5 Ac Conductivity of Some Organolithium Complexes in Aromatic Solvents E. O. FORSTER and A. W. LANGER, JR.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
Esso Research and Engineering Co., Linden, N.J. 07036 The nature of the electrical conductance of N-chelated aryl and aralkyl lithium compounds chelated with polyamine -type complexing agents has been studied in aromatic hydro carbons ranging in concentration from 10 to 1 mole/liter between10 and 10 Hz and between —30° and 80°C. The chelating agents included Ν,Ν,Ν',Ν'-tetramethylethylenediamine and N,N,N'N''N"',N'''-hexamethyltriethylenetetraamine; the results obtained with these systems were com pared with those obtained with tetra-n-amylammonium thiocyanate. Ion pairs representing dipoles contribute sig nificantly to the conduction process. The drastic change in conductivity observed at concentrations greater than 10 mole/liter has been attributed to the formation of ion aggre gates. The dielectric constant of one of these complexes has been determined from dilute solutions to be about 16. The behavior of these complexes is similar to that of (n-amyl) NCNS. -5
2
7
-2
4
' T p h e c h e m i s t r y of o r g a n o m e t a l l i c c o m p o u n d s has r e c e i v e d A
a t t e n t i o n recently.
considerable
I n p a r t i c u l a r , a d d u c t s of a l k a l i metals w i t h a l i
p h a t i c a n d a r o m a t i c h y d r o c a r b o n s h a v e b e e n s t u d i e d i n d e t a i l because of t h e i r general usefulness i n o r g a n i c synthesis. U n t i l v e r y r e c e n t l y the role p l a y e d b y the solvent a n d the m e t a l o n the f o r m a t i o n a n d d i s s o c i a t i o n e q u i l i b r i a of these adducts w a s not c l e a r l y u n d e r s t o o d . studies ( I , 2)
Various
i n d i c a t e d t h a t the p o l a r i t y of the C — L i b o n d c o u l d
i n c r e a s e d b y a d d i t i o n of electron-donor c o m p o u n d s
be
as e v i d e n c e d b y a n
increase i n e l e c t r i c a l c o n d u c t i v i t y . T h e significance of the i n c r e a s e d i o n i c c h a r a c t e r of t h e c a r b o n - m e t a l b o n d i n solvents w i t h d i e l e c t r i c constants of less t h a n f o u r w a s not u n d e r s t o o d w e l l . K r a u s ( 3 ) a n d F u o s s (4)
p o s t u l a t e d e a r l i e r that d i s s o l u t i o n
131
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
132
POLYAMINE-CHELATED
of essentially i o n i c c o m p o u n d s
ALKALI
METAL
COMPOUNDS
s u c h as q u a t e r n a r y a m m o n i u m salts i n
solvents of l o w d i e l e c t r i c constant s h o u l d y i e l d , i n a d d i t i o n to some free ions, i o n p a i r s a n d i o n i c aggregates. subject
are p r e s e n t e d b y
Szwarc
(5)
Comprehensive
r e v i e w s of
this
and Blandamer and Fox
(6).
A c c o r d i n g to these authors three types of i o n pairs c a n b e
encountered
i n solvents of l o w d i e l e c t r i c constant: contact p a i r s t h a t are b a s i c a l l y d i p o l a r molecules, solvent s h a r e d i o n p a i r s i n w h i c h a c a t i o n is l i n k e d e l e c t r o s t a t i c a l l y t h r o u g h a solvent m o l e c u l e to a n a n i o n , a n d
solvent-
separated i o n pairs i n w h i c h b o t h ions are still l i n k e d electrostatically b u t separated b y m o r e t h a n one
solvent m o l e c u l e
(6).
