Supercritical Fluids Downloaded from pubs.acs.org by 193.56.75.113 on 01/20/19. For personal use only.
Author Index Kumar, Sanat K., 88 Kwak, Τ. Υ., 101 Lamb, D. Μ., 15 Low, J . Y., 281 Mansani, Riccardo, 242 Mansoori, G. Α., 101 Miin, Tiee-Chyau, 242 Moradinia, I r a j , 130 Panagiotopoulos, A. Z., 115 P a u l a i t i s , Michael E., 138 Ramayya, Sundaresh, 77 Reid, R. C , 88, 115 Ross, David S., 242 Roy, Jiben C , 77 Saad, H., 2 Shah, Y. T., 251 Skelton, R. J., 189 Smith, R. D., 29, 172 Squires, Thomas G., 58 Suter, U. W., 88 Taylor, L. T., 189 Teja, Amyn S., 130 Warzinski, Robert P., 229 Wright, R. W., 172 Yonker, C. R., 29, 172
Abraham, Martin A., 67 Aida, Tetsuo, 58 Antal, Michael Jerry, J r . , 77 Bae, Y. C , 2 Bagnell, Laurence J., 266 Barton, Paul, 202 Benmekki, Ε. Η., 101 Bergstresser, T. R., 138 B r i t t a i n , Andrew, 77 Coppella, Steven J., 202 DeAlmeida, Carlos, 77 Deshpande, G. V., 251 Frye, S. L., 29, 172 Green, Thomas Κ., 242 Gulari, Es., 2 Hacker, D. S., 213 Holder, G. D., 251 Hum, Georgina P., 242 Johnston, K. P., 42 Jonas, J., 15 Jordan, J. W., 189 Kalkwarf, D. R., 29 Kershaw, John R., 266 Kim, Sunwook, 42 King, Jerry W., 150 Klein, Michael T., 67
Subject Index
n-Alkanes—See Solid
Benzylphenylamine—Cont inued experimental conditions for reaction, 6 8 t major reaction products, 6 8 t model s o l v o l y s i s and pyrolysis through caged r a d i c a l pair, 74,75f reaction i n s u p e r c r i t i c a l methanol, 69,71f,72 reaction i n s u p e r c r i t i c a l water, 69,70f reaction pathways neat and with supercritical fluid solvents, 72,75f thermolysis, 69 Binary mixtures, theory, 91-93 Binary mixtures of toluene and meso-tetraphenylporphyrin, bubble and dew points, I45t,156f,147 Binary systems, phase-equilibrium behavior, 118-120
n-alkanes
Batch reactors, use i n s u p e r c r i t i c a l extraction of coal, 251-252 Benzylphenylamine apparent rate constants i n s u p e r c r i t i c a l solvents, 72,73t effect of methanol density on conversion and product s e l e c t i v i t y , 69,71f,72,74 effect of water density on conversion and product s e l e c t i v i t y , 69,70f,72,74 295
296
SUPERCRITICAL FLUIDS
Biomass feedstocks, conversion processes, 77-78 Biphenyl s o l u b i l i t y i n CCL vs. pressure, I 8 0 , l 8 l f solute retention vs. pressure, I80,l82f Butadiene recovery processes, advantages of s u p e r c r i t i c a l or n e a r - c r i t i c a l separation, 213 C Cju separation, l i q u i d ammonia as solvent, 214 Canonical p a r t i t i o n function, d e f i n i t i o n , 89 Carbon dioxide-hydrocarbon e q u i l i b r i a , modeling, 210 3-Caryphyllene, structure, 203,205f CO-water conversion advantages, 245 effectiveness of CO, 245 inverse isotope e f f e c t , 247 isotope effect, 245 toluene-soluble products vs. CO consumed, 245,246f CO-water conversion process, c h a r a c t e r i s t i c s of the medium, 243 CO-water conversion product analyses H/C ratios of products, 247t separations of toluene-soluble fractions, 245,247,248f Coal conversion, vs. Hildebrand s o l u b i l i t y parameter, 252 Coal liquefaction chemistry, 242 k i n e t i c studies, 242-249 scheme for conversion in hydrothermal systems, 247,248f,249 Coal model compounds, reactant decomposition kinetics, 67 Coals, chemical analyses, 252,253t Compressed s u p e r c r i t i c a l ethylene, s e l f - d i f f u s i o n , 18-21,23f Compressed s u p e r c r i t i c a l toluene-dg, s e l f - d i f f u s i o n , 21-22,23f Conversion, d e f i n i t i o n , 253 C r i t i c a l densities, vs. corresponding compositions, 5 C r i t i c a l end points, location and phase l i n e , 22,26f,27 Cubic equations of state, applications, 101-102
