A TICT Based TURN-ON Fluorogenic Nano-Probe ... - ACS Publications

tion at 25 °C]). Synthesis of the .... To, pursue this objective herein we have synthesized ligands L and L1 ... 0.2µm and (c) scale bar = 50 nm. Se...
1 downloads 0 Views 1MB Size
Subscriber access provided by Kaohsiung Medical University

Article

A TICT Based TURN-ON Fluorogenic Nano-Probe for Realtime Detection of Serum Albumin in Physiological Condition Soham Samanta, Senjuti Halder, and Gopal Das Anal. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.analchem.8b01181 • Publication Date (Web): 24 May 2018 Downloaded from http://pubs.acs.org on May 24, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

A TICT Based TURN-ON Fluorogenic Nano-Probe for Realtime Detection of Serum Albumin in Physiological Condition Soham Samanta, Senjuti Halder and Gopal Das* Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India. Fax: + 91 361 2582349; Tel: +91 3612582313; E-mail: [email protected]. ABSTRACT: Two, cyanine based fluorescent probes L [(E)-2-(4-(diethylamino)-2-hydroxystyryl)-3-ethyl-1,1-dimethyl-1Hbenzo[e]indol-3-ium iodide] and L1 [(E)-3-ethyl-1,1-dimethyl-2-(4-nitrostyryl)-1H-benzo[e]indol-3-ium iodide] have been designed and synthesized. Among these two probes; TICT (twisted intramolecular charge transfer) based probe L can preferentially self-assemble to form nano-aggregates. L displayed a selective TURN-ON fluorescence response towards HSA and BSA in ~100% aqueous PBS buffer medium which is noticeable through naked eye whereas L1 failed to sense these albumin proteins. The selective TURN-ON fluorescence response of L towards HSA/BSA can be attributed to the selective binding of the probe L with HSA/BSA without interfering with the known drug binding sites. The specific binding of L with HSA led to the disassembly of the self-assemble nano-aggregates of L which is corroborated by DLS (Dynamic light scattering) and TEM (Transmission Electron Microscopy) analysis. The probe L has a limit of detection as low as ~6.5 nM. The sensing aptitude of the probe L to detect HSA in body fluid and artificial urine sample has been demonstrated.

use of these probes in bio-diagnostics as well as in live cell imaging.

INTRODUCTION: In clinical diagnosis and biology, protein sensing is extremely important for detecting protein biomarkers and exploring cellular processes.1-6 Among various proteins, thiol-containing proteins play several important biological functions being present in very high concentrations in blood serum. Human Serum Albumin (HSA) is the most abundant thiol-containing transport protein in the blood that plays a vital role in maintaining the osmotic pressure of the blood compartment besides facilitating the transport of various drugs, fatty acids and metabolites.7-12 Generally, HSA concentrations in normal urine and blood serum are found to be 8.0) samples revealed that there are negligible changes the emission intensity of L upon incremental addition of HSA (Figure S27, Supporting Information). Moreover, it is also important to highlight that the probe was also able to sense HSA in artificial urine samples (Figure S28, Supporting Information). Hence, the probe holds good analytical prospect for pre-diagnosis of serum albumin protein in real samples.

CONCLUSION: In conclusion, a simple TICT based new fluorogenic probe L has been designed and synthesized here that can preferentially self-assemble to form nano-aggregates. The probe displayed a selective TURN-ON fluorescence response towards albumin proteins in physiological condition which is even conspicuous through the naked eye. The probe has very impressive limit of detection ~6.5 nM. The sensing of HSA by L can be attributed to the selective binding of the probe in the non-site specific binding of L with HSA/BSA which led to the disassembly of the self-assemble nano-aggregates of L. The mechanism has been well supported by drug binding studies, TEM studies and DLS studies. In near future it is intended to study potential photodynamic therapeutical (PDT) activity of this probe and its diagnostic applications.

ACS Paragon Plus Environment

Page 6 of 9

Page 7 of 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

ASSOCIATED CONTENT Supporting Information Supplementary Information includes NMR, HRMS characterization spectra of the synthesized organic molecules, several supporting plots, figures, spectra and docking data. The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION Corresponding Author * Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India. Fax: + 91 361 2582349; Tel: +91 3612582313; E-mail: [email protected].