T h e relative
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
c o n t r i b u t i o n of these structures to p h y s i c a l properties of t h e s o l u t i o n c a n b e d e d u c e d f r o m c o n d u c t i v i t y o r k i n e t i c d a t a . O f these t w o
techniques
c o n d u c t i v i t y studies h a v e c o n t r i b u t e d c o n s i d e r a b l y to the u n d e r s t a n d i n g of i o n - p a i r e q u i l i b r i a ( 7 ) . other
fields
T h i s does not m e a n t h a t d e v e l o p m e n t s
s u c h as analysis of k i n e t i c d a t a , e l e c t r o n s p i n
in
resonance
( E S R ) spectra, a n d u l t r a s o n i c r e l a x a t i o n d a t a h a v e h a d no i m p a c t o n this
field.
T h e s e three fields h a v e b e e n v e r y h e l p f u l i n e l u c i d a t i n g the
structure of aqueous electrolytes w h e r e c o n d u c t i v i t y measurements
are
h a r d e r to p e r f o r m . Interest i n N - c h e l a t e d o r g a n o l i t h i u m c o m p o u n d s
stems f r o m t h e i r
r e m a r k a b l e r e a c t i v i t y w h i c h w a s first n o t e d b y L a n g e r (8).
F r o m studies
of v a r i o u s reactions a n d f r o m N M R c h e m i c a l shifts L a n g e r
concluded
that the r e a c t i v i t y of these complexes i n d i l u t e s o l u t i o n is r e l a t e d to the i n c r e a s e d i o n i c character of the L i — C b o n d
(9).
T h e question
arose
w h e t h e r these complexes c o u l d b e c o n s i d e r e d as s o m e sort of s t a b i l i z e d i o n p a i r s . T h u s i t seemed d e s i r a b l e to s t u d y the c o n d u c t i v i t i e s of these systems over a w i d e c o n c e n t r a t i o n range a n d to a n a l y z e the r e s u l t i n g d a t a i n the l i g h t of e x i s t i n g m o d e l s a n d theories.
T h i s p a p e r presents
results of a d e t a i l e d s t u d y of the e l e c t r i c a l c o n d u c t a n c e aralkyllithium compounds
chelated w i t h various polyamine-type
p l e x i n g agents i n a r o m a t i c h y d r o c a r b o n s
the
of a r y l - a n d com-
over a w i d e f r e q u e n c y
and
c o n c e n t r a t i o n range. T h e results are i n t e r p r e t e d i n the l i g h t of c l a s s i c a l theories. Experimental T h e e x p e r i m e n t a l details a n d the c h e m i c a l s u s e d h a v e b e e n d e s c r i b e d elsewhere (10, 11, 12). T h e i n s t r u m e n t a t i o n p e r m i t t e d measurements f r o m 10 to 1 0 H z f r o m - 3 0 ° to 8 0 ° C at concentrations f r o m 10~ to 1.0 m o l e / l i t e r . F o r c o m p a r i s o n , studies w e r e also c a r r i e d out o n t e t r a - n a m y l a m m o n i u m t h i o c y a n a t e i n a r o m a t i c solvents, a system that has b e e n i n v e s t i g a t e d i n c o m p l e t e d e t a i l b y K e n a u s i s et al. (13, 14). 7
5
Results T h e studies p r e s e n t e d here i n v o l v e d several v a r i a b l e s .
First, the
effect of c h e l a t i n g agent w a s s t u d i e d as a f u n c t i o n of b o t h its s t r u c t u r e
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
5.
FORSTER AND LANGER
133
Conductivity of Organolithium Complexes
a n d c o n c e n t r a t i o n w i t h respect to the a r a l k y l l i t h i u m c o m p o u n d .
The
role of solvent w a s t h e n i n v e s t i g a t e d for a g i v e n c h e l a t e d system.
With
a k n o w l e d g e of the influence of these v a r i a b l e s o n the e l e c t r i c a l c o n d u c t i v i t y , one specific system w a s selected a n d its f r e q u e n c y a n d t e m p e r a t u r e d e p e n d e n c e w e r e s t u d i e d as a f u n c t i o n of c o n c e n t r a t i o n .
