
H
CH2OAc
92
14
3o
4-OMe-phenyl
OAc
H
CH2OAc
93
15
4a
4-F-phenyl
H
OH
H
97c
21
30
29
28
27
26
32
31
37
36
35
34
3
39
38
4
43
42
41
40
46
45
49
48
47
51
50
56
5
54
53
52
57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 6 of 47
1 3
2
16 4
4b
4-OMe-phenyl
H
OH
96c
H
5 7
6
a = The dienes were synthesized from respective glycosyl butenols using MsCl (2 eq)-Et3N (1.2 eq) in CH2Cl2 at 9
8
40° C, b = yields were calculated for the mixture of isomers, c = yields for purely isolated acetylated (EE) dienes 10 12
1
Zemplen deacetylation of dienyl glycosides 3k (EE) and 3m (EE) resulted in predominantly (EE) 14
13
isomer of deacetylated glycosyl dienes 4a and 4b respectively in good yields (Scheme 1, Table 15 16
2). 17 19
18
The optimization of cycloaddition reaction of (EE) dienyl-1-β-D-xylopyranoside 3l was carried 21
20
out with naphthoquinone under different conditions (Table 3). The reaction was unsuccessful up 2 24
23
to 40 °C in presence or absence of any catalyst. Heating the reaction mixture in presence of 26
25
different Lewis acid catalysts at 80 °C in different solvents led to the formation of desired C27 28
(1,4-dihydroanthraquinon-1-yl-)-xylopyranoside (5'l) in varying yields. 29 31
30
Table 3. Optimization of reaction conditions for Diels-Alder reaction 32 3 34 35 36 37 38 39 41
40
4
1
catalyst (mol %) No catalyst
45
2
AlCl3 (5)
5
toluene
100
nr
3
ZnCl2 (5)
5
toluene
80
40
4
SnCl2 (5)
6
toluene
80
50
51
5
CuCl2 (5)
6
toluene
100
nr
52
6
CoCl2 (5)
6
toluene
100
nr
7
FeCl3.6H2O (5)
3
toluene
80
95
8
InCl3.4H2O (5)
3
toluene
80
99
entry
47
46
43
42
56
5
54
53
50
49
48
Time (h) 10
solventa toluene
temperature (°C) 110
yield (%) nrb
57 58 59 60 ACS Paragon Plus Environment
Page 7 of 47
The Journal of Organic Chemistry
1 3
2
9
Anhyd. InCl3 (5)
3
dry toluene
80
96
5
10
InCl3.4H2O (5)
8
ethanol
80
nr
11
InCl3.4H2O (5)
8
DMF
80
30
12
InCl3.4H2O (5)
5
acetonitrile
80
85
1
13
InCl3.4H2O (5)
8
dioxane
80
30
12
14
InCl3.4H2O (5)
8
water
80
nr
15
InCl3.4H2O (2)
5
toluene
80
67
16
InCl3.4H2O (10)
3
toluene
80
63c
16
15
14
13
10
9
8
7
6
4
17 18
a = 0.25 M solvents used, b = no reaction, c = complex mixture therefore low yield. 19 20
Among the different catalysts screened, AlCl3, CuCl2, and CoCl2 were found to be ineffective, 21 23
2
while ZnCl2 and SnCl2 were moderetly effective with 40-50 % yields of desired product. 25
24
However, FeCl3.6H2O and InCl3.4H2O were the most effective to give the maximum yields of 5'l 26 27
(entries 7 and 8, Table 3). The reaction proceeded equally well with anhydrous InCl3 in dry 28 30
29
toluene, indicating no significant role of water during reaction (entry 9, Table 3). The effect of 32
31
solvents were also examined (Table 3), while the polar protic solvents were almost ineffective 3 35
34
(entries 10 and 14, Table 3) the aprotic polar solvents were somewhat effective (entries 11-13, 37
36
Table 3) and aprotic nonpolar solvent (toluene) was found to be the most effective (entries 7 and 38 39
8, Table 3) with >95 % conversion of 3l into product 5'l, (Scheme 2). Therefore, for Diels-Alder 40 42
41
reaction 0.25 M toluene as solvent, InCl3.4H2O as catalyst at 80 °C heating was chosen as the 4
43
optimum reaction condition for subsequent reactions. Compound 5'l was isolated, characterized, 45 46
and was found to be an inseparable diastereoisomeric mixture (NMR). Finally, oxidation of 5'l 47 49
48
with molecular O2/Et3N allows us to get the aryl-C- xylopyranoside 5l in 98 % yield. 50 51 52 53 54 5 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 1 12 13 15
14
Scheme 2: Synthesis of aryl-C-glycoside 16 17 18
The above two steps transformation of dienyl glycoside 3l to aryl C-glycoside 5l was also carried 19 20
out without the purification of the intermediate dihydro product 5’l in 95 % yield (Scheme 2). 23
2
21
Since the diastereomeric centres were lost during oxidative aromatization, the presence of the 24 25
isomeric mixture of dienes did not affect the sequential reactions and therefore these mixtures 26 28
27
were used as such for subsequent cycloaddition and oxidative aromatization reactions (Table 4). 30
29
Based on the above observations, we have extended the scope of this cycloadditive oxidation 31 32
reaction to other dienyl glycosides derived from D-glucose, D-xylose and D-mannose with 3 35
34
naphthoquinone as a dienophiles to get structurally diverse aryl-C-β-D-glycosides (Table 4). 37
36
Table 4 Synthesized aryl-C-β-D-glycosidesa 38 39 40 41 42 43 4 45 47
46
1
3a
yieldb (%) 92
2
3b
91
entry 48
dienes
50
49
aryl-C-glycosides
51
54
53
52
5 56 57 58 59 60 ACS Paragon Plus Environment
Page 8 of 47
Page 9 of 47
The Journal of Organic Chemistry
1
4
3
2
3
3c
90
4
3d
91
5
3e
90
6
3f
93
7
3g
95
8
3h
88
9
3i
93
10
3j
92
11
3k
93
12
3l
95
13
3m
94
14
3n
93
15
3o
96
5
8
7
6
9 1
10 12 13 15
14 16 17
20
19
18
21 23
2 24 25
28
27
26
29 30 32
31 3 34 36
35 37
40
39
38
41
4
43
42
45
48
47
46
49
52
51
50
53 54 5 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 10 of 47
1
4
3
2
16
4a
83
17
4b
80
5 6
9
8
7
10 1 12
a = for reaction molarity see the experimental section, b = isolated yield 13 14 15
We were also successful in synthesizing unprotected aryl-C-glycosides 6a and 6b by reacting the 16 18
17
polar unprotected dienyl glycosides 4a and 4b respectively with naphthoquinone in water: 20
19
toluene (9:1) at 80 °C followed by oxidative aromatization in very good yields (entries 16 and 21 23
2
17, Table 4). 25
24
The scope of the Diels-Alder reaction of dienyl glycosides was extended by reacting dienyl 27
26
glycoside 3m with N-phenyl maleimide as dienophile to give the cycloaddition endo product 428 30
29
(2',3',4',6'-tetra-O-acetyl-β-D-xylopyranosyl)-7-(4-methoxyphenyl)-2-phenyl 32
31
tetrahydro-1H-
isoindole-1,3(2H)-dione (7) exclusively in good yield (81 %) (Scheme 3). The structure of the 3 34
latter was established on the basis of detailed NMR experiments (SI). However, the product 7 35 37
36
could not be aromatized under the oxidative aromatization reaction conditions. 38 39 40 41 42 43 4 45
Scheme 3: Synthesis of maleimide adduct 7 46 47 49
48
CONCLUSIONS: 51
50
We have reported a simple but efficient strategy to get aryl-C-β-D-glycosides with increasing 52 53
opportunities for diversity generation. This strategy holds potential to access a library of 54 56
5
anthraquinone based C-glycosides and related analogues of great medicinal values. The method 57 58 59 60 ACS Paragon Plus Environment
Page 11 of 47
The Journal of Organic Chemistry
1 3
2
involved is economical and eco-friendly with no sophistication. The extended scope of this 5
4
strategy may lead to cycloaddition products with different functional groups on the glycosides. 6 7
EXPERIMENTAL SECTION 10
9
8
General Chemistry: 1 12
Commercially available reagent grade chemicals were used as received. Reactions were 13 15
14
monitored by TLC, with detection by UV light, spraying a 5 % H2SO4 ethanolic solution and 17
16
applying heat. Column chromatography was performed on silica gel (60-120 mesh). IR spectra 19
18
were recorded as thin films or in KBr solution. 1H and 20
13
C NMR spectra were recorded on
2
21
Bruker 200, 300 and 400 MHz spectrometer in CDCl3 or DMSOd6. Chemical shift values were 24
23
reported in ppm relative to TMS (tetramethylsilane) as internal reference, unless otherwise 25 27
26
stated; s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet); J in hertz. The 29
28
chemical shift assignments of prototypes were carried out with the help of 2D NMR experiments 31
30
as COSY, HSQC, HMBC and NOESY. HRMS spectra were performed using a mass 32 34
3
spectrometer Q-TOF. Optical rotation was recorded on Autopol III, S. No. 301, manufactured by 36
35
Rudolph Research Analytical, USA. 37 38
General procedure for the synthesis of 1-glycosyl-4-phenyl butene-2-ols (2a-2o) 39 41
40
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(443
42
fluorophenyl)but-3-ene (2a): To a magnetically stirred solution of E-butenoyl-C-glycoside 1a 4 45
(2.00 g, 4.04 mmol) in methanol (5 mL, 0.81 M) at 0 °C, CeCl3.6H2O (1.32 g, 4.04 mmol) and 46 48
47
NaBH4 (0.15 g, 4.04 mmol) were sequentially added. The solution was allowed to stir for 0.5 h at 50
49
0 °C, till the completion of reaction (TLC). Excess of NaBH 4 was quenched by saturated 51 53
52
aqueous solution of NH4Cl (10 mL), reaction mixture was filtered and washed with methanol. 5
54
The filtrate was evaporated under reduced pressure to get a crude mass which was extracted with 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 12 of 47
1 3
2
ethyl acetate and water. Ethyl acetate layer was dried (anhyd. Na 2SO4) and concentrated under 5
4
reduced pressure to afford a crude residue, which was purified by column chromatography (SiO2, 6 8
7
60-120 mesh) using a gradient of hexane: ethyl acetate (15:7) as eluent to give (1:1) 10
9
diastereoisomeric mixture of the above compound 2a in 95 % yield (1.88 g) as white solid: mp 12
1
135-137 °C; IR (KBr) νmax cm-1: 3420, 3302, 1749, 1640, 776; [α]25D –28.16° (c 0.1, CHCl3); 1H 13 14
NMR (300 MHz, CDCl3 + CCl4) δ 7.37-7.31 (m, 2H, ArH), 7.04-6.98 (m, 2H, ArH), 6.63 (d, J3,4 17
16
15
= 15.9 Hz, 1H, H-4), 6.16-6.05 (m, 1H, H-3), 5.21-5.15 (m, 1H, H-3´), 5.11-5.03 (m, 1H, H-2´), 18 19
5.00-4.92 (m, 1H, H-4´), 4.56-4.52 (m, 1H, H-2), 4.26-4.13 (m, 2H, H-6´a, H-6´b), 3.74-3.66 (m, 20 2
21
2H, H-1´, H-5´), 3.09 (s, 1H, OH), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.01 24
23
(s, 3H, OAc), 1.82-1.76 (m, 2H, CH2); 13C NMR (75 MHz, CDCl3) δ 170.8, 170.2, 169.4 (2C), 25 26
164.0 (d, 1JCF = 248.8 Hz), 132.8, 130.7, 129.5, 128.8 (2C, d, 3JCF = 8.0 Hz), 115.7 (2C, d, 2JCF = 29
28
27
21.6 Hz), 75.9, 74.9, 74.0, 71.9, 71.4, 68.6, 62.5, 38.6, 20.7 (4C); ESI-HRMS calcd for 31
30
C24H29FO10Na ([M+Na]+) 519.1637 found 519.1637. 32 34
3
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-phenyl 36
35
but-3-ene
(2b): It was obtained by the reaction of E-butenoyl-C-glycoside 1b (2.0 g, 4.20 mmol) in 37 38
methanol (5 mL, 0.84 M) with CeCl3.6H2O (1.37 g, 4.20 mmol) and NaBH4 (0.16 g, 4.20 mmol) 39 40
at 0 °C in 94 % yield (1.88 g) as white solid: mp 108-110 °C; IR (KBr) νmax cm-1: 3356, 1748, 43
42
41
1640, 1219, 771; [α]25D –80.53° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.37-7.21 4 45
(m, 5H, ArH), 6.65-6.57 (m, 1H, H-4), 6.24-6.12 (m, 1H, H-3), 5.20-5.08 (m, 1H, H-3´), 5.04 (t, 46 48
47
J = 9.8 Hz, 1H, H-2´), 4.96 (t, J = 9.5 Hz, 1H, H-4´), 4.55-4.53 (m, 1H, H-2), 4.24- 4.10 (m, 2H, 50
49
H-6´a, H-6´b), 3.68-3.65 (m, 2H, H-1´, H-5´), 2.90 (s, 1H, OH), 2.10 (s, 3H, OAc), 2.05 (s, 3H, 51 52
OAc), 2.03 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.88-1.76 (m, 2H, CH2); 13C NMR (50 MHz, CDCl3 5
54
53
+ CCl4) δ 170.3, 170.0, 169.2, 169.1, 136.5, 131.0, 130.5, 128.5, 127.7 (2C), 126.4, 126.4, 76.3, 56 57 58 59 60 ACS Paragon Plus Environment
Page 13 of 47
The Journal of Organic Chemistry
1 3
2
75.9, 73.9, 71.8, 71.2, 68.5, 62.3, 38.4, 20.7 (2C), 20.5 (2C); ESI-HRMS calcd for C24H30O10Na 5
4
([M+Na]+) 501.1731 found 501.1730. 6 8