D Data reduction for retention volume measurements computation of retention volume data, 161-162
Data reduction—Continued midpoint of frontal breakthrough p r o f i l e vs. elution peak maxima, 1o1,l63f retention volume vs. adsorption c o e f f i c i e n t and surface area of sorbent bed, 162 Decay rate of order-parameter fluctuations c r i t i c a l lines of three binary systems, 5,6f equation, 5 experimental procedures, 5 vs. calculated c r i t i c a l and background contributions, 12,13f vs. temperatures and pressures, 5,7,9t vs. transport c o e f f i c i e n t s , 3-4 Destraction procedure comparison of modes, 234,235f,236 nonreflux mode, 233,235f reflux mode, 233,235f Diffusion c o e f f i c i e n t i n the s u p e r c r i t i c a l region, equation, 4 1,3-Dioxolane, hydration i n water, 82,84f Dynamic renormalization group theory, description, 3
Ε
Enhancement factor, calculation, 47 Enskog theory analysis of density dependence, 20 c o e f f i c i e n t s , 20,23f deviations, 20-21 Equation of state for 1-butene extraction, mixing rules, 216 Equation of state modeling, application to high-pressure phase equilibrium behavior, 88 Ethanol dehydration i n s u p e r c r i t i c a l water, conversion to ethylene, 82,83t Extraction of 1-butene analysis procedure, 219-220 e f f e c t of ammonia concentration, 225,226t e f f e c t of d i f f e r e n t solvents, 220,223t e f f e c t of temperature on s e l e c t i v i t y , 220,224f effectiveness of ammonia as enhancing agent, 225 equation of state, 216 experimental apparatus, 217,2l8f experimental procedure, 219 gas chromatographs, 220,221f influence of entraîner, 225 influence of second solvent, 227
297
INDEX
Extraction of 1-butene—Continued sampling procedure, 219 s e l e c t i v i t y v s . ammonia concentration, 220,224f ternary-phase diagram, 220,221f ternary phase equilibrium composition, 222-223t
F
Flow reactors, use i n s u p e r c r i t i c a l extraction of c o a l , 251 Fractional destraction analysis of overhead fractions and the residue, 236,238t comparison of GPC r e s u l t s , 238,239f comparison of r e p l i c a t e destractions, 236,237f effect of temperature on carry-over concentration, 236,237f elemental analysis of feed c o a l , 233,234t experimental procedures, 230,232 f r a c t i o n a l destraction u n i t , 230 f r a c t i o n a l destraction vessel, 230,231f performance of f r a c t i o n a l destraction u n i t , 232 two-step destraction procedures, 233 vs. conventional d i s t i l l a t i o n , 230 Fundamentals of s u p e r c r i t i c a l f l u i d adsorption adsorption of a high-pressure gas, 152 breakthrough volumes, 156 effect of pore structure on pressure, 154,155f, 156,157f effect of temperature on pressure, 154,155f plot of reduced-state variables, 156,158f pressure of adsorption maxima, 154 t y p i c a l adsorption isotherm for a s u p e r c r i t i c a l gas, 152,153f
G
G a s - l i q u i d equilibrium, measurement of dew and bubble points, 140 Gel permeation chromatography, determination of molecular weight, 236,238t Geranial, structure, 203,205f Gram-Schmidt reconstructions of hexane, 193,194f stack plot of C-H stretch region, 195,196f
H