These
last results w e r e t h e n c o m p a r e d w i t h those o b t a i n e d w i t h the q u a t e r n a r y a m m o n i u m salt system. Effect of Chelating Agent.
B e f o r e the role of the c h e l a t i n g agent
c a n b e p r o p e r l y d e t e r m i n e d , i t is a d v i s a b l e to evaluate the e l e c t r i c a l properties of t h e respective components
alone, u s i n g the a p p r o p r i a t e
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
solvent ( T a b l e I ) . Table I .
Conductivities of Some Organolithium Compounds (25±:0.1) C,
lKHz
o
Compound — C H Li TMED(CH )2N(CH ) N(CH )2 C4H9L1-TMED C H Li-TMED (C H ) CHLi-TMED (C H ) CHLi-TMED (C H ) CLi-TMED 4
9
3
6
2
5
6
5
2
6
5
2
6
5
3
Cone. mole/liter
Solvent
2
3
n-C H n-C H — n-C H C H C H C H CH C H CH 7
1 6
7
1 6
7
6
1 6
6
6
6
6
5
6
5
3 3
— 0.025 0.02 0.05 0.025 0.025 0.025
Conductivity, (ohm cm)" 1
1.1 1 6 3.8 3.5 3 4
< Χ Χ X Χ Χ X X
1010" 10" 10~ 10~ 10" 10~ 10~ 1 5
11
11
(δ)
because the c o m p l e x r e a c t e d w i t h the solvent w i t h i n
h o u r to p r o d u c e p h e n y l l i t h i u m complexes a r a l k y l complexes soluble.
with T M E D .
u
11
It was not possible to p r e p a r e b u t y l l i t h i u m - T M E D complexes benzene
n
u n
in one
O f the three
tested the d i p h e n y l m e t h y l l i t h i u m p r o v e d
the
most
T h e r e f o r e the d i p h e n y l m e t h y l l i t h i u m c o m p l e x w a s chosen
to
s t u d y f u r t h e r the effect of c h e l a t i n g agent t y p e . T h e results are s h o w n i n Table II. T h e H M T T c o m p l e x at a 1:1 m o l e r a t i o p r o d u c e s n e a r l y as c o n d u c t i v e a s o l u t i o n as T M E D at a 1:2 m o l e r a t i o . T h i s suggests that f o u r n i t r o g e n atoms are p r o b a b l y r e q u i r e d to p r o d u c e the m a x i m u m c o o r d i n a t i o n a r o u n d the l i t h i u m a t o m to o p t i m i z e the i o n i c character of the L i — C b o n d (9,10). H o w e v e r , the efficiency of the c o o r d i n a t i o n is p r o b a b l y h i g h e r w i t h T M E D because its t w o pairs of n i t r o g e n atoms are not as s t e r i c a l l y r e s t r i c t e d i n the a l i g n m e n t as are the f o u r i n H M T T .
The
T M E D a n d H M T T complexes w e r e selected for f u r t h e r studies. Solvent Effects. T h e o v e r a l l effect of solvent o n the c o n d u c t i v i t y of ( C H ) C H L i - ( T M E D ) 2 is s h o w n i n F i g u r e 1. A s the n u m b e r of m e t h y l 6
5
2
groups a r o u n d the benzene r i n g increases, c o n d u c t i v i t y decreases.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
The
134
POLYAMINE-CHELATED
Table I I .
ALKALI M E T A L
COMPOUNDS
Effect of Chelating Agents on Conductivity of ( Q H ) C H L i - - C h e l in Toluene 5
2
(0.2M, 2 5 ° C , l K H z )
Chelating TMED* TMED PMDT HMTT
l
1 5 2.6 2
1/1 1/2 1/1 1/1
6
C
Χ ΙΟ" Χ ΙΟ" X 10Χ ΙΟ"
5
5 8 d
5
N,N N ,N'-tetra,methy\ ethylene diamine AT,iV,iV ,iV ',N '-pentamethyl diethylene triamine « N,N,N',N",N" ,N'"-hexamet\iy\ triethylene tetramine Complex does not go completely into solution.