7
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(410
9
bromophenyl)but-3-ene (2c): It was obtained by the reaction of E-butenoyl-C-glycoside 1c (2.0 1 12
g, 3.61 mmol) in methanol (5 mL, 0.72 M) with CeCl3.6H2O (1.18 g, 3.61 mmol) and NaBH4 13 15
14
(0.135 g, 3.61 mmol) at 0 °C in 96 % yield (1.92 g) as white solid: mp 155-157 °C; IR (KBr) 17
16
νmax cm-1: 3412, 1748, 1640, 1278, 776; [α]25D –69.13° (c 0.1, CHCl3); 1H NMR (300 MHz, 19
18
CDCl3) δ 7.46 (d, J = 8.2 Hz, 2H, ArH), 7.26 (d, J = 8.3 Hz, 2H, ArH), 6.60 (d, J = 15.8 Hz, 1H, 20 2
21
H-4), 6.18 (dd, J2,3 = 3.3 Hz, J3,4 = 15.8 Hz, 1H, H-3), 5.19 (t, J = 9.3 Hz, 1H, H-3´), 5.04 (t, J = 24
23
9.7 Hz, 1H, H-2´), 4.94 (t, J = 9.5 Hz, 1H, H-4´), 4.54-4.52 (m, 1H, H-2), 4.26 (dd, J 6´a,6´b = 12.2 25 27
26
Hz, J5´,6´b = 2.0 Hz, 1H, H-6´a), 4.16-4.10 (m, 1H, H-6´b), 3.72-3.69 (m, 2H, H-1´, H-5´), 3.01 (s, 29
28
1H, OH), 2.11 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.01 (s, 3H, OAc), 1.85-1.80 31
30
(m, 2H, CH2); 13C NMR (50 MHz, CDCl3) δ 170.6, 170.3, 169.4 (2C), 135.5, 131.7 (2C), 129.2 32 34
3
(2C), 128.0 (2C), 121.5, 75.9(2C), 73.9, 71.8, 71.4, 68.6, 62.4, 38.4, 20.7 (2C), 20.6 (2C); ESI36
35
HRMS calcd for C24H29BrO10Na ([M+Na]+) 579.0836 found 579.0835. 37 38
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(439 41
40
chlorophenyl)but-3-ene (2d): It was obtained by the reaction of E-butenoyl-C-glycoside 1d (2.0 43
42
g, 3.92 mmol) in methanol (5 mL, 0.78 M) with CeCl3.6H2O (1.28 g, 3.92 mmol) and NaBH4 45
4
(0.14 g, 3.92 mmol) at 0 °C in 93% yield (1.86 g) as white solid: mp 145-147 °C; IR (KBr) νmax 46 48
47
cm-1: 3421, 1748, 1637, 1234, 778; [α]25D –65.13° (c 0.1, CHCl3); 1H NMR (400 MHz, CDCl3 + 50
49
CCl4) δ 7.28 (bs, 4H, ArH), 6.61 (d, J = 15.8 Hz, 1H, H-4), 6.21-6.12 (m, 1H, H-3), 5.22-5.15 51 53
52
(m, 1H, H-3´), 5.09-5.00 (m, 1H, H-2´), 4.97-4.91 (m, 1H, H-4´), 4.58-4.52 (m, 1H, H-2), 4.11 5
54
(dd, J 6´a,6´b = 12.2 Hz, J5´,6´a = 2.0 Hz, 1H, H-6´a) 4.24 (m, 1H, H-6´b), 3.73-3.65 (m, 2H, H-1´, 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 14 of 47
1 3
2
H-5´), 3.00 (s, 1H, OH), 2.09 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.02 (s, 3H, 5
4
OAc), 1.83-1.77 (m, 2H, CH2); 13C NMR (100 MHz, CDCl3) δ 170.9, 170.5, 169.8, 169.6, 135.3, 6 8
7
133.5, 132.5, 131.9, 129.4, 128.9, 127.9, 127.8, 76.14, 75.2, 74.1, 72.1, 71.5, 68.8, 62.6, 38.6, 10
9
20.9, 20.8, 20.8, 20.7; ESI-HRMS calcd for C24H29ClO10Na ([M+Na]+) 535.1341 found 1 12
535.1341. 13 15
14
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(217
16
chlorophenyl)but-3-ene (2e): It was obtained by the reaction of E-butenoyl-C-glycosides 1e 18 19
(2.0 g, 3.92 mmol) in methanol (5 mL, 0.78 M) with CeCl3.6H2O (1.28 g, 3.92 mmol) and 20 2
21
NaBH4 (0.14 g, 3.92 mmol) at 0 °C in 91 % yield (1.82 g) as white solid: mp 152-155 °C; IR 24
23
(KBr) νmax cm-1: 3425, 1752, 1648, 1234, 776; [α]25D –57.99° (c 0.1, CHCl3); 1H NMR (300 25 26
MHz, CDCl3) δ 7.51 (d, J = 8.2 Hz, 2H, ArH), 7.33-7.31 (m, 2H, ArH), 6.65 (d, J = 15.6 Hz, 1H, 29
28
27
H-4), 6.30-6.19 (m, 1H, H-3), 5.29-5.21 (m, 1H, H-3´), 5.12-4.96 (m, 2H, H-2´, H-4´), 4.61-4.57 31
30
(m, 1H, H-2), 4.31-4.09 (m, 2H, H-6´a, H-6´b), 3.79-3.72 (m, 2H, H-1´, H-5´), 3.08 (s, 1H, OH), 32 34
3
2.16 (s, 3H, OAc), 2.11 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 1.90-1.85 (m, 2H, 36
35
CH2); 13C NMR (75 MHz, CDCl3) δ 170.7, 170.3, 169.6, 169.5, 135.6, 131.8 (2C), 131.7, 129.3, 37 38
128.0 (2C), 121.6, 75.9, 73.9, 71.9, 71.4, 68.6 (2C), 62.4, 38.4, 20.7 (2C), 20.6 (2C); ESI-HRMS 39 40
calcd for C24H29ClO10Na ([M+Na]+) 535.1341 found 535.1342. 43
42
41
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(44 45
isopropylphenyl)but-3-ene (2f): It was obtained by the reaction of E-butenoyl-C-glycoside 1f 46 48
47
(2.0 g, 3.84 mmol) in methanol (5 mL, 0.77 M) with CeCl3.6H2O (1.26 g, 3.84 mmol) and 50
49
NaBH4 (0.14 g, 3.84 mmol) at 0 °C in 94 % yield (1.88 g) as white solid: mp 103-105 °C; IR 51 52
(KBr) νmax cm-1: 3331, 1746, 1613, 1228, 689; [α]25D –85.70° (c 0.1, CHCl3); 1H NMR (300 5
54
53
MHz, CDCl3 + CCl4) δ 7.30 (d, J = 2.5 Hz, 2H, ArH), 7.17 (d, J = 7.0 Hz, 2H, ArH), 6.68-6.54 56 57 58 59 60 ACS Paragon Plus Environment
Page 15 of 47
The Journal of Organic Chemistry
1 3
2
(m, 1H, H-4), 6.19-6.07 (m, 1H, H-3), 5.13 (t, J = 9.4 Hz, 1H, H-3´), 5.04 (t, J = 9.8 Hz, 1H, H5
4
2´), 4.94 (t, J = 9.5 Hz, 1H, H-4´), 4.54-4.50 (m, 1H, H-2), 4.22-4.10 (m, 2H, H-6´a, H-6´b), 6 8
7
3.68-3.60 (m, 2H, H-1´, H-5´), 2.94-2.85 (m, 1H, CH), 2.82 (s, 1H, OH), 2.11 (s, 3H, OAc), 2.04 10
9
(s, 3H, OAc), 2.03 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.79-1.74 (m, 2H, CH2), 1.26 (s, 3H, CH3), 12
1
1.24 (s, 3H, CH3); 13C NMR (50 MHz, CDCl3 + CCl4) δ 170.3, 170.0, 169.2 (2C), 148.5, 134.1, 13 15
14
130.5, 130.0, 126.6 (2C), 126.4 (2C), 75.9, 74.9, 74.0, 71.8, 71.3, 68.5, 62.3, 38.4, 33.8, 23.9 17
16
(2C), 20.5 (4C); ESI-HRMS calcd for C27H36O10Na ([M+Na]+) 543.2201 found 543.2201. 18 19
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(420 2
21
methoxyphenyl)but-3-ene (2g): It was obtained by the reaction of E-butenoyl-C-glycoside 1g 24
23
(2.0 g, 3.93 mmol) in methanol (5 mL, 0.79 M) with CeCl3.6H2O (1.28 g, 3.93 mmol) and 25 27
26
NaBH4 (0.15 g, 3.93 mmol) at 0 °C in 94 % yield (1.88 g) as white solid: mp 95-97 °C; IR (KBr) 29
28
νmax cm-1: 3556, 1745, 1640, 1278, 791; [α]25D –89.70° (c 0.1, CHCl3); 1H NMR (300 MHz, 31
30
CDCl3 + CCl4) δ 7.29-7.26 (m, 2H, ArH), 6.84 (d, J = 8.6 Hz, 2H, ArH), 6.57 (d, J = 15.5 Hz, 32 34
3
1H, H-4), 6.08-5.97 (m, 1H, H-3), 5.10 (t, J = 9.4 Hz, 1H, H-3´), 5.07-4.97 (m, 1H, H-2´), 4.91 36
35
(t, J = 9.6 Hz, 1H, H-4´), 4.51-4.46 (m, 1H, H-2), 4.23-4.09 (m, 2H, H-6´a, H-6´b), 3.80 (s, 3H, 37 38
OCH3), 3.66-3.60 (m, 2H, H-1´, H-5´), 2.80 (s, 1H, OH), 2.09 (s, 3H, OAc), 2.04 (s, 3H, OAc), 39 41
40
43
42
2.02 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.87-1.73 (m, 2H, CH2);
13
C NMR (50 MHz, CDCl3 +
CCl4) δ 170.3, 170.0, 169.1 (2C), 159.3, 131.9, 130.2, 129.2, 128.7, 127.6, 113.4 (2C), 75.8, 4 45
74.0, 71.8, 71.4, 68.5 (2C), 62.3, 55.1, 38.4, 20.5 (4C); ESI-HRMS calcd for C25H32O11Na 46 48
47
([M+Na]+) 531.1837 found 531.1836. 50
49
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-2(R/S)-hydroxy-4-(251 53
52
naphathalenyl)but-3-ene (2h): It was obtained by the reaction of E-butenoyl-C-glycoside 1h 5
54
(2.0 g, 3.80 mmol) in methanol (5 mL, 0.76 M) with CeCl3.6H2O (1.24 g, 3.80 mmol) and 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 16 of 47
1 3
2
NaBH4 (0.14 g, 3.80 mmol) at 0 °C in 89 % yield (1.78 g) as white solid: mp 112-115 °C; IR 5
4
(KBr) νmax cm-1: 3436, 1749, 1640, 1237, 774; [α]25D –54.64° (c 0.1, CHCl3); 1H NMR (300 6 7
MHz, CDCl3 + CCl4) δ 7.87-7.78 (m, 1H, ArH), 7.61-7.57 (m, 2H, ArH), 7.52-7.38 (m, 5H, 10
9
8
ArH, H-4), 6.30-6.19 (m, 1H, H-3), 5.22-5.17 (m, 1H, H-3´), 5.12-4.95 (m, 2H, H-2´, H-4´), 1 12
4.70-4.66 (m, 1H, H-2), 4.26-4.12 (m, 2H, H-6´a, H-6´b), 3.73 (m, 2H, H-1´, H-5´), 2.97 (s, 1H, 13 15
14
OH), 2.09 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.97-1.89 (m, 17
16
2H, CH2); 18
13
C NMR (50 MHz, CDCl3 + CCl4) δ 169.5 (2C), 168.7 (2C), 135.3, 134.43, 133.7,
19
131.3, 128.5, 127.9, 127.4, 125.9, 125.6, 125.4, 123.7 (2C), 76.0, 74.9, 74.0, 71.9, 70.8, 68.5, 20 2
21
62.3, 38.6, 20.5 (2C), 20.4 (2C); ESI-HRMS calcd for C28H32O10Na ([M+Na]+) 551.1888 found 24
23
551.1886. 25 27
26
(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-phenyl but-3-ene (2i): It 29
28
was obtained by the reaction of E-butenoyl-C-glycoside 1i (2.0 g, 4.95 mmol) in methanol (5 31
30
mL, 1 M) with CeCl3.6H2O (1.61 g, 4.95 mmol) and NaBH4 (0.18 g, 4.95 mmol) at 0 °C in 95 % 32 3
yield (1.90 g) as white solid: mp 122-125 °C; IR (KBr) νmax cm-1: 3438, 1748, 1642, 1220, 773; 36
35
34
[α]25D –75.82° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.35-7.23 (m, 5H, ArH), 37 38
6.63 (d, J = 15.8 Hz, 1H, H-4), 6.23-6.13 (m, 1H, H-3), 5.20-5.10 (m, 1H, H-3´), 5.02-4.94 (m, 39 41
40
1H, H-4´), 4.92-4.84 (m, 1H, H-2´), 4.57-4.49 (m, 1H, H-2), 4.18-4.10 (m, 1H, H-5´a), 3.72-3.33 43
42
(m, 1H, H-1´), 3.31-3.24 (m, 1H, H-5´b), 2.75 (s, 1H, OH), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 45
4
2.03 (s, 3H, OAc), 1.83-1.71 (m, 2H CH2); 13C NMR (50 MHz, CDCl3 + CCl4) δ 169.9, 169.4, 46 48
47
169.3, 136.6, 131.9, 130.6, 127.7, 126.4 (2C), 128.5 (2C), 75.2, 73.9, 71.9, 69.4, 68.6, 66.9, 38.7, 50
49
20.7 (3C); ESI-HRMS calcd for C21H26O8Na ([M+Na]+) 429.1520 found 429.1520. 51 53
52
(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-(4-chlorophenyl)but-35
54
ene (2j): It was obtained by the reaction of E-butenoyl-C-glycoside 1j (2.0 g, 4.73 mmol) in 56 57 58 59 60 ACS Paragon Plus Environment
Page 17 of 47
The Journal of Organic Chemistry
1 3
2
methanol (5 mL, 0.91 M) with CeCl3.6H2O (1.55 g, 4.73 mmol) and NaBH4 (0.18 g, 4.73 mmol) 5
4
at 0 °C in 96 % yield (1.92 g) as white solid: mp 122-125 °C; IR (KBr) νmax cm-1: 3330, 1746, 6 7
1627, 1226, 698; [α]25D –69.78° (c 0.1, CHCl3); 1 H NMR (300 MHz, CDCl3 + CCl4) δ 7.16 (bs, 10
9
8
4H, ArH), 6.58 (d, J = 15.0 Hz, 1H, H-4), 6.19-6.08 (m, 1H, H-3), 5.19-5.09 (m, 1H, H-3´), 5.011 12
4.84 (m, 2H, H-4´, H-2´), 4.55-4.51 (m, 1H, H-2), 4.18-4.11 (m, 1H, H-5´a), 3.70-3.57 (m, 1H, 13 15
14
H-1´), 3.31-3.24 (m, 1H, H-5´b), 2.82 (s, 1H, OH), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 17
16
3H, OAc), 1.78-1.71 (m, 2H, CH2); 18
13
C NMR (75 MHz, CDCl3 + CCl4) δ 170.5, 169.6 (2C),
19
135.2, 133.5, 131.6, 129.4, 128.7 (2C), 127.8 (2C), 76.6, 73.7, 72.0, 71.0, 69.2, 66.9, 38.7, 21.1 20 2
21
(3C); ESI-HRMS calcd for C21H25ClO8Na ([M+Na]+) 463.1130 found 463.1130. 24
23
(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-(4-flourophenyl)but-3-ene 25 27
26
(2k): It was obtained by the reaction of E-butenoyl-C-glycoside 1k (2.0 g, 4.56 mmol) in 29
28
methanol (5 mL, 0.95 M) with CeCl3.6H2O (1.49 g, 4.56 mmol) and NaBH4 (0.17 g, 4.56 mmol) 31
30
at 0 °C in 92 % yield (1.84 g) as white solid; mp 122-125 °C; IR (KBr) νmax cm-1: 3438, 1748, 32 3
1632, 1220, 769; [α]25D –93.6° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.35-7.29 36
35
34
(m, 2H, ArH), 7.02-7.96 (m, 2H, ArH), 6.58 (d, J = 15.0 Hz, 1H, H-4), 6.13-6.02 (m, 1H, H-3), 37 38
5.19-5.09 (m, 1H, H-3´), 5.01-4.83 (m, 2H, H-4´, H-2´), 4.53-4.47 (m, 1H, H-2), 4.18-4.09 (m, 39 41
40
1H, H-5´a), 3.71-3.52 (m, 1H, H-1´), 3.31-3.24 (t, J = 10.6 Hz, 1H, H-5´b), 2.81 (s, 1H, OH), 43
42
2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.81-1.69 (m, 2H, CH2); 13C NMR (75 45
4
MHz, CDCl3 + CCl4) δ 170.3, 169.4 (2C), 132.8, 131.0, 129.4, 128.8, 128.0 (2C, d, 3JCF = 8.2 46 48
47
Hz), 115.0 (2C, d, 2JCF = 22.1 Hz), 75.3, 72.1, 71.0, 68.9, 66.8, 38.4, 20.6 (3C); ESI-HRMS 50
49
calcd for C21H25FO8 ([M+H]+) 425.1790 found 425.1795. 51 53
52
(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-(4-methylphenyl)but-35
54
ene (2l): It was obtained by the reaction of E-butenoyl-C-glycoside 1l (2.0 g, 4.60 mmol) in 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 18 of 47
1 3
2