Hard sphere diameters, c a l c u l a t i o n of theoretical Enskog c o e f f i c i e n t s , 20 Heterolytic reactions v s . homolytic reactions, 84 High-pressure gas chromatographic analysis of retention volume adsorbent/adsorbate classes, 160,161t apparatus, 156,159Γ,160 column design and preparation, 160 experimental assessment of the column void volume, 160 pneumatic transport of the s o l u t e , 160 High-pressure phase equilibrium of aqueous solutions experimental procedures, 116 schematic of equipment, 116,117f Homolytic v s . h e t e r o l y t i c reactions, 84 Hydrotreating i n s u p e r c r i t i c a l media effect of nonaromatic solvent, 286t,293t effect of o i l concentration, 286,287f,288 effect of pressure, 289,292f effect of space v e l o c i t i e s , 289,290f effect of temperature, 289,291f experimental procedures, 282,284 feed properties, 284t hydrotreating system, 282,283f reaction parameter studies, 289-293 s u p e r c r i t i c a l v s . conventional, 285t treatment of Arabian topped crude o i l , 286t,288 treatment of l i g n i t e extract, 288t treatment of s u p e r c r i t i c a l extracted shale o i l , 285t,286
I
Interaction parameters between binary components, values, 127,128t I n t r i n s i c solvent strength, d e f i n i t i o n , 50 Isothermal compressibility of supercritical fluids, determination, 175-177
Κ
Kamlet and Taft s c a l e , application and d e s c r i p t i o n , 30
298
SUPERCRITICAL FLUIDS
Kinetic model for coal conversion description, 255 e f f e c t of amount of dissolved fraction, 258 effect of coal-to-solvent r a t i o , 263,264f e f f e c t of reaction time and density on toluene solubles, 255,256-257f,258 effect of temperature, 258,259-2o0f model simulation, 258,261-262f,264f Kinetic studies of coal l i q u e f a c t i o n CO-water conversions, 245,246f conversion products, 245,247,248f experimental procedures, 243-244 model, 244-245,246f
Mode-coupling theory description, 3 dynamic renormalization group theory, 3-4 Model of coal liquefaction effect of k i n e t i c s of reducing step, 249 effect of structure on conversion, 244 schematic, 244,245f y i e l d of toluene-soluble material, 244-245 Modeling of e q u i l i b r i a , COphydrocarbon systems, 270
Ν L
Lemon o i l advantages of s u p e r c r i t i c a l extraction, 202 c l a s s i f i c a t i o n s , 203 concentration, 203 extractive d i s t i l l a t i o n with a s u p e r c r i t i c a l solvent, 203-204 gas chromatogram i n l i q u i d phase sample, 206,207f proposed process for concentration, 204 Lemon oil-carbon dioxide equilibrium ease of separation, 206 experimental conditions, 204,206 r e l a t i v e v o l a t i l i t y , 206,208t s e l e c t i v i t i e s , 210,211f s o l u b i l i t y diagrams, 206,209f s o l u b i l i t y l e v e l , 206,210,212 Limonene, structure, 203,205f Liquid ammonia, use as solvent for C^ separation, 214 Local solvent compression, determination, 51-52 Lorentz-Lorenz r e f r a c t i o n equation, calculation of r e f r a c t i v e index, 37
Naphthalene s o l u b i l i t y , 47,49f s o l u b i l i t y vs. pressure, 178,179f,l80 solute retention vs. pressure, I80,l8lf Naphthalene-COp system c r i t i c a l end points, 22,24,26f,27 pressure-temperature diagram, 22,25f s o l u b i l i t y measurement, 24 Naphthalene s o l u b i l i t y i n s u p e r c r i t i c a l CO,,, NMR measurements, 22-27 2-Nitroanisole absorbance maxima, 3 2 , 3 3 t absorption spectra, 31 e f f e c t of pressure on absorption maximum, 38,39f peak position vs. reduced density, 32,35,36f pressure dependence of wavelength of the absorption maximum, 32,34f values vs. reduced density, 31 NMR measurements of naphthalene solubility experimental s o l u b i l i t i e s , 24,25f isotherms, 24 NMR spectroscopy analysis of s u p e r c r i t i c a l s o l u b i l i t y , 17-18 technique, 18
M
Mixed f l u i d solvent systems nature, 37 spectroscopic vs. chromatographic measurements, 38 Mixing rules Peng-Robinson equation of state, 101 Redlich-Kwong equation of state, 104 van der Waals, 101
0 Onsager reaction f i e l d theory description, 35,37 function vs. measured values, 35 Order-parameter fluctuations decay rate, 3-4