α
b
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
Conductivity, (ohm cm)~
Ratio of RLi to Chelating Agent
Agent
f
f
v
/
/
,
d
( Ι Κ Η ζ ) (0.2M) "Τ
J ο >
Ι. 2. 3. 4. 5.
BENZENE TOLUENE m-XYLENE o-XYLENE MESITYLENE
30
20
40
50
60
70
80
90
T E M P E R A T U R E , °C
Figure 1. Effect of temperature on conductivity of (C H ) CHLi/2TMED in various solvents (1 KHz) (0.2M) 6
5
2
significance of the g e n e r a l shape of the t e m p e r a t u r e d e p e n d e n c e c u r v e of these c o n d u c t i v i t i e s is discussed elsewhere i n this p a p e r .
Toluene was
selected as solvent f o r s u b s e q u e n t studies because u n l i k e b e n z e n e i t has a c o n s i d e r a b l y l o w e r f r e e z i n g p o i n t a n d its s o l u t i o n c a n b e s t u d i e d over a b r o a d e r t e m p e r a t u r e range. I n those studies that use solvents other t h a n the h y d r o c a r b o n c o r r e s p o n d i n g to the c a r b a n i o n , a n y m e t a l a t i o n of the solvent w o u l d change the n a t u r e of the c o n d u c t i v e species a n d c o m p l i c a t e d a t a i n t e r p r e t a t i o n . F o r e x a m p l e , the pK 's of toluene ( 3 5 ) a
a n d d i p h e n y l m e t h a n e (ca.
33)
are close e n o u g h so that t o l u e n e m e t a l a t i o n b y d i p h e n y l m e t h y l l i t h i u m c o u l d b e significant at v e r y l o w concentrations of the l i t h i u m
compound
a c c o r d i n g to the e q u i l i b r i u m :
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
5.
(C H ) CHLi.Chel + C H C H 6
5
No had
2
135
Conductivity of Organolithium Complexes
FORSTER AND LANGER
6
5
3
τ± ( C H ) C H 6
5
2
+
2
C H CH Li.Chel 6
6
2
a t t e m p t w a s m a d e to correct for this effect because e a r l y studies
i n d i c a t e d that s i m i l a r systems w e r e
extremely slow i n reaching
e q u i l i b r i u m a n d i n most cases the e q u i l i b r i u m c o n t r i b u t i o n w o u l d not change
the
conclusions.
These
assumptions w i l l
be
examined
more
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
critically i n future work.
Figure 2. AC conductivity of (C H ) CHLi (TMED) in C H CH at 25°C 6
2
6
5
5
2
·
S
Frequency and Temperature Effects. T h e f r e q u e n c y d e p e n d e n c e (C H ) CHLi-(TMED)2 6
5
2
of
as a f u n c t i o n of c o n c e n t r a t i o n is s h o w n i n
F i g u r e 2. At the highest c o n c e n t r a t i o n s t u d i e d ( 1 M ) , t h e c o n d u c t i v i t y is essentially constant over six decades, c h a n g i n g f r o m 3.9 Χ cm)"
1
at 10 H z to 4.6 Χ
dependence
10"
4
(ohm c m )
- 1
at 1 0
8
10"
4
(ohm
H z . T h e temperature
of the c o n d u c t i v i t y of these solutions is a l l u d e d to i n the
p r e c e d i n g section, a n d i t is s h o w n i n more d e t a i l i n F i g u r e 3 for both the T M E D
and H M T T
complex.