methanol (5 mL, 0.96 M) with CeCl3.6H2O (1.50 g, 4.60 mmol) and NaBH4 (0.17 g, 4.60 mmol) 5
4
at 0 °C in 95 % yield (1.90 g) as white solid; mp 152-155 °C; IR (KBr) νmax cm-1: 3556, 1748, 6 7
1641, 1221, 668, 738; [α]25D –77.01° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.27-7.23 10
9
8
(m, 2H, ArH), 7.12-7.09 (m, 2H, ArH), 6.58 (d, J2 = 15.0 Hz, 1H, H-4), 6.17-6.10 (m, 1H, H-3), 1 12
5.16-5.09 (m, 1H, H-3´), 5.02-4.93 (m, 1H, H-4´), 4.91-4.83 (m, 1H, H-2´), 4.54-4.47 (m, 1H, H13 15
14
2), 4.16-4.10 (m, 1H, H-5´a), 3.55-3.48 (m, 1H, H-1´), 3.33-3.26 (m,1H, H-5´b), 2.68 (s, 1H, 17
16
OH), 2.35 (s, 3H, CH3), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.79-1.70 (m, 18 19
2H, CH2); 20
13
C NMR (75 MHz, CDCl3) δ 170.8, 170.2, 169.7, 138.1, 133.7, 130.2, 129.0 (2C),
2
21
126.6 (3C), 74.1, 72.3, 70.8, 69.3, 66.3, 63.1, 37.8, 21.4, 20.9 (3C); ESI-HRMS calcd for 24
23
C22H28O8Na ([M+Na]+) 443.1673 found 443.1679. 25 27
26
(E)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-2(R/S)-hydroxy-4-(4-methoxyphenyl)but-329
28
ene (2m): It was obtained by the reaction of E-butenoyl-C-glycoside 1m (2.0 g, 4.78 mmol) in 31
30
methanol (5 mL, 0.92 M) with CeCl3.6H2O (1.56 g, 4.78 mmol) and NaBH4 (0.18 g, 4.78 mmol) 32 3
at 0 °C in 97 % yield (1.94 g) as white solid; mp 105-110 °C; IR (KBr) νmax cm-1: 3556, 3420, 36
35
34
1745, 1640, 1224, 778; [α]25D –88.21° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 37 38
7.31-7.27 (m, 2H, ArH), 6.84-6.56 (m, 2H, ArH), 6.56 (dd, J1 = 2.4 Hz, J2 = 15.8 Hz, 1H, H-4), 39 41
40
6.08-6.01 (m, 1H, H-3), 5.17-5.10 (m, 1H, H-3´), 5.02-4.91 (m, 1H, H-4´), 4.90-4.83 (m, 1H, H43
42
2´), 4.53-4.46 (m, 1H, H-2), 4.18-4.10 (m, 1H, H-5´a), 3.81 (s, 3H, OCH3), 3.72-3.48 (m, 1H, H4 45
1´), 3.33-3.24 (m, 1H, H-5´b), 2.64 (s, 1H, OH), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 46 48
47
3H, OAc), 1.80-1.70 (m, 2H, CH2); 50
49
13
C NMR (50 MHz, CDCl3 + CCl4) δ 170.4, 169.6 (2C),
159.5, 130.1, 129.3 (2C),127.3 (2C), 114.1(2C), 73.6, 71.9, 71.2, 69.4 (2C), 66.6, 55.1, 38.9, 51 52
20.9 (3C); ESI-HRMS calcd for C22H28O9Na ([M+Na]+) 459.1626 found 459.1629. 54
53 5 56 57 58 59 60
ACS Paragon Plus Environment
Page 19 of 47
The Journal of Organic Chemistry
1 3
2
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-mannopyranosyl)-2(R/S)-hydroxy-4-(45
4
methylphenyl)but-3-ene (2n): It was obtained by the reaction of E-butenoyl-C-glycoside 1n 6 8
7
(2.0 g, 4.08 mmol) in methanol (5 mL, 0.82 M) with CeCl3.6H2O (1.33 g, 4.08 mmol) and 10
9
NaBH4 (0.15 g, 4.08 mmol) at 0 °C in 95 % yield (1.90 g) as white solid: mp 170-173 °C; IR 12
1
(KBr) νmax cm-1: 3496, 1744, 1652, 1220, 779; [α]25D –73.42° (c 0.1, CHCl3); 1H NMR (300 13 14
MHz, CDCl3 + CCl4) δ 7.27-7.23 (m, 2H, ArH), 7.09-7.06 (d, J = 7.7 Hz, 2H, ArH), 6.57-6.48 17
16
15
(m, 1H, H-4), 6.16-6.04 (m, 1H, H-3), 5.34-5.28 (m, 1H, H-2´), 5.21-5.11 (m, 1H, H-4´), 4.0618 19
5.00 (m, 1H, H-3´), 4.42-4.40 (m, 1H, H-2), 4.25-4.06 (m, 2H, H-6´a, H-6´b), 3.97-3.83 (m, 1H, 20 2
21
H-1´), 3.64-3.61 (m, 1H, H-5´), 2.92 (s, 1H, OH), 2.32 (s, 3H, CH3), 2.16 (s, 3H, OAc), 2.08 (s, 24
23
3H, OAc), 2.03 (s, 3H, OAc), 1.96 (s, 3H, OAc), 1.64-1.52 (m, 2H, CH2); 13C NMR (50 MHz, 25 26
CDCl3 + CCl4) δ 170.4 (2C), 169.8, 169.4, 137.4, 133.7, 130.7, 130.4, 129.6 (2C), 126.4 (2C), 29
28
27
75.7, 73.9, 72.1, 70.6, 69.8, 66.6, 62.8, 37.8, 21.1, 20.6 (4C); ESI-HRMS calcd for C25H32O10Na 31
30
([M+Na]+) 515.1888 found 515.1888. 32 34
3
(E)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-mannopyranosyl)-2(R/S)-hydroxy-4-(436
35
methoxyphenyl) but-3-ene (2o): It was obtained by the reaction of E-butenoyl-C-glycoside 1o 37 38
(2.0 g, 3.93 mmol) in methanol (5 mL, 0.79 M) with CeCl3.6H2O (1.28 g, 3.93 mmol) and 39 40
NaBH4 (0.14 g, 3.93 mmol) at 0 °C in 96 % yield (1.92 g) as white solid: IR (Neat) νmax cm-1: 43
42
41
3445, 1763, 1640, 1228, 779; [α]25D –91.74° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.33 4 45
(d, J = 8.8 Hz, 2H, ArH), 6.88 (d, J = 7.3 Hz, 2H, ArH), 6.85-6.51 (m, 1H, H-4), 6.12-6.02 (m, 46 48
47
1H, H-3), 5.39-5.34 (m, 1H, H-2´), 5.28-5.19 (m, 1H, H-4´), 5.10-5.05 (m, 1H, H-3´), 4.48-4.46 50
49
(m, 1H, H-2), 4.28-4.13 (m, 2H, H-6´a, H-6´b), 4.02-3.82 (m, 1H, H-1´), 3.72 (s, 3H, OCH3), 51 53
52
3.71-3.66 (m, 1H, H-5´), 2.90 (s, 1H, OH), 2.19 (s, 3H, OAc), 2.13 (s, 3H, OAc), 2.06 (s, 3H, 5
54
OAc), 2.00 (s, 3H, OAc), 1.96-1.92 (m, 2H, CH2); 56
13
C NMR (50 MHz, CDCl3) δ 170.4 (2C),
57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 20 of 47
1 3
2
169.8, 169.4, 159.3, 137.4, 133.7, 130.1, 127.6 (2C), 113.9 (2C), 75.7, 73.9, 72.1, 70.6, 69.8, 5
4
66.6, 62.8, 37.8, 21.1, 20.6 (4C); ESI-HRMS calcd for C25H32O11Na ([M+Na]+) 531.1837 found 6 8
7
531.1827. 10
9
General experimental procedure for the synthesis of 1-glycosyl 1,3-dienes (3a-3o) 1 12
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-fluorophenyl)but-1,3-diene 13 15
14
(3a): To a stirring solution of 1-glycosyl-4-phenyl butene-2-ol 2a (1.0 g, 2.01 mmol) in 17
16
anhydrous CH2Cl2 (5 mL, 0.40 M) and Et3N (2.21 mmol) at 0 °C, methanesulfonyl chloride 18 19
(0.31 mL, 4.02 mmol) was slowly added. After 15 minutes the stirring reaction mixture was 20 2
21
brought to 40 °C and stirred for 4 hours till the reaction is completed (TLC). The reaction 24
23
mixture was evaporated under reduced pressure and extracted by ethyl acetate/water. The ethyl 25 27
26
acetate layer was dried (anhyd. Na2SO4) and evaporated under reduced pressure to give a crude 29
28
mass. The latter was purified by column chromatography (SiO 2, 60-120 mesh) using hexane: 31
30
ethyl acetate (17:3) as eluent to give compound 3a in 68% yield (0.66 g) as a white solid: mp 32 3
120-122 °C; IR (KBr) νmax cm-1: 3526, 2901, 1749, 1510, 1228, 774; [α]25D –82.83° (c 0.1, 36
35
34
MeOH); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.36-7.33 (m, 2H, ArH), 7.04-6.99 (m, 2H, ArH), 37 38
6.65 (dd, J3,4 = 15.5 Hz, J2,3 = 10.1 Hz, 1H, H-3), 6.58 (d, J = 15.5 Hz, 1H, H-4), 6.43 (dd, J1,2 = 39 41
40
15.2 Hz, J2,3 = 10.1 Hz, 1H, H-2), 5.67 (dd, J1,2 = 15.2 Hz, J1,1´ = 7.5 Hz, 1H, H-1), 5.26 (t, J = 43
42
9.4 Hz, 1H, H-3´), 5.11 (t, J = 9.7 Hz, 1H, H-4´), 4.98 (t, J = 9.6 Hz, 1H, H-2´), 4.27 (dd, J6´a,6´b 4 45
= 12.2 Hz, J5´,6´a = 4.7 Hz, 1H, H-6´a), 4.15 (dd, J 6´a,6´b = 12.2 Hz, J5´,6´b = 2.0 Hz, 1H, H-6´b), 46 48
47
3.97 (t, J = 7.7 Hz, 1H, H-1´), 3.74 (ddd, J4´,5´ = 9.8 Hz, J5´,6´a = 4.6 Hz, J5´,6´b = 2.2 Hz, 1H, H-5´), 50
49
2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.99 (s, 3H, OAc); 51
13
C NMR (100
52
MHz, CDCl3 + CCl4) δ 170.6, 170.2, 169.4, 169.3, 164.60 (d, 1JCF = 248.6 Hz), 135.1, 133.1, 5
54
53
132.8, 128.08 (2C, d, 3JCF = 7.91 Hz), 127.4, 127.2, 115.8 (2C, d, 2JCF = 22.3 Hz), 79.1, 75.6, 56 57 58 59 60 ACS Paragon Plus Environment
Page 21 of 47
The Journal of Organic Chemistry
1 3
2
73.9, 71.4, 68.4, 62.2, 20.8, 20.7, 20.6, 20.5; ESI-HRMS calcd for C24H27FO9Na ([M+Na]+) 5
4
501.1531 found 501.1531. 6 8
7
(ZE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-fluorophenyl)but-1,3-diene 10
9
(3a'): White solid, 10 % yield (0.08 g); mp 118-120 °C; IR (KBr) νmax cm-1: 3481, 2896, 1753, 12
1
1620, 1228, 779; [α]25D –82.83° (c 0.1, MeOH); 1H NMR (300 MHz, CDCl3) δ 7.43-7.40 (m, 13 15
14
2H, ArH), 7.11-7.01 (m, 2H, ArH), 6.90 (dd, J3,4 = 15.4 Hz, J2,3 = 10.9 Hz, 1H, H-3), 6.60 (d, J = 17
16
15.3 Hz, 1H, H-4), 6.33 (t, J = 11.03 Hz, 1H, H-2), 5.39 (dd, J1,2 = 10.5 Hz, J1,1´ = 9.0 Hz, 1H, H18 19
1), 5.32 (t, J = 9.5 Hz, 1H, H-3´), 5.11 (t, J = 9.8 Hz, 1H, H-4´), 4.98 (t, J = 9.5 Hz, 1H, H-2´), 20 2
21
4.48 (t, J = 9.1 Hz, 1H, H-1´), 4.28 (dd, J6´a,6´b = 12.5 Hz, J5´,6´a = 5.0 Hz, 1H, H-6´a), 4.15 (dd, J 24
23
6´a,6´b =
25
12.3 Hz, J5´,6´b = 2.0 Hz, 1H, H-6´b), 3.79 (ddd, J4´,5´ = 9.8 Hz, J5´,6´a = 4.6 Hz, J5´,6´b = 2.0
27
26
Hz, 1H, H-5´), 2.07 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.98 (s, 3H, OAc);
13
C
29
28
NMR (75 MHz, CDCl3) δ 171.0, 170.7, 169.8 (2C), 164.6 (d, 1JCF = 251.0 Hz), 134.7, 133.7, 31
30
133.2 , 128.5 (2C, d, 3JCF = 7.9 Hz), 126.0, 123.3, 116.0 (2C d, 2JCF = 21.9 Hz), 76.1, 74.9, 74.1, 32 3
71.9, 68.7, 62.6, 20.9 (4C); ESI-HRMS calcd for C24H27FO9 ([M+H]+) 479.1712 found 36
35
34
479.1709. 37 38
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-phenyl but-1,3-diene (3b): It was 39 41
40
obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2b (1.00 g, 2.09 mmol) in anhydrous 43
42
CH2Cl2 (5 mL, 0.42 M) at 0-40 °C with Et 3N (2.03 mmol) and methanesulfonyl chloride (0.32 45
4
mL, 4.18 mmol) in 70 % yield (0.67 g) as white solid: mp 135-137 °C; IR (KBr) νmax cm-1: 3452, 46 48
47
1748, 1640, 1219, 783; [α]25D –7.76° (c 0.1, MeOH); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.4050
49
7.37 (m, 2H, ArH), 7.34-7.24 (m, 3H, ArH), 6.74 (dd, J3,4 = 15.1 Hz, J2,3 = 10.3 Hz, 1H, H-3), 51 53
52
6.58 (d, J = 15.4 Hz, 1H, H-4), 6.45 (dd, J1,2 = 15.0 Hz, J2,3 = 10.3 Hz, 1H, H-2), 5.67 (dd, J1,1´ = 5
54
7.2 Hz, J1,2 = 15.1 Hz, 1H, H-1), 5.23 (t, J = 9.3 Hz, 1H, H-3´), 5.10 (t, J = 9.8 Hz, 1H, H-4´), 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 22 of 47
1 3
2
4.97 (t, J = 9.5 Hz, 1H, H-2´), 4.30 (dd, J6´a,6´b = 12.4 Hz, J5´,6´a = 4.8 Hz, 1H, H-6´a), 4.15 (dd, 5
4
J6´a,6´b = 12.5 Hz, J5´,6´b = 2.0 Hz, 1H, H-6´b), 3.96 (t, J = 8.2 Hz, 1H, H-1´), 3.73-3.71 (m, 1H, H6 7
5´), 2.12 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.00 (s, 3H, OAc); 13C NMR (50 10
9
8
MHz, CDCl3 + CCl4) δ 170.3, 170.0, 169.1 (2C), 135.2, 134.4 (2C), 128.6 (2C), 128.0, 127.4 1 12
(2C), 126.5 (2C), 79.2, 75.7, 73.9, 71.4, 68.4, 62.1, 20.7, 20.6, 20.5 (2C); ESI-HRMS calcd for 13 14
C24H28O9Na ([M+Na]+) 483.1626 found 483.1624. 17
16
15
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-bromophenyl)but-1,3-diene 18 19
(3c): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2c (1.00 g, 1.79 mmol) 20 2
21
in anhydrous CH2Cl2 (5 mL, 0.36 M) at 0-40 °C with Et3N (2.15 mmol), methanesulfonyl 24
23
chloride (0.3 mL, 3.58 mmol) in 69 % yield (0.66 g) as white solid: mp 142-145 °C; IR (KBr) 25 26
νmax cm-1: 3543, 2892, 1748, 1640, 1246, 1047, 773; [α]25D –69.70° (c 0.1, MeOH); 1H NMR 29
28
27
(300 MHz, CDCl3 + CCl4) δ 7.29 (m, 2H, ArH), 7.26 (d, J = 7.7 Hz, 2H, ArH), 6.70 (dd, J3,4 = 31
30
15.4 Hz, J2,3 = 10.4 Hz, 1H, H-3), 6.57 (d, 1H, J3,4 = 15.5 Hz, 1H, H-4), 6.43 (dd, J1,2 = 15.1 Hz, 32 34
3
J2,3 = 10.4 Hz, 1H, H-2), 5.63 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.4 Hz, 1H), 5.23 (t, J = 9.4 Hz, 1H, H36
35
3´), 5.09 (t, J = 9.7 Hz, 1H, H-4´), 4.97 (t, J = 9.6 Hz, 1H, H-2´), 4.27 (dd, J6´a,6´b = 12.3 Hz, 37 38
J5´,6´a = 4.9 Hz, 1H, H-6´a), 4.12 (d, J = 12.1 Hz, 1H, H-6´b), 3.95 (t, J = 7.9 Hz, 1H, H-1´), 3.73 39 40
(m, 1H, H-5´), 2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.99 (s, 3H, OAc); 13C 43
42
41
NMR (50 MHz, CDCl3 + CCl4) δ 170.4, 170.1, 169.2 (2C), 137.8, 135.5, 134.4, 133.8, 129.3 4 45
(3C), 126.7, 126.5 (2C), 79.2, 75.6, 73.9, 71.5, 68.4, 62.1, 20.6 (4C); ESI-HRMS calcd for 46 48
47
C24H27BrO9Na ([M+Na]+) 561.0836 found 561.0835. 50
49