299
INDEX
Order-parameter f l u c t u a t i o n s — C o n t i n u e d description, 3 photon correlation spectroscopy, 3 time-averaged intensity measurements, 3
Ρ
Patel-Teja equation of state, data correlation for s o l i d n-alkanes i n s u p e r c r i t i c a l ethane, 132,134 Peng-Robinson equation of state, 102 mixing rules, 104-105 modification, 127 Pentane selection as s u p e r c r i t i c a l f l u i d solvent, 139 vapor pressures, I40t,l4l Phase behavior of s o l i d s i n supercritical fluids, applications, 138-139 Phase-equilibrium behavior for binary systems, carbon dioxide ethanol, 1l8,120f Phase-equilibrium behavior for ternary systems compositions f o r water-acetone-COp, 118,121t concentration of acetone i n the supercritical fluid phase, 122,126f d i s t r i b u t i o n c o e f f i c i e n t for water-acetone-C0 , 122,124f salting-out e f f e c t , T18,122 s e l e c t i v i t y factor for acetone over water, 122,125f Phenol blue t r a n s i t i o n energy i n COp, 44,45f t r a n s i t i o n energy vs. COp mixtures, 52,53f,54 t r a n s i t i o n energy vs. density, 51,52f Photoisomerizations, experimental procedures, 60 Porphyrins, constituent i n crude o i l s , 139 Preparative-scale chemical class separation, procedure, 190-191 Pressure-filter liquids, d e f i n i t i o n , 190 Properties of s u p e r c r i t i c a l f l u i d s , e f f e c t of pressure and temperature, 59 Pure-component parameters determination, 90t estimation technique, 127,128t values, 90t Pure components, theory, 89
R
Rapid i n j e c t i o n autoclave, use i n s u p e r c r i t i c a l extraction of coal, 252 Rate constants correlation with t r a n s i t i o n energy, 48 predicted value for Diels-Alder reaction, 48,49f Redlich-Kwong equation of state, 102 Refractive index, calculation, 37 Regeneration of adsorbents, by s u p e r c r i t i c a l f l u i d s , 151,153f Relative v o l a t i l i t y , d e f i n i t i o n , 206 Residue class separation, results, 191,192t,193 Residue-containing f o s s i l fuels, importance of fractionation, 229-230 Retention volume measurements data reduction, 161-162,l63f high-pressure gas chromatographic apparatus, 156,159f,160,I6lt solute capacity factors vs. column pressure, I67,l68f,l69 solute capacity factors vs. gas compression, 164-167,l68f volume vs. C0 pressure, 162-166 2
S
2
Self-diffusion coefficients i n deuterated toluene, 21-22 i n s u p e r c r i t i c a l ethylene, 16 i n s u p e r c r i t i c a l toluene-dg, 16 predicted vs. measured values, 22,23f S e l f - d i f f u s i o n i n compressed s u p e r c r i t i c a l ethylene calculation of hard sphere diameter, 20 choice of ethylene, 18 c o e f f i c i e n t s vs. density and temperature, l8,19f,20 Enskog c o e f f i c i e n t s , 20,23f Enskog theory, 20-21 measurement conditions, 18 S e l f - d i f f u s i o n i n compressed s u p e r c r i t i c a l toluene-dg c o e f f i c i e n t s , 21-22,23f polar gas model, 22 Separation of solution components from the l i q u i d phase equations of state, 214 influence of entrainers, 216 solvents, 214
SUPERCRITICAL FLUIDS
300