T h e u n u s u a l shape of the l o g
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
con-
136
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
d u c t i v i t y vs. t h e r e c i p r o c a l t e m p e r a t u r e c u r v e d i s a p p e a r s a t c o n c e n t r a tions greater t h a n 0.2M a n d gives w a y to t h e f a m i l i a r l i n e a r d e p e n d e n c e . T h e H M T T c o m p l e x appears to b e m o r e stable e v e n at t h e l o w e r c o n centrations. T h e a c t i v a t i o n energy f o r c o n d u c t i v i t y c a n b e c a l c u l a t e d via the A r r h e n i u s e q u a t i o n to b e a b o u t 1600 c a l / m o l e f o r t h e H M T T w h i l e that f o r t h e T M E D c o m p l e x 1300 c a l / m o l e .
complex
( a t concentrations a b o v e 0 . 4 M ) is
T h e p e c u l i a r shape of t h e c o n d u c t i v i t y vs. t e m p e r a t u r e
c u r v e s h o w n f o r 0 . 2 M solutions of t h e ( C H 5 ) G H L i - ( T M E D ) 2 6
suggests that t h e c o n d u c t i v e
2
complex
species becomes u n s t a b l e at h i g h e r t e m -
peratures w h i c h i n t u r n i m p l i e s that t h e forces h o l d i n g t h e m together are Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
a b o u t as l a r g e as kT. T h e i m p l i c a t i o n s o f these d e d u c t i o n s a r e d e a l t w i t h i n a later section. A c o n v e n i e n t w a y to s u m m a r i z e t h e c o n c e n t r a t i o n d e p e n d e n c e of this c o m p l e x is s h o w n i n F i g u r e 4, w h e r e t h e l o g a r i t h m of t h e e q u i v a l e n t conductance
of the complex
as d e t e r m i n e d at 1 K H z is p l o t t e d as a
f u n c t i o n of t h e l o g a r i t h m of c o n c e n t r a t i o n .
F o r comparison a similar
10'
• 1 M 0 CHLi«(TMED) ' 1 MHz X
2
2
• 1 M 0 CHLi#(TMED) ' 1 KHz N
2
2
\ l M 0 CHLi«HMTT, 1 MHz 2
• 0.5M
0 CHU«HMMTH
N
2
I
1 KHz
0.4M 0 C H L i « ( T M E D ) , ! KHz 1
0 . 2 M 0^CH|_i»HMTT/ \ 1
2
2
KHz
2.8
3.0
3.2
3.4
3.6
3.8
Figure 3. Temperature dependence of conductivity of (C H ) C H Li complexes in toluene 6
5
2
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
5.
FORSTER AND LANGER
Conductivity of Organolithium Complexes
137
LOG CONCENTRATION
Figure 4. Equivalent conductance of (C H ) CHLi(TMED) in toluene (25° C, 1 KHz) 6
5
2
2
p l o t is s h o w n i n F i g u r e 5 for the w e l l - s t u d i e d q u a t e r n a r y a m m o n i u m salt, t e t r a a m y l a m m o n i u m isocyanate i n p-xylene. Discussion T h e d a t a r e p o r t e d a b o v e i n d i c a t e that the N - c h e l a t e d a r a l k y l l i t h i u m complexes are q u i t e c o n d u c t i v e species, p a r t i c u l a r l y i n c o n c e n t r a t e d s o l u tions. T h i s is e v e n m o r e s u r p r i s i n g since the a r o m a t i c solvent has a l o w d i e l e c t r i c constant a n d t h e absence of a n i n h e r e n t d i p o l e i n the solvent m o l e c u l e seems to h a v e little effect o n the o v e r a l l results. ( T h e d i e l e c t r i c constant of T M E D of 2.8 is c e r t a i n l y not g o i n g to c o n t r i b u t e e i t h e r . ) O b v i o u s l y , the solvent's d i e l e c t r i c constant is n o t the w h o l e story. F r o m the results r e p o r t e d i n the l i t e r a t u r e u s i n g l o w d i e l e c t r i c c o n stant solvents s u c h as d i o x a n e ethane ( 1 6 ) , or b e n z e n e
(15),
(13, 14),
tetrahydrofuran and
dimethoxy-
t h e c h e m i c a l m a k e u p of t h e solvent,
its m o l e c u l a r s t r u c t u r e , or b o t h , m i g h t w e l l influence the final results. W i t h the first three solvents t h e presence of o x y g e n atoms seems to b e
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
-4
I
I
I
I
I
-6
-5
-4
-3
-2
LOG
Figure 5.