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-chlorophenyl)but-1,3-diene 51 53
52
(3d): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2d (1.00 g, 1.95 mmol) 5
54
in anhydrous CH2Cl2 (5 mL, 0.39 M) at 0-40 °C with Et 3N (2.15 mmol) and methanesulfonyl 56 57 58 59 60 ACS Paragon Plus Environment
Page 23 of 47
The Journal of Organic Chemistry
1 3
2
chloride (0.3 mL, 3.90 mmol) in 69 % yield (0.67 g) as white solid: mp 138-140 °C; IR (KBr) 5
4
νmax cm-1: 3410, 2889, 1743, 1680, 1238, 791; [α]25D –129.16° (c 0.1, CHCl3); 1H NMR (300 6 7
MHz, CDCl3 + CCl4) δ 7.30 (bs, 4H, ArH), 6.71 (dd, J3,4 = 15.4 Hz, J2,3 = 10.5 Hz, 1H, H-3), 10
9
8
6.53 (d, J = 15.6 Hz, 1H, H-4), 6.44 (dd, J1,2 = 15.1 Hz, J2,3 = 10.7 Hz, 1H, H-2), 5.69 (dd, J1,2 = 1 12
15.0 Hz, J1,1´ = 7.4 Hz, 1H, H-1), 5.25 (t, J = 9.3 Hz, 1H, H-3´), 5.15 (t, J = 9.7 Hz, 1H, H-4´), 13 15
14
4.98 (t, J = 9.5 Hz, 1H, H-2´), 4.27 (dd, J6´a,6´b = 12.2 Hz, J5´,6´a = 4.5 Hz, 1H, H-6´a), 4.14 (d, J = 17
16
12.2 Hz, 1H, H-6´b), 3.97 (t, J = 8.0 Hz, 1H, H-1´), 3.74 (ddd, J4´,5´ = 9.6 Hz, J5´,6´a = 4.2 Hz, 18 19
J5´,6´b = 2.3 Hz, 1H, H-5´), 2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.99 (s, 3H, 20 2
21
OAc); 13C NMR (50 MHz, CDCl3 + CCl4) δ 170.3, 170.0, 169.1 (2C), 135.1, 134.7, 133.7, 133.0, 24
23
128.8 (2C), 128.0, 128.01, 127.6 (2C), 78.9, 75.7, 73.9, 71.4, 68.4, 62.1, 20.7, 20.6, 20.6, 20.5; 25 26
ESI-HRMS calcd for C24H27ClO9Na ([M+Na]+) 517.1236 found 517.1236. 29
28
27
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(2-chlorophenyl)but-1,3-diene 31
30
(3e): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2e (1.00 g, 1.95 mmol) 32 34
3
in anhydrous CH2Cl2 (5 mL, 0.39 M) at 0-40 °C with Et 3N (2.01 mmol) and methanesulfonyl 36
35
chloride (0.3 mL, 3.80 mmol) 66 % yield (0.63 g) as white solid: mp 130-132 °C; IR (KBr) νmax 38
37
cm-1: 3424, 2910, 1753, 1689, 1232, 669; [α]25D –57.9° (c 0.1, CHCl3); 1H NMR (300 MHz, 39 41
40
CDCl3) δ 7.36 (s, 1H, ArH), 7.27-7.21 (m, 3H, ArH), 6.76 (m, 1H, H-3), 6.53 (d, J = 15.9 Hz, 43
42
1H, H-4), 6.44-6.39 (m, 1H, H-2), 5.72 (dd, J1,2 = 15.1 Hz, J1,1´ = 7.4 Hz, 1H, H-1), 5.25 (t, J = 4 45
9.4 Hz, 1H, H-3´), 5.11 (t, J = 9.8 Hz, 1H, H-4´), 4.97 (t, J = 9.6 Hz, 1H, H-2´), 4.28 (dd, J6´a,6´b 46 48
47
= 12.4 Hz, J5´,6´a = 4.7 Hz, 1H, H-6´a), 4.16 (d, J = 12.2 Hz, 1H, H-6´b), 3.97 (m, 1H, H-1´), 3.74 50
49
(ddd, J4´,5´ = 9.9 Hz, J5´,6´a = 4.6 Hz, J5´,6´b = 2.1 Hz, 1H, H-5´), 2.10 (s, 3H, OAc), 2.04 (s, 3H, 51 52
OAc), 2.01 (s, 3H, OAc), 1.99 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3) δ 170.7, 170.3, 169.5, 5
54
53
169.4, 138.6, 134.7, 134.6, 132.8, 129.8, 128.8, 128.5, 127.8, 126.5, 124.7, 78.9, 75.7, 73.9, 71.5, 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 24 of 47
1 3
2
68.5, 62.3, 20.7, 20.6, 20.6, 20.5; ESI-HRMS calcd for C24H27ClO9Na ([M+Na]+) 517.1236 5
4
found 517.1237. 6 8
7
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-isopropylphenyl)but-1,3-diene 10
9
(3f): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2f (1.00 g, 1.92 mmol) 1 12
in anhydrous CH2Cl2 (5 mL, 0.38 M) at 0-40 °C with Et3N (2.11 mmol) and methanesulfonyl 13 14
chloride (0.3 mL, 3.84 mmol) in 67 % yield (0.64 g) as white solid: mp 92-95 °C; IR (KBr) νmax 17
16
15
cm-1: 3407, 2849, 2496, 1689, 1460, 1220, 694; [α]25D –7.15° (c 0.1, CHCl3); 1H NMR (300 19
18
MHz, CDCl3 + CCl4) δ 7.30 (d, J = 8.1 Hz, 2H, ArH), 7.18 (d, J = 8.0 Hz, 2H, ArH), 6.71 (dd, 20 2
21
J3,4 = 15.5 Hz, J2,3 = 10.3 Hz, 1H, H-3), 6.58 (d, J = 15.6 Hz, 1H, H-4), 6.44 (dd, J1,2 = 15.0 Hz, 24
23
J2,3 = 10.3 Hz, 1H, H-2), 5.65 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.6 Hz, 1H, H-1), 5.23 (t, J = 9.4 Hz, 1H, 25 27
26
H-3´), 5.10 (t, J = 9.7 Hz, 1H, H-4´), 4.97 (t, J = 9.6 Hz, 1H, H-2´), 4.29 (dd, J6´a,6´b = 12.5 Hz, 29
28
J5´,6´a = 4.9 Hz, 1H, H-6´a), 4.14 (dd, J 6´a,6´b = 12.3 Hz, J5´,6´b = 1.6 Hz, 1H, H-6´b), 3.95 (t, J = 31
30
8.0 Hz, 1H, H-1´), 3.74-3.70 (m, 1H, H-5´), 2.95-2.86 (m, 1H, CH), 2.11 (s, 3H, OAc), 2.05 (s, 32 34
3
3H, OAc), 2.03 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.27 (m, 6H, 2×CH3); 36
35
13
C NMR (50 MHz,
CDCl3 + CCl4) δ 170.2 (2C), 169.4 (2C), 149.0, 136.4 (2C), 135.4 (2C), 134.5, 134.3, 126.4 37 38
(3C), 79.2, 75.7, 73.9, 71.5, 69.5, 62.3, 33.9, 23.9 (2C), 20.6 (4C); ESI-HRMS calcd for 39 40
C27H34O9Na ([M+Na]+) 525.2095 found 525.2095. 43
42
41
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-methoxyphenyl)but-1,3-diene 4 45
(3g): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2g (1.00 g, 1.96 mmol) 46 48
47
in anhydrous CH2Cl2 (5 mL, 0.39 M) at 0-40 °C with Et 3N (2.16 mmol) and methanesulfonyl 50
49
chloride (0.3 mL, 3.92 mmol) as described above in 76 % yield (0.78 g) as a white solid: mp 51 52
110-112 °C; IR (KBr) νmax cm-1: 3368, 2890, 1745, 1652, 1234, 698; [α]25D –51.02° (c 0.1, 5
54
53
MeOH); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.35-7.30 (m, 2H, ArH), 6.85-6.82 (m, 2H, ArH), 56 57 58 59 60 ACS Paragon Plus Environment
Page 25 of 47
The Journal of Organic Chemistry
1 3
2
6.56-6.53 (m, 1H, H-3), 6.45 (d, J = 15.3 Hz, 1H, H-4), 6.41 (dd, J1,2 = 15.0 Hz, J2,3 = 10.0 Hz, 5
4
1H, H-2), 5.63 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.6 Hz, 1H, H-1), 5.22 (t, J = 9.4 Hz, 1H, H-3´), 5.09 (t, 6 8
7
J = 9.7 Hz, 1H, H-4´), 4.96 (t, J = 9.5 Hz, 1H, H-2´), 4.27 (dd, J6´a,6´b = 12.3 Hz, J5´,6´a = 4.7 Hz, 10
9
1H, H-6´a), 4.11 (d, J = 12.2 Hz, 1H, H-6´b), 3.93 (t, J = 8.8 Hz, 1H, H-1´), 3.81 (s, 3H, OCH3), 1 12
3.73-3.69 (m, 1H, H-5´), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.01 (s, 3H, OAc), 1.99 (s, 3H, 13 15
14
17
16
OAc);
13
C NMR (50 MHz, CDCl3 + CCl4) δ 170.4, 169.9, 169.2 (2C), 159.5, 135.7, 134.0,
129.4, 127.8 (2C), 126.2, 125.3, 114.2 (2C), 79.3, 75.8, 74.1, 71.6, 68.4, 62.3, 55.2, 20.7, 20.6 19
18
(3C); ESI-HRMS calcd for C25H30O10Na ([M+Na]+) 513.1731 found 513.1732. 20 2
21
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(2-naphathalenyl)but-1,3-diene 24
23
(3h): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2h (1.00 g, 1.92 mmol) 25 27
26
in anhydrous CH2Cl2 (5 mL, 0.38 M) at 0-40 °C with Et 3N (2.11 mmol) and methanesulfonyl 29
28
chloride (0.3 mL, 3.94 mmol) in 74 % yield (0.71 g) as white solid: mp 112-115 °C; IR (KBr) 31
30
νmax cm-1: 3435, 1759, 1641, 1220, 772; [α]25D –25.81° (c 0.1, CHCl3); 1H NMR (300 MHz, 32 3
CDCl3 + CCl4) δ 8.12 (d, J = 7.3 Hz, 1H, ArH), 7.86-7.83 (m, 1H, ArH), 7.79 (d, J = 8.1 Hz, 1H, 36
35
34
ArH), 7.65 (d, J = 7.0 Hz, 1H, ArH), 7.54-7.42 (m, 3H, ArH), 6.39 (d, J = 15.3 Hz, 1H, H-4), 37 38
6.82 (dd, J3,4 = 15.1 Hz, J2,3 = 10.6 Hz, 1H, H-3), 6.65 (dd, J1,2 = 15.0 Hz, J2,3 = 10.7 Hz, 1H, H39 41
40
2), 5.74 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.3 Hz, 1H, H-1), 5.26 (t, J = 9.4 Hz, 1H, H-3´), 5.12 (t, J = 9.7 43
42
Hz, 1H, H-4´), 5.01 (t, J = 9.6 Hz, 1H, H-2´), 4.30 (dd, J6´a,6´b = 12.4 Hz, J5´,6´a = 4.7 Hz, 1H, H4 45
6´a), 4.15 (dd, J6´a,6´b = 12.3 Hz, J5´,6´b = 2.0 Hz, 1H, H-6´b), 4.01 (t, J = 7.8 Hz, 1H, H-1´), 3.75 46 48
47
(ddd, J4´,5´ = 9.8 Hz, J5´,6´a = 4.5 Hz, J5´,6´b = 2.5 Hz, 1H, H-5´), 2.13 (s, 3H, OAc), 2.06 (s, 3H, 50
49
OAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3 + CCl4) δ 170.4, 170.1, 51 53
52
169.2 (2C), 135.4, 133.9, 133.7, 131.2, 131.1, 130.2, 128.6, 128.4, 127.7 (2C), 126.1, 125.5, 54 5 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 26 of 47
1 3
2
123.6, 123.4, 79.0, 75.7, 73.9, 71.5, 68.4, 62.2, 20.7, 20.6, 20.6, 20.5; ESI-HRMS calcd for 5
4
C28H30O9 ([M+H]+) 511.1962 found 511.1962. 6 8
7
(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-phenyl but-1,3-diene (3i): It was obtained 10
9
by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2i (1.00 g, 2.57 mmol) in anhydrous CH2Cl2 1 12
(5 mL, 0.49 M) at 0-40 °C with Et 3N (2.83 mmol), methanesulfonyl chloride (0.4 mL, 5.14 13 14
mmol) in 76 % yield (0.78 g) as white solid: mp 122-125 °C; IR (KBr) νmax cm-1: 3298, 1743, 17
16
15
1650, 1220, 679; [α]25D –26.18° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 7.39-7.20 18 19
(m, 5H, ArH), 6.74 (dd, J3,4 = 15.6 Hz, J2,3 = 10.5 Hz, 1H, H-3), 6.56 (d, J = 15.6 Hz, 1H, H-4), 20 2
21
6.45 (dd, J1,2 = 15.1 Hz, J2,3 = 10.5 Hz, 1H, H-2), 5.66 (dd, J1,2 = 15.1 Hz, J1,1´ = 7.2 Hz, 1H, H24
23
1), 5.22 (t, J = 9.4 Hz, 1H, H-3´), 5.07-4.98 (m, 1H, H-4´), 4.17 (t, J = 9.5 Hz, 1H, H-2´), 4.16 25 27
26
(dd, J4´,5´a = 5.6 Hz, J5´a,5´b = 11.1 Hz, 1H, H-5´a), 3.87 (t, J = 7.6 Hz, 1H, H-1´), 3.34 (t, J = 11.1 29
28
Hz, 1H, H-5´b), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.99 (s, 3H, OAc); 31
30
13
C NMR (50 MHz,
CDCl3 + CCl4) δ 170.0, 169.5, 169.3, 136.7, 134.9, 134.3, 128.6 (2C), 127.9, 127.7, 127.5, 126.6 32 3
(2C), 79.6, 73.6, 71.8, 69.3, 66.7, 20.7 (3C); ESI-HRMS calcd for C21H24O7Na ([M+Na]+) 36
35
34
411.1414 found 411.1413. 37 38
(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-chlorophenyl)but-1,3-diene 39
(3j):
It
41
40
was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2j (1.00 g, 2.27 mmol) in 43
42
anhydrous CH2Cl2 (5 mL, 0.45 M) at 0-40 °C with Et3N (2.16 mmol) and methanesulfonyl 4 45
chloride (0.35 mL, 4.54 mmol) in 76 % yield (0.78 g) as white solid: mp 142-145 °C; IR (KBr) 46 48
47
νmax cm-1: 3248, 1748, 1649, 1217, 771; [α]25D –43.18° (c 0.1, CHCl3); 1H NMR (300 MHz, 50
49
CDCl3 + CCl4) δ 7.33-7.30 (m, 4H, ArH), 6.72 (dd, J3,4 = 15.5 Hz, J2,3 = 10.5 Hz, 1H, H-3), 6.51 51 53
52
(d, J = 15.7 Hz, 1H, H-4), 6.44 (dd, J2,3 = 10.7 Hz, J1,2 = 15.4 Hz, 1H, H-2), 5.67 (dd, J1,2 = 15.2 5
54
Hz, J1,1´ = 7.3 Hz, 1H, H-1), 5.25 (t, J = 9.5 Hz, 1H, H-3´), 5.06-5.01 (m, 1H, H-4´), 4.92 (t, J = 56 57 58 59 60 ACS Paragon Plus Environment
Page 27 of 47
The Journal of Organic Chemistry
1 3
2
9.6 Hz, 1H, H-2´), 4.18 (dd, J4´,5´a = 5.6 Hz, J5´a,5´b = 11.2 Hz, 1H, H-5´a), 3.89 (t, J = 7.8 Hz, 1H, 5
4
H-1´), 3.36 (t, J = 11.0 Hz, 1H, H-5´b), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.00 (s, 3H, OAc); 6 7 13
10
9
8
C NMR (50 MHz, CDCl3 + CCl4) δ 170.3, 169.7, 169.5, 135.2, 134.6, 133.6, 132.9, 128.8 (2C),
128.4, 128.1, 127.7 (2C), 79.5, 73.5, 71.8, 69.3, 66.7, 20.7 (3C); ESI-HRMS calcd for 12
1
C21H23ClO7Na ([M+Na]+) 445.1025 found 445.1025. 13 15
14
(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-fluorophenyl)but-1,3-diene (3k): It 17
16
was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2k (1.00 g, 2.45 mmol) in 18 19
anhydrous CH2Cl2 (5 mL, 0.47 M) at 0-40 °C with Et3N (2.70 mmol) and methanesulfonyl 20 2
21
chloride (0.38 mL, 4.90 mmol) in 76 % yield (0.78 g) as white solid: mp 105-107 °C; IR (KBr) 24
23
νmax cm-1: 3543, 1748, 1640, 1246, 1047, 798; [α]25D –93.64° (c 0.1, CHCl3); 1H NMR (300 25 26
MHz, CDCl3) δ 7.37-7.33 (m, 2H, ArH), 7.03-6.97 (m, 2H, ArH), 6.65 (dd, J3,4 = 15.5 Hz J2,3 = 29
28
27
10.3 Hz, 1H, H-3), 6.54 (d, J = 15.6 Hz, 1H, H-4), 6.42 (dd, J1,2 = 15.2 Hz, J2,3 = 10.4 Hz, 1H, H31
30
2), 5.65 (dd, J1,2 = 15.0 Hz, J1,1´ = 7.2 Hz, 1H, H-1), 5.22 (t, J = 9.5 Hz, 1H, H-3´), 5.06-4.98 (m, 32 34
3
1H, H-4´), 4.93 (t, J = 9.6 Hz, 1H, H-2´), 4.16 (dd, J4´,5´a = 5.6 Hz, J5a´,5´b = 11.1 Hz, 1H, H-5´a), 36
35