ACKNOWLEDGMENT We thank the Council of Scientific and Industrial Research (01/2727/13/EMR-II) and Science & Engineering Research Board (SR/S1/OC-62/2011) for research grants and Central Instruments Facility (CIF), IIT Guwahati for providing analytical facilities. SS and SH acknowledge IIT Guwahati for fellowship. We thank Ms. Poulomi Dey and Prof. Aiyagari Ramesh of Department of Biosciences and Bioengineering of IIT Guwahati for helping in cytotoxicity and cell imaging studies.

REFERENCES 1. 2. 3.

4. 5. 6. 7. 8. 9. 10. 11. 12.

13. 14. 15. 16.

17.

Mizakami, S.; Hori, Y.; Kikuchi, K. Acc. Chem. Res., 2014, 47, 247-256. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke P. L.; Urano, Y. Chem. Rev., 2010, 110, 2620- 2640. Whitcombe, M. J.; Chianella, I.; Larcombe, L.; Piletsky, S. A.; Noble, J.; Porter, R.; Horgan, A. Chem. Soc. Rev., 2011, 40, 1547-1571. Chan, J.; Dodani, S. C.; Chang, C. J. Nat. Chem., 2012, 4, 973984. Vendrell, M.; Zhai, D.; Er, J. C.; Chang, Y. T. Chem. Rev., 2012, 112, 4391-4420. Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Chem. Rev., 2012, 112, 2739-2779. Ha, C. E.; Bhagavan, N. V. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830, 5486-5493. Rozga, J.; Piatek, T.; Malkowski, P. Ann. Transplant., 2013, 18, 205-217. Fujiwara, S.; Amisaki, T. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830, 5427-5434. Anand, U.; Mukherjee, S. Biochim.Biophys. Acta, 2013, 1830, 5394-5404. Pal, S.; Saha, C. J. Biomol. Struct. Dyn., 2014, 32, 1132-1147. Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. IUBMB Life, 2005, 57, 787– 796. Alino, V. J.; Yang, K. L. Analyst, 2011, 136, 3307-3313. Chung, C. Y.; Yam, V. W. J. Am. Chem. Soc., 2011, 133, 1877518784. Fan, J.; Sun, W.; Wang, Z.; Peng, X.; Li, Y.; Cao, J. Chem. Commun., 2014, 50, 9573-9576. Murch, S. H.; Winyard, P. J. D.; Koletzko, S.; Wehner, B.; Cheema, H. A.; Risdon, R. A.; Phillips, A. D.; Meadows, N.; Klein, N. J.; Walker-Smith, J. A. Lancet, 1996, 347, 1299-1301. Peters, T. All About Albumin: Biochemistry, Genetics and Medical Application, Academic Press, San Diego, CA, 1996, pp. 234–240.