1 -1
CONCENTRATION ( E Q U I V A L E N T S / L I T E R )
Equivalent conductance of (n-amyl) N CNS- in p-xylene (25°C, 1 KHz) A
+
i m p o r t a n t since t h e y c a n a c t as e l e c t r o n donors o r charge-transfer agents, thus s t a b i l i z i n g t h e charge s e p a r a t i o n w i t h i n t h e c o m p l e x .
I t is h a r d e r
to c o m p r e h e n d t h e s i t u a t i o n w i t h a r o m a t i c solvents s u c h as b e n z e n e or toluene.
A p p a r e n t l y t h e m o l e c u l a r structure is i m p o r t a n t . T h e s e m o l e -
cules h a v e a h i g h degree of s y m m e t r y , a n d s m a l l deformations l e a d to the f o r m a t i o n o f i n d u c e d dipoles (17).
C o n v e r s e l y , i n t h e presence of a
s t r o n g l y p o l a r solute m o l e c u l e t h e nearest-neighbor solvent
molecules
are subject to i n d u c e d p o l a r i z a t i o n . T h u s , m o l e c u l e s s u c h as b e n z e n e and
toluene, w h i c h a r e r e a d i l y p o l a r i z a b l e , w i l l b e v e r y effective i n
" s o l v a t i n g " these solute d i p l o l e s . T h i s process w i l l increase t h e d i e l e c t r i c constant o f t h e s o l u t i o n . S u p e r i m p o s e d o n this effect is t h e t e n d e n c y of t h e solute t o aggregate. T h i s aspect h a s b e e n r e c o g n i z e d b y m a n y w o r k e r s D i e l e c t r i c measurements
(13, 14, 15, 17).
give information concerning the contribution
o f b o t h processes, as s h o w n i n T a b l e I I I , u s i n g t h e O n s a g e r r e l a t i o n s h i p (12). T h e increase i n t h e solute's a p p a r e n t d i e l e c t r i c constant f o l l o w e d b y a subsequent decrease at t h e highest c o n c e n t r a t i o n is s i m i l a r to t h e observ a t i o n r e p o r t e d b y K r a u s (17) o n t h e a b r u p t decrease of t h e association
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
5.
FORSTER AND LANGER
Table I I I .
Conductivity of Organolithium Complexes
139
Dielectric Constant of ( C H ) 2 C H L i - ( T M E D ) 2 Solutions in Toluene 6
5
(10 K H z , 2 5 ° C )
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
Concentration, mole/liter 0 0.001 0.005 0.01 0.05 0.1 1.0
Dielectric
constant
Solution
Solute
2.37 2.40 2.41 2.42 2.70 3.02 6.10
16 16 17 19 21 16.5
n u m b e r of t e t r a a m y l a m m o n i u m t h i o c y a n a t e . T h i s d r o p m i g h t b e i n t e r p r e t e d as suggesting that the r a t i o of solute to solvent of r o u g h l y 1 to 3 at t h e 1 M l e v e l favors c o m p l e t e s o l v a t i o n of the solute, thus l e a v i n g f e w if a n y solute molecules associated. T h e q u e s t i o n c a n t h e n b e r a i s e d as to the n a t u r e of the c o n d u c t i v e species. T h e s o l u t i o n w i t h a n a p p a r e n t d i e l e c t r i c constant of 6.1 is n o l o n g e r u n f a v o r a b l e t o w a r d d i s s o c i a t i o n of solute molecules, a n d it is l o g i c a l to v i s u a l i z e the existence of s o l v a t e d ions i n e q u i l i b r i u m w i t h solvent-separated i o n p a i r s . T h e p i c t u r e is less definite o n the other side of the c o n c e n t r a t i o n s p e c t r u m . It is not easy to g a i n a d e t a i l e d u n d e r s t a n d i n g of the c o n d u c t i v e species i n v e r y d i l u t e solution. F r o m the d a t a i n F i g u r e 2 there appears to be some i n d i c a t i o n of a f r e q u e n c y - i n d e p e n d e n t , o h m i c - c o n d u c t i o n r e g i o n d o w n to c o n c e n trations of a b o u t 0 . 