3.86 (t, J = 7.7 Hz, 1H, H-1´), 3.34 (t, J = 11.0 Hz, 1H, H-5´b), 2.05 (s, 3H, OAc), 2.04 (s, 3H, 37 38
OAc), 1.99 (s, 3H, OAc); 39
13
C NMR (75 MHz, CDCl3) δ 170.3, 169.8, 169.6, 164.2 (d, 1JCF =
40
251.6 Hz), 134.9, 133.0, 132.9, 128.4 (2C, d, 3JCF = 7.9 Hz), 127.7, 127.3, 116.0 (2C, d, 2JCF = 43
42
41
21.9 Hz), 79.5, 73.5, 71.8, 69.3, 66.7, 20.7 (3C); ESI-HRMS calcd for C21H23FO7Na ([M+Na]+) 4 45
429.1350 found 429.1352. 46 48
47
(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-methylphenyl)but-1,3-diene (3l): It 50
49
was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2l (1.00 g, 2.48 mmol) in 51 53
52
anhydrous CH2Cl2 (5 mL, 0.48 M) at 0-40 °C with Et3N (2.73 mmol) and methanesulfonyl 5
54
chloride (0.38 mL, 4.96 mmol) in 76 % yield (0.78 g) as white solid: mp 152-155 °C; IR (KBr) 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 28 of 47
1 3
2
νmax cm-1: 3483, 1754, 1643, 1223, 1045, 771; [α]25D – 76.82° (c 0.1, CHCl3); 1H NMR (300 5
4
MHz, CDCl3 + CCl4) δ 7.29-7.27 (m, 2H, ArH), 7.13 (d, J = 7.8 Hz, 2H, ArH), 6.70 (dd, J3,4 = 6 8
7
15.5 Hz, J2,3 = 10.3 Hz, 1H, H-3), 6.56 (d, J = 15.5 Hz, 1H, H-4), 6.44 (dd, J1,2 = 15.1 Hz, J2,3 = 10
9
10.5 Hz, 1H, H-2), 5.62 (dd, J1,1´ = 7.3 Hz, J1,2 = 15.1 Hz, 1H, H-1), 5.25 (t, J = 9.4 Hz, 1H, H1 12
3´), 5.07-5.00 (m, 1H, H-4´), 4.90 (t, J = 9.6 Hz, 1H, H-2´), 4.15 (dd, J4´,5´a = 5.6 Hz, J5a´,5´b = 13 15
14
11.1 Hz, 1H, H-5´a), 3.87 (t, J = 7.8 Hz, 1H, H-1´), 3.35 (t, J = 11.0 Hz, 1H, H-5´b), 2.35 (s, 3H, 17
16
CH3), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.01 (s, 3H, OAc); 19
18
13
C NMR (50 MHz, CDCl3 +
CCl4) δ 170.1, 169.5, 169.3, 137.7, 135.2, 134.3, 133.9, 129.3 (2C), 127.0 (2C), 126.5 (2C), 79.6, 20 2
21
73.5, 71.8, 69.3, 66.6, 21.2, 20.7 (3C); ESI-HRMS calcd for C22H26O7Na ([M+Na]+) 425.1571 24
23
found 425.1569. 25 27
26
(EE)-1-(2´,3´,4´-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-methoxyphenyl)but-1,3-diene (3m): 29
28
It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2m (1.00 g, 2.39 mmol) in 31
30
anhydrous CH2Cl2 (5 mL, 0.46 M) at 0-40 °C with Et3N (2.63 mmol) and methanesulfonyl 32 34
3
chloride (0.44 mL, 5.78 mmol) in 76 % yield (0.78 g) as white solid: mp 115-117 °C; IR (KBr) 36
35
νmax cm-1: 3520, 1748, 1629, 1213, 773; [α]25D –40.99° (c 0.1, CHCl3); 1H NMR (300 MHz, 38
37
CDCl3) δ 7.38-7.30 (m, 2H, ArH), 6.89-6.82 (m, 2H, ArH), 6.62 (dd, J 2,3 = 10.3 Hz, J3,4 = 15.4 39 41
40
Hz, 1H, H-3), 6.53 (d, J = 15.5 Hz, 1H, H-4), 6.41 (dd, J2,3 = 10.3 Hz, J1,2 = 15.0 Hz, 1H, H-2), 43
42
5.61 (dd, J1,1´ = 7.4 Hz, J1,2 = 15.0 Hz, 1H, H-1), 5.22 (t, J = 9.5 Hz, 1H, H-3´), 5.06-4.98 (m, 1H, 4 45
H-4´), 4.90 (t, J = 9.5 Hz, 1H, H-2´), 4.16 (dd, J4´,5´a = 5.6 Hz, J5´a,5´b = 11.1 Hz, 1H, H-5´a), 3.83 46 48
47
(m, 4H, H-1´, OCH3), 3.34 (t, J = 10.8 Hz, 1H, H-5´b), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc), 50
49
1.99 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3) δ 170.4, 169.8, 169.7, 159.6, 135.5, 133.9, 134.3, 51 53
52
129.6, 128.0, 127.8, 126.5, 125.5, 114.2, 79.8, 73.5, 71.8, 69.4, 66.6, 55.3, 20.7 (3C); ESI5
54
HRMS calcd for C22H26O8 ([M+H]+) 419.1685 found 419.1689. 56 57 58 59 60 ACS Paragon Plus Environment
Page 29 of 47
The Journal of Organic Chemistry
1 3
2
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-mannopyranosyl)-4-(4-methylphenyl)but-1,3-diene 5
4
(3n): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2n (1.00 g, 2.03 mmol) 6 8
7
in anhydrous CH2Cl2 (5 mL, 0.41 M) at 0-40 °C with Et 3N (2.23 mmol) and methanesulfonyl 10
9
chloride (0.3 mL, 4.06 mmol) in 74 % yield (0.71 g) as white solid: mp 118-120 °C; IR (KBr) 12
1
νmax cm-1: 3410, 1754, 1631, 1210, 774; [α]25D –105° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3 13 14
+ CCl4) δ 7.54-7.43 (m, 2H, ArH), 7.36-7.31 (m, 2H, ArH), 6.69 (dd, J2,3 = 10.4 Hz, J3,4 = 15.4 17
16
15
Hz, 1H, H-3), 6.58 (d, J = 15.5 Hz, 1H, H-4), 6.48 (dd, J2,3 = 10.3 Hz, J1,2 = 15.2 Hz, 1H, H-2), 18 19
5.65 (dd, J1,2 = 15.2 Hz, J1,1´ = 5.7 Hz, 1H, H-1), 5.45 (d, J = 2.3 Hz, 1H, H-2´), 5.30 (t, J = 10.0 20 2
21
Hz, 1H, H-4´), 5.13 (t, J = 9.9 Hz, 1H, H-3´), 4.31 (m, 2H, H-1´ + H-6´a), 4.20 (d, J = 12.1 Hz, 24
23
1H, H-6´b), 3.79-3.71 (m, 1H, H-5´), 2.34 (s, 3H, CH3), 2.12 (s, 3H, OAc), 2.09 (s, 3H, OAc), 25 26
2.04 (s, 3H, OAc), 2.01 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3 + CCl4) δ 170.7, 170.4, 170.1, 29
28
27
169.6, 137.8, 134.0, 133.9, 129.4 (2C), 126.7, 126.4 (2C), 126.0 (2C), 77.6, 76.2, 72.3, 70.1, 31
30
66.0, 62.9, 21.3, 20.8, 20.7, 20.6 (2C); ESI-HRMS calcd for C25H30O9Na ([M+Na]+) 497.1782 32 34
3
found 497.1783. 36
35
(EE)-1-(2´,3´,4´,6´-Tetra-O-acetyl-β-D-mannopyranosyl)-4-(4-methoxylphenyl)but-1,3-diene 37 38
(3o): It was obtained by the reaction of 1-glycosyl-4-phenyl butene-2-ol 2o (1.00 g, 1.96 mmol) 39 41
40
in anhydrous CH2Cl2 (5 mL, 0.39 M) at 0-40 °C with Et 3N (2.34 mmol) and methanesulfonyl 43
42
chloride (0.3 mL, 3.92 mmol) in 75 % yield (0.76 g) as white solid: mp 118-120 °C; IR (KBr) 45
4
νmax cm-1: 3410, 1754, 1631, 1210, 774; [α]25D –56.2° (c 0.1, CHCl3); 1H NMR (300 MHz, 46 48
47
CDCl3) δ 7.39-7.33 (m, 2H, ArH), 6.89-6.86 (m, 2H, ArH), 6.66-6.55 (m, 2H, H-3, H-4), 6.52 50
49
(dd, J2,3 = 10.2 Hz, J1,2 = 15.5 Hz, 1H, H-2), 5.66 (dd, J1,2 = 14.9 Hz, J1,1´ = 5.7 Hz, 1H, H-1), 51 53
52
5.46 (d, J = 3.2 Hz, 1H, H-2´), 5.34- 5.27 (m, 1H, H-4´), 5.15 (dd, J2´,3´ = 3.3 Hz, J3´,4´ = 10.1 Hz, 5
54
1H, H-3´), 4.35-4.29 (m, 2H, H-6´a, H-1´), 4.23 (dd, J5´,6´b = 2.2 Hz, J 6´a,6´b = 12.2 Hz, 1H, H56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 30 of 47
1 3
2
6´b), 3.83 (s, 3H, OCH3), 3.77-3.72 (m, 1H, H-5´), 2.18 (s, 3H, OAc), 2.14 (s, 3H, OAc), 2.09 (s, 5
4
3H, OAc), 2.02 (s, 3H, OAc); 6
13
C NMR (50 MHz, CDCl3) δ 170.9, 170.6, 170.2, 169.8, 159.6,
8
7
134.0, 129.7(2C), 127.9 (2C), 125.7, 125.4, 114.4 (2C), 77.3, 76.2, 72.3, 70.3, 66.2, 63.0, 55.3, 10
9
20.8, 20.7, 20.6 (2C); ESI-HRMS calcd for C25H30O10 ([M+H]+) 491.1917 found 491.1904. 1 12
General procedure for the synthesis of unprotected 1-glycosyl 1,3-dienes (4a, 4b) 13 15
14
(EE)-1-(β-D-xylopyranosyl)-4-(4-fluorophenyl)but-1,3-diene (4a): The above glycosyl diene 17
16
3k (0.50 g, 1.23 mmol) was dissolved in NaOMe solution in MeOH (3 mL, 0.35 M) and was 18 19
stirred at room temperature for 30 min. The reaction mixture was neutralised with aq. 3 N HCl, 20 2
21
and the solvent was evaporated under reduced pressure. The residue, thus obtained was dissolved 24
23
in MeOH and filtered off. The filtrate was concentrated to give compound 4a in 97 % yield (0.34 25 26
g) as white solid: mp 148-150 °C; IR (KBr) νmax cm-1: 3540, 3480, 3359, 2925, 1768, 1672, 779; 29
28
27
[α]25D –70.6° (c 0.1, MeOH); 1H NMR (300 MHz, DMSO-d6) δ 7.58 (m, 2H, ArH), 7.23-7.17 31
30
(m, 2H, ArH), 6.95 (dd, J3,4 = 15.6 Hz J2,3 = 10.6 Hz, 1H, H-3), 6.65 (d, J = 15.7 Hz, 1H, H-4), 32 34
3
6.47 (dd, J2,3 = 10.6 Hz J1,2 = 15.2 Hz, 1H, H-2), 6.00 (dd, J1,1´ = 5.4 Hz J1,2 = 15.3 Hz, 1H, H-1), 36
35
5.08 (d, J = 4.7 Hz, 1H, OH), 5.0 (s, 2H, 2×OH), 3.84 (dd, J1 = 5.1 Hz J2 = 10.7 Hz, 1H, H-5´a), 38
37
3.65-3.61 (m, 1H, H-1´), 3.41 (m, 1H, H-4´), 3.25 (m, 2H, H-3´, H-5´b), 3.01 (m, 1H, H-2´);13C 39 40
NMR (75 MHz, DMSO-d6) δ 163.8 (d, 1JCF = 256.5 Hz), 134.1, 133.4, 131.3, 131.0, 129.4, 43
42
41
128.7 (2C, d, 3JCF = 9.0 Hz), 115.3 (2C, d, 2JCF = 20.9 Hz), 80.4, 78.9, 74.7, 70.4, 70.1; ESI45
4
HRMS calcd for C15H17FO4Na ([M+Na]+) 303.1003 Found: 303.0998. 46 48
47
(EE)-1-(β-D-xylopyranosyl)-4-(4-methoxyphenyl)but-1,3-diene (4b): It was obtained by the 50
49
reaction of acetylated glycosyl diene 3b (0.2 g, 0.47 mmol) with NaOMe solution in MeOH (3 51 52
mL, 0.14 M), in 98 % yield (0.137 g) as white solid: mp 142 °C; IR (KBr) νmax cm-1: 3580, 3466, 5
54
53
2928, 1769, 1653, 776; [α]25D –81.6° (c 0.1, MeOH); 1H NMR (300 MHz, DMSO-d6) δ 7.44 (d, 56 57 58 59 60 ACS Paragon Plus Environment
Page 31 of 47
The Journal of Organic Chemistry
1 3
2
J = 8.7 Hz, 2H, ArH), 6.99 (d, J = 8.7 Hz, 2H, ArH), 6.82 (dd, J3,4 = 15.5 Hz J2,3 = 10.5 Hz, 1H, 5
4
H-3), 6.57 (d, J = 15.7 Hz, 1H, H-4), 6.43 (dd, J2,3 = 10.5 Hz J3,4 = 15.3 Hz, 1H, H-4), 5.91 (dd, 6 8
7
J1,1´ = 5.6 Hz J1,2 = 15.3 Hz, 1H, H-1), 5.04 (d, J = 5.9 Hz, 1H, OH), 4.99-4.97 (m, 2H, 2×OH), 10
9
3.82-3.77 (m, 4H, H-5´a, OCH3), 3.62-3.57 (m, 1H, H-1´), 3.37-3.29 (m, 1H, H-4´), 3.20-3.07 12
1
(m, 2H, H-3´, H-5´b), 2.98-2.92 (m, 1H, H-2´); 13C NMR (75 MHz, DMSO-d6) δ 159.7, 131.9, 13 15
14
131.4 (2C), 128.2 (3C), 127.1, 114.8 (2C), 80.6, 78.9, 74.7, 70.3, 70.1, 55.7; ESI-HRMS calcd 17
16
for C16H20O5Na ([M+Na]+) 315.1203 Found: 315.1204. 18 19
General procedure for the synthesis of anthraquinonyl-C-glycosides (5a-5o) 20 2
21
1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-methylphenyl)anthracene-9,10-dione 24
23
(5l):
To a stirring mixture of 1-glycosyl-1,3-diene 3l (0.5 g, 1.24 mmol), naphthoquinone (0.196 g, 25 27
26
1.24 mmol) in toluene (5 mL, 0.25 M) was added InCl3.4H2O (0.017 g, 0.06 mmol). The reaction 29
28
mixture was stirred at 80 °C for 3 hours. After completion of reaction (TLC), toluene was 31
30
evaporated under reduced pressure to give a residual mass which was partitioned between 32 34
3
CH2Cl2 and water. Organic layer was dried (anhyd. Na2SO4) and concentrated under reduced 36
35
pressure to afford a crude residue, which was purified by column chromatography (SiO2, 60-120 37 38
mesh) using a gradient of hexane: ethyl acetate (13:7) as eluent to give 1-(2',3',4'-Tri-O-acetyl39 41
40
β-D-xylopyranosyl)-4-(4-methylphenyl)anthracene-9,10-(1H, 4H)dione (5'l) in 99 % yield 43
42
(0.682 g) as yellow solid: mp 222-225 °C; IR (KBr) νmax cm-1: 3216, 2922, 1768, 1636, 1594, 45
4
759, 671; [α]25D -0.94° (c 0.1, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.13* (d, J = 7.60 Hz, 1H), 46 48
47
8.08-8.06 (m, 1H), 7.95-7.92 (m*, 2H), 7.70-7.63 (m*, 4H), 7.40-7.38 (m, 2H), 7.21-7.19* (m, 50
49
2H), 7.08-7.05 (m*, 4H), 6.04-5.99 (m*, 2H), 5.93-5.90 (m, 1H), 5.80-5.76* (m, 1H), 5.41* (t, J 51 53
52
= 9.4 Hz, 1H), 5.29 (t, J = 9.2 Hz, 1H), 5.22 (t, J = 9.6 Hz, 1H), 5.13* (t, J = 9.4 Hz, 1H), 4.985
54
4.90 (m*, 2H), 4.82-4.75 (m*, 2H), 4.06-3.99 (m*, 4H), 3.80 (bs, 1H), 3.60* (dd, J1 = 9.4 Hz, J2 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 32 of 47
1 3
2
= 9.4 Hz, 1H), 2.28-2.27 (m*, 5H), 2.18 (s, 3H), 2.04-2.00 (m*, 12H); (100 MHz, CDCl3 + CCl4) 5
4
δ 184.6, 184.5*, 183.7, 183.6*, 170.6, 170.2*, 170.1, 169.9*, 169.8, 169.6*, 146.8, 144.8*, 6 8
7
142.9, 141.6*, 138.7, 138.5*, 136.4, 136.3*, 133.7 (2C*), 133.5, 133.5 (2C*), 132.2, 132.1*, 10
9
129.6 (2C*), 129.4 (2C*), 129.1 (2C*), 128.8, 128.1*, 126.7, 126.6*, 126.4, 126.2*, 124.5, 1 12
119.5, 81.6, 78.5*, 74.4, 74.1*, 72.7 (2C*), 69.6, 69.3*, 68.9, 66.8*, 66.4 (2C*), 41.34, 40.8*, 13 15
14
36.1, 35.6*, 21.0 (2C*), 20.8 (2C*) , 20.7(2C*), 20.7(2C*); ESI-HRMS calcd for C32H30O9Na 17
16
([M+Na]+) 581.1788 Found: 581.1776. 18 19
Note = *Chemical Shift value minor isomer, multiplicity* (in 1H NMR data) and Carbon* (in 13C NMR data) 20 21
denotes the mixture of both the isomers 2 23