18. Hoogenberg, K.; Sluiter, W. J.; Dullaart, R. P. Acta Endocrinol., 1993, 129, 151-157. 19. Zeeuw, D.; Parving, H. H.; Henning, R. J. Am. Soc. Nephrol., 2006, 17, 2100-. 20. Samanta, S.; Goswami, S.; Hoque, Md. N.; Ramesh, A.; Das, G. Chem. Commun., 2014, 50, 11833-11836. 21. Samanta, S.; Ray, T.; Haque, F.; Das, G. J. Lumin., 2016, 171, 13-18. 22. Samanta, S.; Goswami, S.; Ramesh, A.; Das, G. J. Photochem. Photobiol. A, 2015, 310, 45-51. 23. Samanta, S.; Goswami, S.; Ramesh, A.; Das, G. Sens. Actuators B., 2014, 194, 120-126. 24. Samanta, S.; Kar, C.; Das, G. Anal. Chem., 2015, 87, 9002-9008. 25. Samanta, S.; Manna, U.; Ray, T.; Das, G. Dalton Trans., 2015, 44, 18902-. 26. Samanta, S.; Datta, B. K.; Boral, M.; Nandan, A.; Das, G. Analyst, 2016, 141, 4388-4393. 27. Samanta, S.; Dey, P.; Ramesh, A.; Das, G. Chem. Commun., 2016, 52, 10381-10384. 28. Samanta, S.; Manna, U.; Das, G. New J. Chem., 2017, 41, 1064. 29. Samanta, S.; Halder, S.; Dey, P.; Manna, U.; Ramesh, A.; Das, G. Analyst, 2018, 143, 250-257. 30. Oh, K. J.; Cash, K. J.; Plaxco, K. W. J. Am. Chem. Soc., 2006, 128, 14018-14019. 31. Thurley, S.; Roglin, L.; Seitz, O. J. Am. Chem. Soc., 2007, 129, 12693-12695. 32. Wang, B.; Yu, C. Angew. Chem., Int. Ed., 2010, 49, 1485-1488. 33. Tang, D.; Liao, D.; Zhu, Q.; Wang, F.; Jiao, H.; Zhang, Y.; Yu, C. Chem. Commun., 2011, 47, 5485-5487. 34. Shi, H.; He, X. X.; Wang, K. M.; Wu, X.; Ye, X. S.; Guo, Q. P.; Tan, W. H.; Qing, Z. H.; Yang, X. H.; Zhou, B. Proc. Natl. Acad. Sci. U.S.A., 2011, 108, 3900-3905. 35. Sakabe, M.; Asanuma, D.; Kamiya, M.; Iwatate, R. J.; Hanaoka, K.; Terai, T.; Nagano, T.; Urano, Y. J. Am. Chem. Soc., 2013, 135, 409-414. 36. Xing, B.; Khanamiryan, A.; Rao, J. H. J. Am. Chem. Soc., 2005, 127, 4158-4159. 37. Shults, M. D.; Imperiali, B. J. Am. Chem. Soc., 2003, 125, 14248-14249. 38. Zhuang, Y. D.; Chiang, P. Y.; Wang, C. W.; Tan, K. T. Angew. Chem., Int. Ed., 2007, 46, 4097-4099. 39. Suzuki, Y.; Yokoyama, K. J. Am. Chem. Soc., 2005, 127, 17799-17802. 40. Yuan, C. X.; Tao, X. T.; Wang, L.; Yang, J. X.; Jiang, M. H. J. Phys. Chem. C, 2009, 113, 6809‒6814. 41. Ojha, B.; Das, G. Chem. Commun., 2010, 46, 2079-2081. 42. Wang, X.; Wang, X.; Wang, Y.; Guo, Z. Chem. Commun., 2011, 47, 8127-8129. 43. Wang, J.; Liu, H. B.; Park, S.; Kim, S. Y.; Joo, T.; Ha, C. S. RSC Adv., 2012, 2, 4242-4249. 44. Li, H.; Liu, F.; Han, J.; Cai, M.; Sun, S.; Fan, J.; Songa, F.; Peng, X. J. Mater. Chem. B, 2013, 1, 693-697. 45. Peng, L.; Wei, R.; Li, K.; Zhou, Z.; Song, P.; Tong, A. Analyst, 2013, 138, 2068-2072. 46. Jin, Q.; Feng, L.; Wang, D.-D.; Dai, Z.-R.; Wang, P.; Zou, L.W.; Liu, Z.-H.; Wang, J.-Y.; Yu, Y.; Ge, G.-B.; Cui, J.-N.; Yang, L. ACS Appl. Mater. Interfaces, 2015, 7, 28474−28481. 47. Jin, Q.; Feng, L.; Zhang, S.-J.; Wang, D.-D.; Wang, F.-J.; Zhang, Y.; Cui, J.-N.; Guo, W.-Z.; Ge, G.-B.; Yang, L. Anal. Chem., 2017, 89, 9884−9891. 48. Zhang, S. G. Nat. Biotechnol., 2003, 21, 1171-1178. 49. Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev., 2010, 110, 1857-1959. 50. Molla, M. R.; Prasad, P.; Thayumanavan, S. J. Am. Chem. Soc., 2015, 137, 7286-7289. 51. Azagarsamy, M. A.; Yesilyurt, V.; Thayumanavan, S. J. Am. Chem. Soc., 2010, 132, 4550-4551. 52. Wang, H.; Zhuang, J.; Raghupathi, K. R.; Thayumanavan, S. Chem. Commun., 2015, 51, 17265-17268.