S o l i d n-alkanes heat of fusion v s . carbon number, 130,131Γ reasons for studying, 130 s o l u b i l i t i e s , 132-136 S o l i d - l i q u i d - g a s equilibrium temperatures and pressures c r i t i c a l endpoint, 141 measurement, 139 pressure-temperature projection of vapor pressure curve, 141 values for binary mixtures, 141t S o l i d s o l u b i l i t i e s in s u p e r c r i t i c a l pentane, measurements, 140 S o l u b i l i t i e s for naphthalene, measurement, 17 S o l u b i l i t y of s o l i d n-alkanes in s u p e r c r i t i c a l ethane data c o r r e l a t i o n , 132,134 enhancement factor vs. carbon number, 134,136f experimental and calculated s o l u b i l i t i e s , 134,135f experimental results at 308.15 K, 132t single-pass s u p e r c r i t i c a l flow apparatus, 132,133f s o l i d properties required i n s o l u b i l i t y c a l c u l a t i o n s , 134t Solute retention in s u p e r c r i t i c a l f l u i d chromatography effect of pressure, 172-173 effect of temperature, 173 experimental apparatus and technique, 178 v s . density, 180 v s . pressure for biphenyl, I80,l82f vs. pressure for naphthalene, I 8 0 , l 8 l f v s . s o l u b i l i t y and pressure, 175 vs. temperature, 178 Solvating power, s c a l e , 30 Solvatochromic data, experimental procedures, 43-44 Solvatochromic probes absorbance maxima, 31-32 experimental procedures, 31-32 Solvent effect on rate constants c o r r e l a t i o n with t r a n s i t i o n energy, 47,48 prediction of activation volume, 48t Solvent strength, description, 43 Solvent strength in the c r i t i c a l region, 44 Source and purity of n-alkanes, 132 S p e c i f i c solvent strength, d e f i n i t i o n , 50 Spectroscopic solvatochromatic parameter, d e s c r i p t i o n , 43 Statistical-mechanics-based lattice-model equation of state a p p l i c a b i l i t y to mixture of different size molecules, 94,96f
Statistical-mechanics-based equation of state—Continued behavior, 90-91 e f f e c t of s o l u b i l i t y of chains, 99 model behavior of solid-supercritical fluid b i n a r i e s , 94,97f,98 predicted v s . experimental data, 94,95f,96 prediction for equilibrium f l u i d phase composition, 98f s e n s i t i v i t y , 94 trans-Stilbene effect of temperature on C0 s o l u b i l i t y , 60,63f i n cyclohexane, 62t trans-Stilbene photoisomerization concentration e f f e c t s , 62,63f i n C 0 , 62,65t pressure e f f e c t s , 62,64f temperature e f f e c t s , 62,64f S u p e r c r i t i c a l C0 extraction of lemon o i l , 203 S u p e r c r i t i c a l coal liquefaction procedure conversion products, 253,255 experimental apparatus, 253,254f Supercritical distillation—See p
2
2
Fractional destraction S u p e r c r i t i c a l extraction description, 115 factors influencing rate, 2 recovery of polar organic compounds from aqueous s o l u t i o n s , 115-116 S u p e r c r i t i c a l extraction of coal use of a rapid injection autoclave, 252 use of batch reactors, 251-252 use of flow reactors, 251 S u p e r c r i t i c a l flow reactor schematic, 79,80f temperature, 79,8lf S u p e r c r i t i c a l f l u i d adsorption, fundamentals, 152-156 S u p e r c r i t i c a l f l u i d chromatography (SFC) advantages, 189-190 a n a l y t i c a l applications, 151 application as a mobile phase, 189 assumption of i n f i n i t e l y d i l u t e s o l u t i o n s , 173 hexane separation, 193,194f,195,196f measurement of physicochemical data, 151 relationship among solute retention, s o l u b i l i t y , and pressure, 175 relationship between solute retention and temperature, 175-177 retention factor, 173 separation of p o l y c y c l i c aromatic hydrocarbons, 195,197f s o l u b i l i t y of a solute, 174
301
INDEX