The above C-(1,4-dihydroanthraquinon-1-yl-)-xylopyranoside 5l' was dissolved in CH2Cl2 (5 24 26
25
mL, 0.25 M) and reacted with triethyl amine (0.1 M) in presence of molecular oxygen at r.t. for 6 28
27
hours. After completion of reaction (TLC), reaction mixture was diluted with water and extracted 29 30
with CH2Cl2 and water. Organic layer was dried over (anhyd. Na2SO4) and concentrated under 31 3
32
reduced pressure to afford a crude residue, which was purified by column chromatography (SiO2, 35
34
60-120 mesh) using a gradient of hexane: ethyl acetate (3:1) as eluent to give the above 5l in 98 36 37
% yield (0.66 g) as light yellow solid: mp 174-175°C; IR (KBr) νmax cm-1: 3022, 2920, 1750, 40
39
38
1674, 1594, 1221, 1035, 759; [α]25D 34.4° (c 0.1, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.18 (d, 41 42
J = 7.2 Hz, 1H, ArH), 8.02-8.00 (m, 2H, ArH), 7.77-7.68 (m, 2H, ArH), 7.57 (d, J = 8.4 Hz, 1H, 43 45
4
ArH), 7.25-7.22 (m, 2H, ArH), 7.14 (d, J = 8.0 Hz, 2H, ArH), 6.24 (d, J = 10.0 Hz, 1H, H-1'), 47
46
5.48 (t, J = 9.6 Hz, 1H, H-3'), 5.21-5.14 (m, 2H, H-2', H-4'), 4.28 (dd, J4´,5´a = 5.6 Hz, J5´a,5´b = 48 49
11.2 Hz,1H, H-5'a), 3.65 (t, J = 11.2 Hz, 1H), 3.66 (t, J = 10.8 Hz,1H, H-5'b), 2.43 (s, 3H, CH3), 50 52
51
54
53
2.11 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.63 (s, 3H, OAc); 13C NMR (100 MHz, CDCl3 + CCl4) δ 185.8, 183.9, 170.2, 170.0, 169.3, 145.4, 139.3, 138.6, 137.8, 137.0, 134.4, 134.1, 133.9, 133.3, 5 56 57 58 59 60 ACS Paragon Plus Environment
Page 33 of 47
The Journal of Organic Chemistry
1 3
2
132.8, 132.6, 129.1 (2C), 128.0 (2C), 127.0 (2C), 126.9, 74.9, 74.4, 73.4, 70.0, 67.5, 21.6, 5
4
20.9,20.6 (2C); ESI-HRMS calcd for C32H28O9 ([M+H]+) 557.1806 Found: 557.1816. 6 8
7
It was also obtained by the reaction of 1-glycosyl-1,3-diene (3l) (0.5 g, 1.24 mmol) in toluene (5 10
9
mL, 0.25 M) at 80 °C with naphthoquinone (0.196 g, 1.24 mmol) and InCl3.4H2O (0.017 g, 0.06 1 12
mmol) to afford a crude mass (without purifying), was again dissolved in CH2Cl2 (5 mL, 0.20 13 15
14
M), added triethylamine (0.1M) and this reaction mixture, was stirred at room temperature in 17
16
presence of molecular oxygen for 6 hours. Reaction mixture was diluted with water and 18 19
extracted with CH2Cl2 and water. Organic layer was separated, dried over (anhyd. Na2SO4) and 20 2
21
evaporated under reduced pressure. Obtained crude product was purified by column 24
23
chromatography (SiO2, 60-120 mesh) using hexane: ethylacetate (3:1) in 95 % yield (0.66 g) as 25 27
26
light yellow solid. 29
28
1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-flourophenyl) anthracene-9,10-dione 31
30
(5a): It was obtained by the reaction of 1-glycosyl-1,3-diene 3a (0.5 g, 1.04 mmol), in toluene (5 32 34
3
mL, 0.21 M) at 80 °C with naphthoquinone (0.165 g, 1.04 mmol) and InCl3.4H2O (0.015 g, 0.05 36
35
mmol) followed by oxidative aromatization. in 92 % yield (0.60 g) as yellow solid: mp 198-200 38
37
°C; IR (KBr) νmax cm-1: 3410, 2930, 1763, 1680, 1243, 776; [α]25D 69.2° (c 0.1, CHCl3); 1H 39 41
40
NMR (300 MHz, CDCl3) δ 8.25 (d, J = 1.3 Hz, 1H, ArH), 8.22-8.03 (m, 2H, ArH), 7.85-7.77 (m, 43
42
2H, ArH), 7.63 (d, J = 8.3 Hz, 1H, ArH), 7.31-7.17 (m, 4H, ArH), 6.39 (d, J = 9.8 Hz, 1H, H-1'), 4 45
5.56 (t, J = 9.2 Hz, 1H, H-3'), 5.37-5.29 (m, 2H, H-2', H-4'), 4.38 (dd, J5´,6´a = 4.8 Hz, J6´a,6´b = 46 48
47
12.5 Hz, 1H, H-6'a), .4.26 (dd, J5´,6´b = 1.8 Hz, J6´a,6´b = 12.3 Hz,1H, H-6'b), 4.14-4.09 (m, 1H, H50
49
5'), 2.13 (s, 6H, 2×OAc), 2.06 (s, 3H, OAc), 1.41 (s, 3H, OAc); 51
13
C NMR (75 MHz, CDCl3) δ
52
185.6, 183.7, 170.7, 170.2, 169.7, 169.3, 160.4 (d, 1JCF = 250.5 Hz), 144.3, 138.3, 137.9, 137.8, 5
54
53
134.1 (2C), 134.0, 133.7, 133.1, 132.7, 132.5, 129.6 (2C, d, 3JCF = 8.8 Hz), 126.8, 126.7, 115.3 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 34 of 47
1 3
2
(2C, d, 2JCF = 21.5 Hz), 76.4, 74.7, 74.2, 72.8, 68.9, 62.4, 20.8 (2C), 20.7, 20.4; ESI-HRMS 5
4
calcd for C34H29FO11 ([M+H]+) 633.1767 Found: 633.1775. 6 8
7
1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-phenyl anthracene-9,10-dione (5b): 10
9
It was obtained by the reaction of 1-glycosyl-1,3-diene 3b (0.5 g, 1.08 mmol) in toluene (5 mL, 1 12
0.21 M) at 80 °C with naphthoquinone (0.17 g, 1.08 mmol) and InCl3.4H2O (0.016 g 0.054 13 15
14
mmol) followed by oxidative aromatization in 91 % yield (0.60 g) as yellow solid: mp 165-168 17
16
°C; IR (KBr) νmax cm-1: 3460, 3022, 1750, 1674, 1594,1371, 916; [α]25D 96.0° (c 0.1, CHCl3); 1H 19
18
NMR (300 MHz, CDCl3) δ 8.22 (d, J = 6.7 Hz, 1H, ArH), 8.04-8.00 (m, 2H, ArH), 7.80-7.70 (m, 20 2
21
2H, ArH), 7.63 (d, J = 8.1 Hz, 1H, ArH), 7.43-7.42 (d, J = 1.1 Hz, 3H, ArH), 7.27-7.25 (m, 1H, 24
23
ArH), 6.35 (d, J = 9.8 Hz,1H, H-1'), 5.51 (t, J = 9.2 Hz,1H, H-3'), 5.35-5.24 (m, 2H, H-2', H-4'), 25 27
26
4.34 (dd, J5´,6´a = 4.8 Hz, J6´a,6´b = 12.2 Hz, 1H, H-6'a), 4.21-4.17 (d, J = 11.0 Hz, 1H, H-6'b), 29
28
4.10-4.00 (m, 1H, H-5'), 2.19 (s, 3H, OAc), 2.18 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.69 (s, 3H, 31
30
OAc); 32
13
C NMR (75 MHz, CDCl3 + CCl4) δ 185.4, 183.5, 170.4, 170.0, 169.4, 169.0, 145.2,
34
3
141.9, 138.0, 137.4, 134.1, 133.9, 133.8, 133.7, 133.0, 132.7, 132.3, 128.1 (2C), 127.8 (2C), 36
35
127.2, 126.7 (2C), 76.3, 74.7, 74.1, 72.7, 68.8, 62.3, 20.7 (2C), 20.6, 20.3; ESI-HRMS calcd for 38
37
C34H30O11 ([M+H]+) 615.1861 Found: 615.1863. 39 41
40
1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-bromophenyl)anthracene-9,10-dione 43
42
(5c): It was obtained by the reaction of 1-glycosyl-1,3-diene 3c (0.5 g, 0.93 mmol) in toluene (5 4 45
mL, 0.18 M) at 80 °C with naphthoquinone (0.146 g, 0.93 mmol) and InCl3.4H2O (0.013 g, 46 48
47
0.046 mmol) followed by oxidative aromatization in 90 % yield (0.58 g) as light yellow solid: 50
49
mp 218-220 °C; IR (KBr) νmax cm-1: 3410, 2930, 1758, 1680, 1231, 771; [α]25D -22.0° (c 0.1, 51 52
CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 8.22 (d, J = 6.5 Hz, 1H, ArH), 8.04-7.99 (m, 2H, 5
54
53
ArH), 7.78-7.76 (m, 2H, ArH), 7.62-7.57 (m, 2H, ArH), 7.27-7.13 (m, 4H, ArH), 6.37 (d, J = 9.8 56 57 58 59 60 ACS Paragon Plus Environment
Page 35 of 47
The Journal of Organic Chemistry
1 3
2
Hz,1H, H-1'), 5.51 (t, J = 9.0 Hz, 1H, H-3'), 5.32-5.29 (m, 2H, H-2', H-4'), 4.35-4.32 (m, 1H, H5
4
6'a), 4.23-4.19 (m, 1H, H-6'b), 4.10 (m, 1H, H-5'), 2.10 (s, 6H, 2×OAc), 2.03 (s, 3H, OAc), 1.69 6 8
7
(s, 3H, OAc); 10
9
13
C NMR (75 MHz, CDCl3 + CCl4) δ 185.5, 183.4, 170.4, 170.0, 169.4, 169.0,
145.4, 138.6, 137.6,134.0, 133.9, 133.7, 133.6, 133.0, 132.5, 132.3, 131.2, 129.5 (2C), 128.9, 1 12
127.8, 126.7 (2C), 121.5, 76.4, 74.7, 74.1, 72.7, 68.9, 62.3, 20.7 (2C), 20.6, 20.3; ESI-HRMS 13 14
calcd for C34H29O11Br ([M+H]+) 693.0966 Found: 693.0955. 17
16
15
1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-chlorophenyl)anthracene-9,10-dione 18 19
(5d): It was obtained by the reaction of 1-glycosyl-1,3-diene 3d (0.5 g, 1.01 mmol) in toluene (5 20 2
21
mL, 0.20 M) at 80 °C with naphthoquinone (0.159 g, 1.01 mmol) and InCl3.4H2O (0.014 g, 0.05 24
23
mmol) followed by oxidative aromatization in 91% yield (0.60 g) as yellow solid: mp 210-212 25 26
°C; IR (KBr) νmax cm-1: 3482, 3023, 1750, 1674, 1493, 982; [α]25D 136.0° (c 0.1, CHCl3); 1H 29
28
27
NMR (300 MHz, CDCl3 + CCl4) δ 8.22 (d, J = 6.6 Hz, 1H, ArH), 8.03 (d, J = 6.9 Hz, 2H, ArH), 31
30
7.81-7.74 (m, 2H, ArH), 7.59 (d, J = 8.1 Hz, 1H, ArH), 7.42 (d, J = 8.0 Hz, 2H, ArH), 7.20-7.25 32 34
3
(d, J = 8.1 Hz, 1H, ArH), 6.33 (d, J = 9.5 Hz,1H, H-1'), 5.48 (t, J = 9.2 Hz,1H, H-3'), 5.31-5.22 36
35
(m, 2H, H-2', H-4'), 4.34 (dd, J5´,6´a = 5.0 Hz, J6´a,6´b = 12.6 Hz, 1H, H-6'a), 4.16 (d, J6´a,6´b = 12.5 37 38
Hz, 1H, H-6'b), 4.07-4.05 (m, 1H, H-5'), 2.10 (s, 6H, 2×OAc), 2.03 (s, 3H, OAc), 1.69 (s, 3H, 39 41
40
43
42
OAc);
13
C NMR (50 MHz, CDCl3 + CCl4) δ 185.1, 183.1, 170.1, 169.7, 169.2, 168.7, 143.8,
140.3, 138.5, 137.2, 134.1, 133.9, 133.8, 133.6, 133.4, 133.0, 132.5, 129.2 (2C), 128.4 (3C), 4 45
126.8, 126.7, 76.3, 74.7, 74.1, 72.6, 68.7, 62.1, 20.5 (3C), 20.3; ESI-HRMS calcd for 46 48
47
C34H29O11Cl ([M+H]+) 649.1471 Found: 649.1473. 50
49
1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(2-chlorophenyl)anthracene-9,10-dione 51 53
52
(5e): It was obtained by the reaction of 1-glycosyl-1,3-diene 3e (0.5 g, 0.95 mmol) in toluene (5 5
54
mL, 0.20 M) at 80 °C with naphthoquinone (0.150 g, 0.95 mmol) and InCl3.4H2O (0.01 g, 0.05 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 36 of 47
1 3
2
mmol). by oxidative aromatization in 90 % yield (0.58 g) as yellow solid: mp 188-190 °C; IR 5
4
(KBr) νmax cm-1: 3482, 3023, 1750, 1674, 1493, 982; [α]25D 44.2° (c 0.1, CHCl3); 1H NMR (300 6 7
MHz, CDCl3 + CCl4) δ 8.29 (d, J = 7.0 Hz, 1H, ArH), 8.11 (d, J = 5.0 Hz, 2H, ArH), 7.86-7.84 10
9
8
(m, 2H, ArH), 7.66 (d, J = 8.1 Hz, 1H, ArH), 7.50 (d, J = 7.8 Hz, 2H, ArH), 7.34-7.25 (m, 2H), 1 12
6.43 (d, J = 9.7 Hz,1H, H-1'), 5.60 (t, J = 9.2 Hz, 1H, H-3'), 5.37-5.33 (m, 2H, H-2', H-4'), 4.4113 15
14
4.37 (dd, J5´,6´a = 4.8 Hz, J6´a,6´b = 12.0 Hz, 1H, H-6'a), 4.30 (d, J6´a,6´b = 12.1 Hz, 1H, H-6'b), 17
16
4.16-4.14 (m, 1H, H-5'), 2.17 (s, 6H, 2×OAc), 2.09 (s, 3H, OAc), 1.74 (s, 3H, OAc); 19
18
13
C NMR
(50 MHz, CDCl3) δ 185.5, 183.7, 170.7, 170.3, 169.7, 169.3, 143.9, 140.5, 138.5, 137.4, 134.2, 20 2
21
134.1, 133.7, 133.4, 133.2, 132.6 (2C), 129.3 (2C), 128.5 (3C), 126.9, 126.8, 76.4, 74.7, 74.1, 24
23
72.8, 68.9, 62.4, 20.8 (2C), 20.7, 20.4; ESI-HRMS calcd for C34H29O11Cl ([M+H]+) 649.1471 25 27
26
Found: 649.1473. 29
28
1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-isopropylphenyl)anthracene-9,1031
30
dione (5f): It was obtained by the reaction of 1-glycosyl-1,3-diene 3f (0.5 g, 0.99 mmol) in 32 34
3
toluene (5 mL, 0.20 M) at 80 °C with naphthoquinone (0.157 g, 0.99 mmol) and InCl3.4H2O 36
35
(0.014 g, 0.05 mmol) followed by oxidative aromatization in 93 % yield (0.61 g) as light yellow 38
37
solid: mp 172-175 °C; IR (KBr) νmax cm-1: 3435, 1750, 1639, 1366, 1219, 771, 668; [α]25D 136.7° 39 40
(c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 8.22-8.20 (m, 1H, ArH, ArH), 8.06 (d, J = 7.2 Hz, 43
42
41
1H, ArH), 8.00 (d, J = 8.2 Hz, 1H, ArH), 7.80-7.71 (m, 2H, ArH), 7.62 (d, J = 8.1 Hz, 1H, ArH), 4 45
7.31 (m, 1H, ArH), 7.19 (d, J = 7.8 Hz, 2H, ArH), 6.31 (d, J = 9.7 Hz,1H, H-1'), 5.50 (t, J = 9.1 46 48
47
Hz,1H, H-3'), 5.36-5.24 (m, 2H, H-2', H-4'), 4.34 (dd, J5´,6´a = 4.6 Hz, J6´a,6´b = 12.3 Hz, 1H, H50
49
6'a), 4.19-4.16 (m, 1H, H-6'b), 4.10-4.07 (m, 1H, H-5'), 3.06-2.97 (m, 1H, CH), 2.10 (s, 6H, 51 53
52
5
54
2×CH3), 2.03 (s, 3H, OAc), 1.70 (s, 3H, OAc), 1.37 (s, 3H, OAc), 1.35 (s, 3H, OAc);
13
C NMR
(75 MHz, CDCl3 + CCl4) δ 185.4, 183.4, 170.1, 169.8, 169.2, 168.8, 147.5, 145.4, 139.3, 137.7, 56 57 58 59 60 ACS Paragon Plus Environment
Page 37 of 47
The Journal of Organic Chemistry
1 3
2
137.6, 134.2, 133.9, 133.7, 133.5, 133.0, 132.8, 132.2, 128.1, 127.9, 126.7 (2C), 126.1 (2C), 5
4
76.4, 74.8, 74.2, 72.6, 68.8, 62.3, 33.8, 24.0 (2C), 20.7 (2C), 20.5, 20.3; ESI-HRMS calcd for 6 7
C37H36O11 ([M+H]+) 657.2330 Found: 657.2330. 10