ACS Paragon Plus Environment

Analytical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

53. Azagarsamy, M. A.; Sokkalingam, P.; Thayumanavan, S. J. Am. Chem. Soc., 2009, 131, 14184-14185. 54. Yesilyurt, V.; Ramireddy, R.; Azagarsamy, M. A.; Thayumanavan, S. Chem.−Eur. J., 2012, 18, 223-229. 55. Guo, J.; Zhuang, J.; Wang, F.; Raghupathi K. R.; Thayumanavan, S. J. Am. Chem. Soc., 2014, 136, 2220- 2223. 56. Torres, D. A.; Garzoni, M.; Subrahmanyam, A. V.; Pavan G. V.; Thayumanavan, S. J. Am. Chem. Soc., 2014, 136, 5385-5399. 57. Anees, P.; Sreejith, S.; Ajayaghosh, A. J. Am. Chem. Soc., 2014, 136, 13233-13239. 58. Miranda, O. R.; You, C. C.; Phillips, R.; Kim, I. B.; Ghosh, P. S.; Bunz, U. H. F.; Rotello, V. M. J. Am. Chem. Soc., 2007, 129, 9856- 9857. 59. Ahmad, N.; Younus, H. A.; Chughtai, A. H.; Verpoort, F. Chem. Soc. Rev., 2015, 44, 9-25. 60. Fan, X.; He, Q.; Sun, S.; Li, H.; Pei, Y.; Xu, Y. Chem. Commun., 2016, 52, 1178-1181. 61. Gao, T.; Yang, S.; Cao, X.; Dong, J.; Zhao, N.; Ge, P.; Zeng, W.; Cheng, Z. Anal. Chem., 2017, 89, 10085–10093 62. Chen, Q.; Liu, X.; Zeng, J.; Cheng, Z.; Liu, Z. Biomaterials, 2016, 98, 23-30. 63. Wang, Y.-R.; Feng, L.; Xu, L.; Li, Y.; Wang, D.-D.; Hou, J.; Zhou, K.; Jin, Q.; Ge, G.-B.; Cui, J.-N.; Yang, L. Chem. Commun., 2016, 52, 6064-6067. 64. Reja, S. I.; Khan, I. A.; Bhalla, V.; Kumar, M. Chem. Commun., 2016, 52, 1182-1185. 65. Wang, Y.-R.; Feng, L.; Xu, L.; Hou, J.; Jin, Q.; Zhou, N.; Lin, Y.; Cui, J.-N.; Ge, G.-B. Sens. Actuators B., 2017, 245, 923931. 66. Dey, G.; Gaur, P.; Giri, R.; Ghosh, S. Chem. Commun., 2016, 52, 1887-1890. 67. Green, A. M.; Abelt, C. J. J. Phys. Chem. B, 2015, 119, 39123919. 68. Rajasekhar, K.; Achar, C. J.; Govindaraju, T. Org. Biomol. Chem., 2017, 15, 1584-1588. 69. Smith, S. E.; Williams, J. M.; Ando, S.; Koide, K. Anal. Chem. 2014, 86, 2332-2336. 70. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., Kobayashi, K. Protein Eng. 1999, 12, 439-446. 71. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc., 1949, 71, 2703-2707. 72. IUPAC Compendium of Analytical Nomenclature, Definitive Rules, 1997, web edition, ed. Lnczédy, J.; Lengyel, T.; Ure, A. M. IUPAC, 2002. 73. Zhai, D.; Xu, W.; Zhang, L.; Chang, Y.-T. Chem. Soc. Rev., 2014, 43, 2402-2411. 74. Ren, C.; Zhang, J.; Chen, M.; Yang, Z. Chem. Soc. Rev., 2014, 43, 7257-7266. 75. Davis, I.W.; Leaver-Fay, A.; Chen, V. B.; Block, J. N.; Kapral, G. J.; Wang, X. Y.; Murray, L. W.; Arendall, W. B.; Snoeyink, J.; Richardson, J. S.; Richardson, D. C. Nucleic Acids Res., 2007, 2, 375–383. 76. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, w. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem., 1998, 19, 1639–1662. 77. Sanner. M. F. J. Mol. Graph. Model., 1999, 17, 57–61. 78. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem., 2004, 25, 1605–1612.

ACS Paragon Plus Environment

Page 8 of 9

Page 9 of 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

For TOC only

9 ACS Paragon Plus Environment