0 0 5 M , w h i c h w o u l d be a t t r i b u t a b l e to ions. F o r l o w e r concentrations the c o n d u c t i v i t y vs. f r e q u e n c y p l o t becomes q u i t e n o n l i n e a r d o w n to b e l o w 100 H z , r e n d e r i n g t h e existence of a f r e q u e n c y i n d e p e n d e n t c o n d u c t i o n m e c h a n i s m q u e s t i o n a b l e (18). I n a d d i t i o n to these considerations i t is a p p r o p r i a t e to examine the f r e q u e n c y d e p e n d ence of the d i e l e c t r i c constant i n these v e r y d i l u t e solutions, as s h o w n in Table IV. E l e c t r o d e p o l a r i z a t i o n effects p r o d u c e d b y the m i g r a t i o n of ions to the electrode surface s h o u l d be e v i d e n t i n the presence of ions (19). S u c h a n i o n l a y e r c a n h a v e c o n s i d e r a b l e influence o n the a p p a r e n t c a p a c i tance, p a r t i c u l a r l y for c o n d u c t i v i t y levels greater t h a n 10" ( o h m c m ) " . A t the l o w levels of c o n d u c t i v i t y p r e v a i l i n g i n d i l u t e solutions c o n t a i n i n g less t h a n 10" m o l e / l i t e r s u c h p o l a r i z a t i o n effects are n o t expected a l t h o u g h the d r o p i n d i e l e c t r i c constant for the 0 . 0 5 M s o l u t i o n c a n b e a t t r i b u t e d to this effect. A l l this suggests that there are f e w i f a n y ions present i n these d i l u t e systems. A t the i n t e r m e d i a t e c o n c e n t r a t i o n levels, there m i g h t exist m u l t i p l e ions w h i l e at the highest concentrations ( a b o v e 8
3
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1
140
POLYAMINE-CHELATED
ALKALI
METAL
COMPOUNDS
Table I V . Frequency Dependence of the Dielectric Constant of ( C H ) C H L i - ( T M E D ) Solutions i n Toluene ( 2 5 ° C ) 6
5
2
2
Dielectric Cone,
mole/liter 0.05 0.001 0.0005
constant (Hz)
100
200
500
1000
5000
10000
18 2.42 2.38
10 2.45 2.38
4.6 2.40 2.38
4.1 2.40 2.38
3.1 2.40 2.38
2.7 2.40 2.38
1 m o l e / l i t e r ) h i g h l y polarized, solvated i o n pairs f o r m the b u l k of the Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
s o l u t i o n (see T a b l e I I I ) . R e f e r e n c e has b e e n m a d e t o results o b t a i n e d w i t h s u c h i o n i c s u b stances as q u a t e r n a r y a m m o n i u m salts ( 1 3 , 14). T h e v a l i d i t y o f these c o m p a r i s o n s is s u p p o r t e d b y a c o m p a r i s o n of F i g u r e 4 w i t h 5. T h o s e t w o figures s h o w plots o f t h e e q u i v a l e n t c o n d u c t a n c e of ( C H 5 ) C H L i 6
(TMED)
i n toluene ( F i g u r e 4 ) a n d o f ( n - a m y l )
2
4
2
N C N S i n p-xylene
( F i g u r e 5 ) as a f u n c t i o n o f c o n c e n t r a t i o n . T h e s i m i l a r i t y o f b o t h curves is s t r i k i n g . T h e slight c h a n g e i n slope at h i g h concentrations i n F i g u r e 4 is p r o b a b l y c a u s e d b y v i s c o s i t y effects (13). B o t h systems s h o w a d r a s t i c c h a n g e i n slope near 10" m o l e / l i t e r , yet one is a n i o n i c substance i n the 2
s o l i d state w h i l e the o t h e r is a t best o n l y p a r t i a l l y i o n i c i n c h a r a c t e r . I t seems a p p r o p r i a t e , therefore, t o q u e s t i o n t h e e x p l a n a t i o n offered b y K e n a u s i s et al. (13, 14) that o n l y ions a r e r e s p o n s i b l e for t h e c o n d u c t i o n i n dilute solution.