9
8
1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(4-methoxyphenyl)anthracene-9,101 12
dione (5g): It was obtained by the reaction of 1-glycosyl-1,3-diene 3g (0.5 g, 1.02 mmol) in 13 15
14
toluene (5 mL, 0.21 M) at 80 °C with naphthoquinone (0.159 g, 1.02 mmol) and InCl3.4H2O 17
16
(0.014 g, 0.05 mmol) followed by oxidative aromatization in 95 % yield (0.62 g) as light yellow 19
18
solid: mp 175-178 °C; IR (KBr) νmax cm-1: 3021, 2921, 1750, 1673, 1598, 1493, 917, 598; [α]25D 20 2
21
168.2° (c 0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 8.21 (d, J = 7.3 Hz, 1H, ArH), 8.05 (d, J = 24
23
6.9 Hz, 2H, ArH), 7.99 (d, J = 8.1 Hz, 1H, ArH), 7.79-7.70 (m, 2H, ArH), 7.62 (d, J = 8.1 Hz, 25 27
26
1H, ArH), 7.20 (d, J = 10.3 Hz, 1H, ArH), 6.97 (d, J = 8.5 Hz, 2H, ArH), 6.32 (d, J = 9.6 Hz, 1H, 29
28
H-1'), 5.49 (t, J = 9.2 Hz,1H, H-3'), 5.34-5.23 (m, 2H, H-2', H-4'), 4.34 (dd, J5´,6´a = 4.7 Hz, 31
30
J6´a,6´b = 12.3 Hz,1H, H-6'a), 4.16 (d, J = 12.0 Hz, 1H, H-6'b), 4.09-4.05 (m, 1H, H-5'), 3.89 (s, 32 34
3
3H, OCH3), 2.10 (s, 6H, 2×OAc), 2.03 (s, 3H, OAc), 1.69 (s, 3H, OAc); 36
35
13
C NMR (75 MHz,
CDCl3 +CCl4) δ 185.4, 183.6, 170.3, 169.8, 169.3, 169.8, 158.9, 145.0, 137.7, 137.6, 134.1, 37 38
134.0, 139.0, 133.8, 133.6, 133.1, 132.7, 132.2, 129.1 (2C), 126.7 (2C), 113.6 (2C), 76.2, 74.7, 39 40
74.1, 72.6, 68.8, 62.2, 55.0, 21.7 (2C), 20.6, 20.3; ESI-HRMS calcd for C35H32O12([M+H]+) 43
42
41
645.1967 Found: 645.1974. 4 45
1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(2-naphathalenyl)anthracene-9,10-dione 46 48
47
(5h): It was obtained by the reaction of 1-glycosyl-1,3-diene 3h (0.5 g, 0.98 mmol) in toluene (5 50
49
mL, 0.19 M) at 80 °C with naphthoquinone (0.155 g, 0.98 mmol) and InCl3.4H2O (0.015 g, 0.05 51 53
52
mmol) followed by oxidative aromatization in 88 % yield (0.57 g) as light yellow solid: mp 1805
54
182 °C; IR (KBr) νmax cm-1: 3482, 2925, 1750, 1673, 1371, 1229, 758, 667; [α]25D -52.6° (c 0.1, 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 38 of 47
1 3
2
CHCl3); 1H NMR (300 MHz, CDCl3) δ 8.24 (d, J = 7.6 Hz 1H, ArH), 8.12 (d, J = 8.1 Hz, 1H, 5
4
ArH), 7.93-7.85 (m, 2H, ArH), 7.78-7.64 (m, 4H, ArH), 7.55-7.46 (m, 2H, ArH), 7.31-7.23 (m, 6 8
7
3H, ArH), 6.42 (d, J = 9.7 Hz,1H, H-1'), 5.57-5.49 (m, 1H, H-3'), 5.37-5.30 (m, 2H, H-2', H-4'), 10
9
4.41-4.29 (m, 1H, H-6'a), 4.23-4.18 (m, 1H, H-6'b), 4.13-4.11 (m, 1H, H-5'), 2.12 (s, 6H, 1 12
2×OAc), 2.05 (s, 3H, OAc), 1.74 (s, 3H, OAc); 13
13
C NMR (75 MHz, CDCl3 + CCl4) δ 185.9,
15
14
182.6, 170.5, 170.1, 169.5, 168.9, 143.2, 138.1, 134.3, 133.8 (2C), 133.5, 132.7 (3C), 131.6, 17
16
128.5 (2C), 127.7, 126.8 (2C), 126.1 (2C), 125.7 (2C), 125.4, 124.9, 124.6, 74.8, 74.6, 74.3, 19
18
73.0, 68.9, 62.4, 20.7 (3C), 20.4; ESI-HRMS calcd for C38H32O11([M+H]+) 665.2017 Found: 20 2
21
665.2013. 24
23
1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-phenyl anthracene-9,10-dione (5i): It was 25 27
26
obtained by the reaction of 1-glycosyl-1,3-diene 3i (0.5 g, 1.28 mmol) in toluene (5 mL, 0.26 M) 29
28
at 80 °C with naphthoquinone (0.203 g, 1.28 mmol) and InCl3.4H2O (0.017 g, 0.06 mmol) 31
30
followed by oxidative aromatization in 93 % yield (0.65 g) as yellow solid: mp 200-202 °C; IR 32 3
(KBr) νmax cm-1: 3480, 2899, 1762, 1680, 1234, 776; [α]25D 70.7° (c 0.1, CHCl3); 1H NMR (300 36
35
34
MHz, CDCl3) δ 8.23 (d, J = 7.2 Hz, 1H, ArH), 8.05 (d, J = 8.0 Hz, 1H, ArH), 7.82-7.75 (m, 2H, 37 38
ArH), 7.61 (d, J = 8.1 Hz, 2H, ArH), 7.29-7.12 (m, 5H, ArH), 6.30 (d, J = 9.7 Hz, 1H, H-1'), 39 41
40
5.54 (t, J = 9.3 Hz, 1H, H-3'), 5.25-5.19 (m, 2H, H-2', H-4'), 4.29 (m,1H, H-5'a), 3.68 (t, J = 10.7 43
42
Hz, 1H, H-5'b), 2.12 (s, 3H, OAc), 2.06 (s, 3H, OAc), 1.66 (s, 3H, OAc); 45
4
13
C NMR (75 MHz,
CDCl3) δ 185.8, 183.7, 170.1(2C), 169.3, 145.0, 139.8, 137.8, 134.2, 134.0, 133.9 (2C), 133.8, 46 48
47
132.6, 132.5, 132.4, 128.1, 127.8 (2C), 127.2, 127.0, 126.7, 126.3, 74.8, 74.2, 73.3, 69.8, 67.3, 50
49
20.8 (2C), 20.3; ESI-HRMS calcd for C31H26O9([M+H]+) 543.1650 Found: 543. 1656. 51 53
52
1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-chlorophenyl)anthracene-9,10-dione (5j): 54 5 56 57 58 59 60 ACS Paragon Plus Environment
Page 39 of 47
The Journal of Organic Chemistry
1 3
2
It was obtained by the reaction of 1-glycosyl-1,3-diene 3j (0.5 g, 1.18 mmol) in toluene (5 mL, 5
4
0.24 M) at 80 °C with naphthoquinone (0.187 g, 1.18 mmol) and InCl3.4H2O (0.017 g, 0.06 6 8
7
mmol) followed by oxidative aromatization in 92 % yield (0.63 g) as light yellow solid: mp 14710
9
150 °C; IR (KBr) νmax cm-1: 3420, 2921, 1760, 1659, 1242, 771; [α]25D 63.7° (c 0.1, CHCl3); 1H 12
1
NMR (300 MHz, CDCl3) δ 8.22 (d, J = 7.0 Hz, 1H, ArH), 8.02 (d, J = 8.0 Hz, 1H, ArH), 7.8113 15
14
7.72 (m, 2H, ArH), 7.58 (d, J = 8.1 Hz, 1H, ArH), 7.42 (d, J = 8.1 Hz, 2H, ArH), 7.21 (d, J = 8.0 17
16
Hz, 3H, ArH), 6.27 (d, J = 9.7 Hz,1H, H-1'), 5.49 (t, J = 9.3 Hz,1H, H-3'), 5.19-5.14 (m, 2H, H18 19
2', H-4'), 4.29 (dd, J4´,5´a = 5.8 Hz, J5´a,5´b = 10.8 Hz,1H, H-5'a), 3.66 (t, J = 10.8 Hz,1H, H-5'b), 20 2
21
2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 1.65 (s, 3H, OAc); 24
23
13
C NMR (75 MHz, CDCl3+CCl4) δ
185.5, 183.6, 170.1, 169.9, 169.2, 144.0, 140.7, 139.3, 137.5, 134.2, 134.1, 133.9, 133.7, 133.3, 25 27
26
132.9, 132.6, 129.5 (2C), 128.6 (3C), 127.1, 127.0, 74.9, 74.4, 73.5, 70.0, 67.5, 20.9(2C), 20.6; 29
28
ESI-HRMS calcd for C31H25O9Cl ([M+H]+) 577.1260 Found: 577. 1266. 31
30
1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-fluorophenyl)anthracene-9,10-dione (5k): 32 34
3
It was obtained by the reaction of 1-glycosyl-1,3-diene 3k (0.5 g, 1.23 mmol) in toluene (5 mL, 36
35
0.25 M) at 80 °C with naphthoquinone (0.194 g, 1.23 mmol) and InCl3.4H2O ( 0.017g, 0.06 37 38
mmol) followed by oxidative aromatization in 93 % yield (0.66 g) as light yellow solid: mp 18639 40
187 °C; IR (KBr) νmax cm-1: 3021, 1752, 1674, 1220, 771; [α]25D 21.7° (c 0.1, CHCl3); 1H NMR 43
42
41
(300 MHz, CDCl3) δ 8.22 (d, J = 7.4 Hz, 1H, ArH), 8.03 (d, J = 7.7 Hz, 2H, ArH), 7.79-7.50 (m, 4 45
2H, ArH), 7.58 (d, J = 8.1 Hz, 1H, ArH), 7.24-7.20 (m, 2H, ArH), 7.14-7.08 (m, 2H, ArH), 6.27 46 48
47
(d, J = 9.6 Hz,1H, H-1'), 5.48 (t, J = 9.3 Hz,1H, H-3'), 5.22-5.14 (m, 2H, H-2', H-4'), 4.29 (dd, 50
49
J4,5´a = 5.8 Hz, J5´a,5´b = 11.0 Hz, 1H, H-5'a), 3.66 (t, J = 11.0 Hz, 1H, H-5'b), 2.10 (s, 3H, OAc), 51 52
2.04 (s, 3H, OAc), 1.64 (s, 3H, OAc); 13C NMR (50 MHz, CDCl3 + CCl4) δ 185.2, 183.3, 169.8, 5
54
53
169.5, 168.8, 143.9, 138.8, 137.3, 134.1 (2C), 133.8, 133.7, 132.5, 132.4, 129.6, 129.4 (2C, d, 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 40 of 47
1 3
2 3
5
4
JCF = 8.1 Hz), 126.8, 126.7 (2C), 115.3 (2C, d, 2JCF = 22.0 Hz), 73.2, 72.9, 72.0, 69.7, 67.2, 20.6
(2C), 20.2; ESI-HRMS calcd for C31H25FO9 ([M+H]+) 561.1555 Found: 561.1563. 6 8
7
1-(2',3',4'-Tri-O-acetyl-β-D-xylopyranosyl)-4-(4-methoxyphenyl)anthracene-9,10-dione 10
9
(5m): It was obtained by the reaction of 1-glycosyl-1,3-diene 3m (0.5 g, 1.19 mmol) in toluene 1 12
(5 mL, 0.24 M) at 80 °C with naphthoquinone (0.189 g, 1.19 mmol) and InCl3.4H2O (0.017g, 13 15
14
0.06 mmol) followed by oxidative aromatization in 94 % yield (0.64 g) as yellow solid: mp 19217
16
195 °C; IR (KBr) νmax cm-1: 2925, 1751, 1672, 1596, 1221, 771; [α]25D 161.6° (c 0.1, CHCl3); 1H 19
18
NMR (300 MHz, CDCl3) δ 8.20 (d, J = 7.5 Hz, 1H, ArH), 8.05-7.98 (m, 2H, ArH), 7.80-7.71 (m, 20 2
21
2H, ArH), 7.61 (d, J = 7.1 Hz, 1H, ArH), 7.21 (d, J = 8.7 Hz, 2H), 6.98 (d, J = 9.4 Hz, 2H, ArH), 24
23
6.28 (d, J = 9.6 Hz,1H, H-1'), 5.52 (t, J = 9.3 Hz,1H, H-3'), 5.25-5.20 (m, 2H, H-2', H-4'), 4.29 25 27
26
(dd, J4´,5´a = 5.7 Hz, J5´a,5´b = 10.9 Hz, 1H, H-5'a), 3.89 (s, 3H, OCH3), 3.66 (t, J5´a,5´b = 10.8 29
28
Hz,1H, H-5'b), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 1.65 (s, 3H, OAc); 31
30
13
C NMR (75 MHz,
CDCl3 + CCl4) δ 185.6 183.8, 170.0, 169.8, 169.1, 159.0, 144.9, 138.2, 137.7, 134.2, 134.1, 32 34
3
133.9, 133.7, 133.2, 132.5, 132.4, 129.2 (2C), 126.8, 126.7, 126.6, 113.6 (2C), 74.7, 74.1, 73.2, 36
35
69.7, 67.2, 55.16, 20.6 (2C), 20.3; ESI-HRMS calcd for C32H28O10 ([M+H]+) 573.1755 Found: 37 38
573.1757. 39 41
40
1-(2',3',4',6'-Tetra-O-acetyl-β-D-mannopyranosyl)-4-(4-methylphenyl)anthracene-9,1043
42
dione (5n): It was obtained by the reaction of 1-glycosyl-1,3-diene 3n (0.5 g, 1.05 mmol) in 45
4
toluene (5 mL, 0.21 M) at 80˚C with naphthoquinone (0.167 g, 1.05 mmol) and InCl3.4H2O 46 48
47
(0.015g, 0.05 mmol) followed by oxidative aromatization in 93 % yield (0.62 g) as yellow solid: 50
49
mp 198-200 °C; IR (KBr) νmax cm-1: 3020, 2925, 1746, 1671, 1217, 1053, 770; [α]25D -31.5° (c 51 52
0.1, CHCl3); 1H NMR (400 MHz, CDCl3 + CCl4) δ 8.22 (d, J = 7.3 Hz, 1H, ArH), 8.07-8.00 (m, 5
54
53
2H, ArH), 7.75-7.67 (m, 2H, ArH), 7.55 (d, J = 8.2 Hz, 1H, ArH), 7.25-7.21 (m, 2H, ArH), 7.14 56 57 58 59 60 ACS Paragon Plus Environment
Page 41 of 47
The Journal of Organic Chemistry
1 3
2
(d, J = 7.9 Hz, 2H, ArH), 5.94 (s, 1H, H-1'), 5.88 (d, J = 3.1 Hz,1H, H-2'), 5.59 (dd, J2,3´ = 3.1 5
4
Hz, J3´,4´ = 9.9 Hz, 1H, H-3'), 5.34 (t, J = 9.9 Hz, 1H, H-4'), 4.38 (dd, J5´,6´a = 6.0 Hz, J6´a,6´b = 6 8
7
12.2 Hz, 1H, 6'a), 4.21 (dd, J5´,6´b = 1.7 Hz, J6´a,6´b = 12.2 Hz, 1H, H-6'b), 3.90 (ddd, J5´,6´b = 1.7 10
9
Hz, J5´,6´a = 6.0 Hz, J4´,5´ = 4.4 Hz, 1H, H-5'), 2.43 (s, 3H, CH3), 2.10 (s, 3H, OAc), 2.08 (s, 3H, 1 12
OAc), 2.01 (s, 3H, OAc), 1.91 (s, 3H); 13
13
C NMR (100 MHz, CDCl3 + CCl4) δ 185.5, 183.5,
15
14
170.3, 169.7, 169.6, 169.5, 144.7, 139.2, 138.8, 136.7 (2C), 133.9, 133.8, 133.6 (2C), 132.8, 17
16
132.4 (2C), 131.2, 128.9 (2C), 127.8 (2C), 127.0, 126.7, 76.02, 72.0, 69.9, 66.8 (2C), 63.0, 21.3, 19
18
20.7, 20.6, 20.4; ESI-HRMS calcd for C35H32O11Na ([M+Na]+) 651.1842 Found: 651.1834. 20 2
21
1-(2',3',4',6'-Tetra-O-acetyl-β-D-mannopyranosyl)-4-(4-methoxyphenyl)anthracene-9,1024
23
dione (5o): It was obtained by the reaction of 1-glycosyl-1,3-diene 3o (0.5 g, 1.02 mmol) in 25 27
26
toluene (5 mL, 0.20 M) at 80 °C with naphthoquinone (0.161 g, 1.02 mmol) and InCl3.4H2O 29
28
(0.014 g, 0.05 mmol) followed by oxidative aromatization in 94 % yield (0.63 g) as light yellow 31
30
solid: mp 210-215 °C; IR (KBr) νmax cm-1: 3021, 2925, 1765, 1675, 1221, 779; [α]25D -209.1° (c 32 3
0.1, CHCl3); 1H NMR (300 MHz, CDCl3) δ 8.24 (d, J = 6.7 Hz, 1H, ArH), 8.09-8.03 (m, 2H, 36
35
34
ArH), 7.75-7.72 (m, 2H, ArH), 7.58 (d, J = 8.1 Hz, 1H, ArH), 7.20 (d, J = 8.4 Hz, 2H, ArH), 37 38
6.96 (d, J = 8.3 Hz, 2H, ArH), 5.95 (s, 1H, H-1'), 5.91 (d, J = 2.4 Hz, 1H, H-2'), 5.61 (dd, J2´,3´ = 39 41
40
3.0 Hz, J3´,4´ = 9.8 Hz, 1H, H-3'), 5.34 (m, 1H, H-4'), 4.40 (dd, J5´,6´a = 6.3 Hz, J6´a,6´b = 12.3 43
42
Hz,1H, H-6'a), 4.25 (d, J6´a,6´b = 11.9 Hz, 1H, H-6'b), 3.89 (bs, 4H, OCH3, H-5´), 2.12 (s, 3H, 4 45
OAc), 2.11 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.94 (s, 3H, OAc); 46
13
C NMR (75 MHz, CDCl3 +
48
47
CCl4) δ 185.5, 183.5, 170.1, 169.5, 169.4, 169.3, 158.9, 144.4, 138.7, 136.8, 134.2, 134.0, 133.9, 50
49
133.6, 133.5, 132.7, 132.4, 131.3, 129.2 (2C), 127.0, 126.7, 113.6 (2C), 76.03, 72.0, 70.01, 66.8 51 52