SFC—Continued solute Chemical p o t e n t i a l , 173 toluene separation, 195,198f,199 S u p e r c r i t i c a l f l u i d extraction, advantages over conventional extraction techniques, 15 S u p e r c r i t i c a l f l u i d extraction modeling, applications, 105-110 S u p e r c r i t i c a l f l u i d extraction of coal analyses of coals, 267,268t potential use, 266-267 solvents, 266 water v s . aqueous solvents, 277,278f,279t water v s . toluene, 277,278f Supercritical fluid extraction-chromatography a n a l y t i c a l procedures, 191 d isadvantages, 193 Gram-Schmidt reconstruction, 193,194f S u p e r c r i t i c a l f l u i d reactant addition system, diagram, 60,6lf S u p e r c r i t i c a l f l u i d reactor, schematic, 60,6lf S u p e r c r i t i c a l f l u i d solvents advantages, 42-43 properties, 44,46t Supercritical fluids applications, 58-59,150-151 constraints for organic reaction investigations, 59 c r i t i c a l properties, 32t desorption of adsorbates, 151,153f e f f e c t of additional components on solvating properties, 37-38,39f peak position v s . reduced density, 32,35,36f pressure dependence of wavelength of the absorption maximum, 32,34f solvent properties, 58 solvent-solute interactions, 29-39 use as solvents, 29 values v s . reduced density, 35,36f S u p e r c r i t i c a l gas extractions method A procedure, 267 method Β procedure, 267,269 S u p e r c r i t i c a l phase, d e f i n i t i o n , 2 S u p e r c r i t i c a l s o l u b i l i t y measurements schematic of a l l , 17,19f use of NMR spectroscopy as an a n a l y t i c a l technique, 17-18 S u p e r c r i t i c a l solvents, effects on the rates of homogeneous chemical reactions, 42-54 S u p e r c r i t i c a l solvents as a reaction medium, thermophysical properties, 78 S u p e r c r i t i c a l water ethanol dehydration, 82,83t
S u p e r c r i t i c a l water—Continued role of carbocation chemistry, 84-85 thermophysical properties, 78-79 S u p e r c r i t i c a l water extractions of coal analysis of o i l f r a c t i o n s , 271,274t,276f a n a l y t i c a l data f o r residues, 271,274t ^C-NMR spectra of f r a c t i o n s , 271,273f conversion v s . v o l a t i l e matter content, 269,270f effect of pressure, 274,275t,276f e f f e c t of temperature, 275t,277 extract analysis, 271,272t extract composition, 269,270f,271 1 λ
Τ
Ternary systems, phase-equilibrium behavior, 118-126 meso-Tetraphenylporphyrin melting behavior, 147 s o l i d s o l u b i l i t i e s i n various solvents, I47t,l48 Theory of c r i t i c a l fluctuations effect of impurities, 10 parameter values, 10,11t range of v a l i d i t y , 12 Thermodynamic model for vapor-liquid equilibrium calculations pressure-composition diagrams, 111,112f-113f theory, 111 Thermodynamic model of s u p e r c r i t i c a l f l u i d extraction effect of mixing rules on s o l u b i l i t y of s o l i d s , 105,106-110f theory, 105 Toluene effect on c o a l , 255 s e l e c t i o n as s u p e r c r i t i c a l f l u i d solvent, 139 vapor pressures, I40t,l4l Transition energy influencing factors, 50-51 of nonpolar solvents, 46t of phenol blue i n C0 v s . density, 44,45f of phenol blue i n C0 v s . pressure, 44,45f of phenol blue v s . CO^ mixture, 52,53f,54 of phenol blue v s . density, 51,52f vs. reduced density, 46 Transport properties background, 4 mass conductivity, 4 2
2
302
SUPERCRITICAL FLUIDS V
π* values for s u p e r c r i t i c a l CO^, 35 vs. reduced density, 35,36f van der Waals equation of state general, 101 mixing rules, 101-102 van der Waals mixing rules guidelines, 103 theory,
102-103
Vapor-pressure osmometry, determination of molecular weight, 236,238t Vapor pressures, for pentane and toluene, I40t,l4l Vapor-liquid equilibrium apparatus diagram, 204,205f estimated r e l a t i v e errors, 204 Vapor-liquid equilibrium calculations, applications, 111,112—113f Volume expansivity of a s u p e r c r i t i c a l fluid, vs. temperature, I80,l83,l84f
Production by Paula M. Bérard Indexing by Deborah H. Steiner Jacket design by Pamela Lewis Elements typeset by Hot Type Ltd., Washington, DC Punted and bound by Maple Press Co., York, PA