Indeed, from the frequency
d e p e n d e n c e of these
d i l u t e systems i t seems reasonable t o c o n c l u d e t h a t i o n p a i r s r e p r e s e n t i n g d i p o l e s m i g h t c o n t r i b u t e t o t h e o v e r a l l c o n d u c t i o n process b y c a u s i n g a n increase i n a c c o n d u c t i v i t y w i t h f r e q u e n c y .
O n t h e other h a n d , t h e
assignment of i o n aggregates as the c o n d u c t i v e species at concentrations a b o v e 10" high
2
m o l e / l i t e r seems q u i t e satisfactory i n b o t h cases.
concentrations
(around
1 mole/liter a n d above)
A t very
deaggregation
a p p a r e n t l y takes p l a c e , l e a d i n g t o a n e q u i l i b r i u m b e t w e e n
individual
s o l v a t e d ions a n d solvent-separated i o n pairs.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9.
Shatonshtein, A. I., Petrov, E. S., Usp. Khim. (1967) 36, 269. Bagdasar'yarr, A. Kh. et al., Dokl. Akad.Hauk.SSR (1965) 162, 1293. Kraus, C. Α., J. Phys. Chem. (1956) 60, 129. Fuoss, R. M., Aecascina, F., "Electrolytic Conductance," Chap. 16, Interscience, New York, 1959. Szwarc, M., Makromol. Chem. (1965) 89, 44. Blandamer, M. J., Fox, M. F., Chem. Rev. (1970) 70, 1. Barthel, J., Angew. Chem., Intern. Ed. Engl. (1968) 7, 260. Langer, A. W., Trans. Ν. Y. Acad. Sci. (1965) 27, 741. Langer, A. W., Amer. Chem. Soc., Div. Polym. Chem., Preprint, 7(1), 132 (Phoenix, Jan., 1966).
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF PITTSBURGH on May 3, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch005
5. FORSTER AND LANGER Conductivity of Organolithium Complexes 141
10. Forster, E. O., Langer, A. W. in "Phenomenes de Conduction dans les liquids isolants," p. 236, Colloques Intern. No. 179, Grenoble, Sept. 1968, CNRS Ed., Paris, 1970. 11. Forster, E. O., Langer, A. W., in "1969 Annual Report, Conference on Electrical Insulation and Dielectric Phenomena," Nat. Acad. Sci. Publ. 1764, 87 (1970). 12. Forster, E. O., Langer, A. W., Amer. Chem. Soc., Div. Polym. Chem., Preprint, 13 (2), 656 (New York, August, 1972). 13. Kenausis, L. C., et al.,Proc.Natl. Acad. Sci. (1962) 48, 121. 14. Kenausis, L. C., et al.,Proc.Natl. Acad. Sci. (1963) 49, 141. 15. Kraus, C. Α., J. Phys. Chem. (1956) 60, 129. 16. Ellingsen, T., Smid, J., J. Phys. Chem. (1969) 73, 2712. 17. Kraus, C. Α., J. Phys. Chem. (1954) 58, 673. 18. Forster, E. O., in "4th Intern. Symposium on Conduction and Breakdown Phenomena in Liquid Dielectrics," Dublin, 1972. 19. Hill, Ε. N., et al., "Dielectric Properties and Molecular Behavior," p. 285, Van Nostrand-Reinhold, New York, 1969. RECEIVED March 26, 1973.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.