(2C), 63.0, 55.0, 20.7 (2C), 20.6, 20.4; ESI-HRMS calcd for C35H32O12 ([M+H]+) 645.1967 5
54
53
Found: 645.1968. 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 42 of 47
1 3
2
General procedure for the synthesis uprotected aryl -C-glycosides of compound (6a-6b) 5
4
1-(β-D-xylopyranosyl)-4-(4-fluorophenyl)anthracene-9,10-dione (6a): To a solution of 16 8
7
glycosyl-1,3-diene 4a (0.10 g, 0.35 mmol) in water:toluene (9:1), (3 mL, 0.11 M) was added 10
9
naphthoquinone (0.06 g, 0.35 mmol) and InCl3.4H2O (0.05 mmol) at 80 °C. The resulting 1 12
reaction mixture was stirred for 4 hours until the glycosyl diene substrate was completely 13 15
14
consumed. After completion (TLC), toluene was evaporated under reduced pressure afforded 17
16
residue was partitioned between ethyl acetate and water. Obtained organic layer was dried over 18 19
Na2SO4 evaporated under reduced pressure then dissolved in pyridine (1 mL, 0.36 M) added 20 2
21
triethylamine (0.1 M) and this mixture, was allowed to stir at room temperature in presence of 24
23
oxygen for 6 hours. After completion (TLC), crude reaction mixture was concentrated under 25 27
26
reduced pressure and extracted with ethyl acetate and water. Organic layer was separated and 29
28
dried over anhydrous sodium sulphate (Na2SO4) and evaporated under reduced pressure. The 31
30
obtained crude product was purified by column chromatography using 60-120 mesh silica gel 32 34
3
with CHCl3: MeOH (99:1) as eluent to give 6a. in 76 %yield (0.11 g); as yellow solid: mp 60-62 36
35
°C; IR (KBr) νmax cm-1: 3620, 3471, 2922, 1760, 1678, 961; [α]25D 35.6° (c 0.1, CHCl3); 1H 38
37
NMR (300 MHz, CDCl3) δ 8.14 (m, 3H, ArH), 7.79 (bs, 2H, ArH), 7.76 (d, J = 7.7 Hz 1H, ArH), 39 41
40
7.45-7.16 (m, 4H, ArH), 5.56 (d, J = 9.3 Hz, 1H, H-1´), 4.78 (s, 1H, OH), 4.22-4.20 (m, 2H, OH, 43
42
H-5´a), 4.00-3.92 (m, 3H, OH, H-3´, H-4´), 3.60-3.55 (m, 2H, H-5´b, H-2´); 13C NMR (75 MHz, 45
4
CDCl3) δ 189.0, 183.6, 164.2 (d, 1JCF = 241.1 Hz), 143.7, 142.1, 138.2, 137.7, 134.7, 134.1, 46 48
47
132.5, 131.9, 129.6, 128.7, 128.6, 127.7, 127.0, 126.9 (2C, d, 3JCF = 7.5 Hz) 115.5 (2C, d, 2JCF = 50
49
21.0 Hz), 80.3, 76.8, 70.5, 70.1, 65.4; ESI-HRMS calcd for C25H19FO6 ([M+H]+) 435.1244 51 53
52
Found: 435.1234. 54 5 56 57 58 59 60 ACS Paragon Plus Environment
Page 43 of 47
The Journal of Organic Chemistry
1 3
2
1-(β-D-xylopyranosyl)-4-(4-methoxyphenyl)anthracene-9,10-dione (6b): It was obtained by 5
4
the reaction of 1-glycosyl-1,3-diene 4b (0.10 g, 0.34 mmol) in water:toluene (9:1) (3 mL, 0.11 6 8
7
M) at 80 °C with naphthoquinone (0.053 g, 0.34 mmol) and InCl3.4H2O (0.05 mmol) followed 10
9
by oxidative aromatization in 79 % yield (0.12 g) as light yellow solid: 6b as white solid. Yield 12
1
0.12 g, 79 %; IR (Neat) νmax cm-1: 3642, 3460, 2921, 1768, 1672, 978; [α]25D -94.1° (c 0.1, 13 14
CHCl3); 1H NMR (300 MHz, CDCl3 + CCl4) δ 8.19-8.16 (m, 1H, ArH), 8.16-8.06 (m, 2H, ArH), 17
16
15
7.82-7.77 (m, 2H, ArH), 7.68 (d, J = 8.1 Hz, 1H, ArH), 7.25 (d, J = 8.6 Hz, 2H, ArH), 7.04 (d, J 18 19
= 7.7 Hz, 2H, ArH), 5.84 (d, J = 9.5 Hz, 1H, H-1´), 5.34 (s, 1H, OH), 4.24-4.18 (m, 1H, H-5´a), 20 2
21
4.02-3.97 (m, 1H, H-4´), 3.96 (s, 3H, OCH3), 3.94-3.82 (m, 1H, H-3´), 3.57 (s, 1H, OH), 3.5324
23
3.49 (m, 3H, OH, H-5´b, H-2´); 25
13
C NMR (100 MHz, CDCl3 + CCl4) δ 188.9, 183.4, 159.3,
27
26
144.7, 141.9, 138.6, 134.6, 134.4, 134.3, 134.3, 133.9, 133.8, 132.6, 123.1, 129.3 (2C), 128.5, 29
28
126.7, 125.6, 113.9 (2C), 80.4, 77.9, 76.9, 70.7, 70.3, 55.4; ESI-HRMS calcd for C26H22O7 31
30
([M+Na]+) 469.1263 Found: 469.1245. 32 34
3
General Procedure for the Preparation of Compound (7) 36
35
4-(2',3',4',6'-Tetra-O-acetyl-β-D-xylopyranosyl)-7-(4-methoxyphenyl)-2-phenyl tetrahydro37 38
1H-isoindole-1,3-(2H)-dione (7): To a solution of (EE) 1-glycosyl-1,3-diene 3m (0.2 g, 0.5 39 41
40
mmol) in toluene (4 mL, 0.12 M) at 80 ˚C added N-phenyl maleimide (0.086 g, 0.5 mmol) and 43
42
InCl3.4H2O (0.02 mmol). The resulting reaction mixture was stirred for 4-5 h until the substrate 4 45
was completely consumed. After completion (TLC), toluene was evaporated under reduced 46 48
47
pressure afforded residue was partitioned between ethyl acetate and water. Obtained organic 50
49
layer was dried over Na2SO4 evaporated under reduced pressure. Obtained crude product was 51 53
52
purified by column chromatography using 60-120 mesh silica gel with hexane:ethyl acetate (3:1) 5
54
as eluent to give white solid of compound 7 in 81 % yield (0.23 g) as white solid: Yield 0.23 g, 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 44 of 47
1 3
2
81 %; mp 74 °C; IR (KBr) ν max cm-1: 3216, 2922, 1768, 1636, 1594, 759, 671; [α]25D 83° (c 0.1, 5
4
CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.42-7.25 (m, 3H, ArH), 7.13 (d, J = 7.9 Hz, 2H, ArH), 6 8
7
7.14 (d, J = 7.9 Hz, 2H, ArH), 6.87 (d, J = 8.37 Hz, 2H, ArH), 6.29-6.26 (m, 1H, H-3), 6.07-6.02 10
9
(m, 1H, H-2), 5.27 (t, J = 9.4 Hz, 1H, H-3'), 5.09 (t, J = 9.3 Hz, 1H, H-2'), 5.06 (t, J = 10.6 Hz, 1 12
1H, H-4'), 4.23 (t, J = 10.0 Hz, 1H, H-1'), 4.17 (dd, J4´,5´a = 5.9 Hz, J5´a,5´b = 11.2 Hz, 1H, H-5'a), 13 15
14
3.86 (dd, J1,6 = 5.0 Hz, J 5,6 = 8.3 Hz, 1H, H-6), 3.78 (s, 3H, OCH3), 3.63 (dd, J4,5 =7.8 Hz, J3,4 17
16
=3.9 Hz, 1H, H-4), 3.45 (t, J = 11.1 Hz, 1H, H-5'b), 3.37 (t, J = 8.2 Hz, 1H, H-5), 2.64 (d, J = 6.6 18 19
Hz, 1H, H-1), 2.04(s, 3H, OAc), 2.03 (s, 3H, OAc), 2.01 (s, 3H, OAc); 20
13
C NMR (75 MHz,
2
21
CDCl3) δ 176.4, 174.9, 170.3, 170.1, 169.8, 158.9, 132.1, 130.6, 129.9 (2C), 129.2 (2C), 128.6, 24
23
126.6 (2C), 114.0 (2C), 76.8, 74.0, 69.9, 67.1 (2C), 55.3, 46.3, 41.8, 41.7, 40.6, 20.9 (3C); ESI25 26
HRMS calcd for C32H33NO10 ([M+H]+) 592.2177 Found: 592.2171. 28
27 29 30 32
31
ACKNOWLEDGMENT: NA, KU, AA and RM are thankful to CSIR and UGC, New Delhi 34
3
respectively for fellowships RPT thank DRDO and CSIR (SPLENDID Project) New Delhi for 35 37
36
financial supports. We thank SAIF division, CSIR-CDRI for the analytical facilities. This is 39
38
CDRI communication No: 41
40
SUPPORTING INFORMATION AVAILABLE: 1H, 42
13
C, 2D-NOESY and 1H-13C HMBC
4
43
spectra, for all new compounds. This material is available free of charge via the internet at 46
45
http://pubs.acs.org 47 48 50
49
REFERENCES: 52
51
(1) (a) Hansen, M. R.; Hurley, L. H. Acc. Chem. Res. 1996, 29, 249-258 and references cited 54
53
therein. (b) Bililign, T.; Griffith, B. R.; Thorson, J. S. Nat. Prod. Rep. 2005, 22, 742-760. 5 56 57 58 59 60 ACS Paragon Plus Environment
Page 45 of 47
The Journal of Organic Chemistry
1 3
2
(2) Levy, D. E.; Tang, C. The Chemistry of C-Glycosides, Pergamon, Elsevier Science Ltd. 1995, 5
4
p. 4. 6 8
7
(3) (a) Rohr, J.; Thiericke, R. Nat. Prod. Rep. 1992, 9, 103-137. (b) Kharel, M. K.; Pahari, P.; 10
9
Shepherd, M. D.; Tibrewal, N. S.; Nybo, E.; Shaaban, K. A.; Rohr, J. Nat. Prod. Rep. 2012, 29, 1 12
264-325. (c) Toshima, K.; Ouchi, H.; Okazaki, Y.; Kano, T.; Moriguchi, M.; Asai, A.; 13 15
14
Matsumura, S. S. Angew. Chem. Int. Ed. Engl. 1997, 36, 2748-2750. (d) Yang, X.; Fu, B.; Yu, B. 17
16
J. Am. Chem. Soc. 2011, 133, 12433–12435. 18 19
(4) (a) Meng, W.; Ellsworth, B. A.; Nirschl, A. A.; McCann, P. J.; Patel, M.; Girotra, R. N.; 20 2
21
Wu, G.; Sher, P. M.; Morrison, E. P.; Biller, S. A.; Zahler, R.; Deshpande, P. P.; Pullockaran, 24
23
A.; Hagan, D. L.; Morgan, N.; Taylor, J. R.; Obermeier, M. T.; Humphreys,W. G.; Khanna, A.; 25 27
26
Discenza, L.; Robertson, J. G.; Wang, A.; Han, S.; Wetterau, J. R.; Janovitz, E. B.; Flint, O. P.; 29
28
Whaley, J. M.; Washburn, W. N. J. Med. Chem. 2008, 51, 1145-1149. (b) Xu, B.; Feng, Y.; 31
30
Cheng, H.; Song, Y.; Lv, B.; Wub, Y.; Wang, C.; Li, S.; Xu, M.; Du, J.; Peng, K.; Dong, J.; 32 34
3
Zhang, W.; Zhang, T.; Zhu, L.; Ding, H.; Sheng, Z.; Welihinda, A.; Roberge, J. Y.; Seed, B.; 36
35
Chen, Y. Bioorg. Med. Chem. Lett. 2011, 21, 4465-70. 37 38
(5) (a) McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 660539 41
40
6606. (b) Yamamoto, Y.; Saigoku, T.; Ohgai, T.; Nishiyama, H.; Itoh, K. Chem. Commun. 2004, 43
42
10, 2702-2703. (c) Yamamoto, Y.; Saigoku, T.; Nishiyama, H.; Ohgai, T.; Itoh, K. Org. Biomol. 4 45
Chem. 2005, 3, 1768-1775. 46 48
47
(6) (a) Pully, S. R.; Carey, J. P. J. Org. Chem. 1998, 63, 5275-5279. (b) Paetsch, D.; Dotz, K. H. 50
49
Tetrahedron Lett. 1999, 40, 487-488. (c) Janes, E.; Nieger, M.; Saarenketo, P.; Dotz, K. H. Eur. 51 53
52
J. Org. Chem. 2003, 22, 2276-2285. (d) Fuganti, C.; Serra, S. Synlett 1999, 82, 1241-1242. (e) 54 5 56 57 58 59 60 ACS Paragon Plus Environment
The Journal of Organic Chemistry
Page 46 of 47
1 3
2
Brenna, E.; Fuganti, C.; Grasselli, P.; Serra, S.; Zambotti, S. Chem. Eur. J. 2002, 8, 1872-1878. 5
4
(f) Schmidt, R. R.; Effenberger, G. Liebigs Ann. Chem. 1987, 1987, 825-831. 6 8
7
(7) (a) Matsumoto, T.; Hosoya, T.; Suzuki, K. J. Am. Chem. Soc. 1992, 114, 3568–3570. (b) 10
9
Hosoya, T.; Takashiro, E.; Matsumoto,T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004–1015. 1 12
(c) Suzuki, K. Pure Appl. Chem.2000, 72, 1783–1786. 13 15
14
(8) (a) Kaelin, D. E.; Jr.; Lopez, O. D.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 6937-6938. 17
16
(b) Kaelin, D. E.; Jr.; Sparks, S. M.; Plake, H. R.; Martin, S. F. J. Am. Chem. Soc. 2003, 125, 18 19
12994-12995. (c) Chen, C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 1369620 2
21
13697. 24
23
(9) Kaliappan, K. P.; Subrahmanyam, A. V. Org. Lett. 2007, 9, 1121-1124. 25 27
26
(10) Acton, E. M.; Ryan, K. J.; Tracy, M. Tetrahedron Lett. 1984, 25, 5743-5746. 29
28
(11) (a) Anand, N.; Pandey, S. K.; Tripathi, R. P. Carbohydr. Research 2011, 346, 16-25. (b) 31
30
Mishra, M.; Sharma, R.; Tripathi, R. P. Tetrahedron 2011, 67, 740-748. (c) Bisht, S. S.; Fatima, 32 34
3
S.; Tamrakar, A. K.; Rahuja, N.; Jaiswal, N.; Srivastava, A. K.; Tripathi, R. P. Bioorg. Med. 36
35
Chem. Lett. 2009, 19, 2699-2703. (d) Pandey, J.; Sharma, A.; Tiwari, V. K.; Dube, D.; 37 38
Ramachandran, R.; Chaturvedi, V.; Sinha, S. K.; Mishra, N. N.; Shukla, P. K.; Tripathi, R. P. J. 39 41
40
Comb. Chem. 2009, 11, 422-427. 43
42
(12) (a) Sharma, A.; Sharma, S.; Tripathi, R. P.; Ampapathi, R. S. J. Org. Chem. 2012, 77, 20014 45
2007. (b) Ajay, A.; Sharma, S.; Gupt, M. P.; Bajpai, V.; Hamidullah; Kumar, B.; Kaushik, M. P.; 46 48
47
Konwar, R.; Ampapathi, R. S.; Tripathi, R. P. Org. Lett. 2012, 14, 4306-4309. 50
49
(13) (a) Rodrigues, F.; Canac, Y.; Lubineau, A. Chem. Commun. 2000, 2049-2050. (b) Riemann, 51 53
52
I.; Papadopoulos, M. A.; Knorst, M.; Fessner, W. D. Aust. J. Chem. 2002, 55, 147-154. (c) Bisht, 5
54
S. S.; Pandey, J.; Sharma, A.; Tripathi, R. P. Carbohydr. Res. 2008, 343, 1399-1406. 56 57 58 59 60 ACS Paragon Plus Environment
Page 47 of 47
The Journal of Organic Chemistry
1 3
2
(14) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226-2227. 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 2 23 24 25 26 27 28 29 30 31 32 3 34 35 36 37 38 39 40 41 42 43 4 45 46 47 48 49 50 51 52 53 54 5 56 57 58 59 60 ACS Paragon Plus Environment