9 Acid-Base Reactions in Fused Salts FREDERICK R. DUKE
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
Texas
A&M
University,
College Station,
Tex.
A n o x i d e ion a c c e p t o r o r a c i d w i l l r e a c t w i t h c e r t a i n o x y a n i o n s in f u s e d salts t o p r o d u c e a n e w a c i d . The e q u i l i b r i a i n v o l v e d w i t h p y r o -sulfate and dichromate have been studied q u a n t i t a t i v e l y in f u s e d n i t r a t e s a n d , s i n c e n i t r o n i u m i o n is a v e r y s t r o n g a c i d , o t h e r o x y i o n s such a s b r o m a t e a n d i o d a t e m a y b e s t u d i e d i n f u s e d n i t r a t e s o l u t i o n s . The self - d i s s o c i a t i o n of n i t r a t e occurs t o a s l i g h t e x t e n t a n d has b e e n studied q u a n t i t a t i v e l y using an oxygen-oxide ion electrode. By mak ing potentiometrlc measurements on both the basic a n d acidic n i t r a t e s o l u t i o n s , o n e can calculate the self-dissociation constant. S t r o n g l y basic o x y a n i o n s , such as c a r b o n a t e , can t h e n be studied directly in r e g a r d to the o x i d e ion in equilibrium with the o x y a n i o n in fused nitrates.
fused s a l t c o n s i s t i n g , g e n e r a l l y , of a n a l k a l i c a t i o n a n d a n o x y a n i o n is a b l e self-ionize t h e a n i o n t o o x i d e i o n a n d a n a c i d i c s u b s t a n c e . m a y dissociate slightly to form S 0 a n d 0 3
phate to form P 0 ~ a n d 0~ . 2
3
- 2
to
F o r example, sulfate
, nitrate to form Ν(>2 a n d 0 " , a n d phos +
2
N i t r a t e is the o n l y o x y a n i o n studied t o a n y extent
t h u s f a r , o w i n g p r i n c i p a l l y t o t h e c o n v e n i e n t m e l t i n g p o i n t s of i t s a l k a l i s a l t s a n d t h e large t e m p e r a t u r e range of l i q u i d s t a b i l i t y . T h e a c i d - b a s e p r o p e r t i e s of fused a l k a l i n i t r a t e s were first n o t e d w h e n d i c h r o m a t e w a s a d d e d t o fused s o d i u m - p o t a s s i u m n i t r a t e e u t e c t i c ( i ) .
Gaseous nitrogen
d i o x i d e a n d o x y g e n were s l o w l y g i v e n off w i t h t h e c o n v e r s i o n of t h e d i c h r o m a t e t o chromate.
It was postulated that N 0 2 Cr0 7
2
+ NO3-
+
w a s f o r m e d as i n t e r m e d i a t e : N0 + + 2
2CrOr
2
T h e effect ( u p o n t h e o v e r a l l r a t e of c o n v e r s i o n of d i c h r o m a t e t o c h r o m a t e ) of c h a n g ing the chromate i o n concentration was studied.
T h e rate was inversely propor
t i o n a l t o t h e s q u a r e of t h e c h r o m a t e c o n c e n t r a t i o n , as w e l l as p r o p o r t i o n a l t o t h e dichromate concentration. rate, the n i t r y l i o n , N 0 2
+
S i n c e o x y g e n a n d n i t r o g e n d i o x i d e h a d n o effect o n t h e w a s p o s t u l a t e d as i n t e r m e d i a t e .
However, the equilib
r i u m c o n s t a n t for t h e r e a c t i o n c o u l d n o t be d e t e r m i n e d because t o o l i t t l e N 0 2 formed. 220
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
+
was
9.
DUKE
Acid-Base
Reactions
221
W h e n pyrosulfate was substituted for the diehromate, the e q u i l i b r i u m reaction became ( J ) : S2O7- + N O 3 - t=; N 0 + + 2
2SO4-
2
2
P y r o s u l f a t e is a s u f f i c i e n t l y s t r o n g a c i d so t h a t a reasonable percentage a c i d i t y a p p e a r s i n t h e f o r m of N 0
2
+
of
the
, a n d t h e o v e r a l l r e a c t i o n r a t e is n o l o n g e r i n
v e r s e l y p r o p o r t i o n a l t o t h e s q u a r e of t h e s u l f a t e i o n c o n c e n t r a t i o n .
It was assumed
t h a t i n b o t h t h e d i e h r o m a t e a n d p y r o s u l f a t e r e a c t i o n s , t h e final r e a c t i o n t o p r o d u c e nitrogen dioxide a n d oxygen was: N 0 + + N O 3 - -> 2 N 0
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
2
+
2
Ο
T h e oxygen atoms, i n solvated or other form, r a p i d l y combine to form molecular oxygen. T h e m e t h o d used for f o l l o w i n g t h e c o n v e r s i o n of d i e h r o m a t e t o c h r o m a t e o r p y r o s u l f a t e t o s u l f a t e i n v o l v e d m e a s u r i n g t h e t o t a l a c i d i t y , AT, time.
as a f u n c t i o n of
I n t h e p y r o s u l f a t e case, —άΑτ A
= [N0 +] + [S 0 - ], and — — at
T
2
2
7
[N0 +][SOr ] 2
2
T h e equilibrium equation, Κ
—
|p u J 2
e q u a t i o n s t o g i v e (J) : —άΑτ
dt
Z[N0
=
2
2
+
].
,
2
, was combined w i t h the two above
7
UKAT
(K + [sor ]) 2
kK
S i n c e s u l f a t e w a s a l w a y s i n large excess of AT, t h e e x p r e s s i o n ,
.
XV. ~r
_ , , occupies 2
L^5v^4
2
J
t h e p o s i t i o n of a first o r d e r r a t e c o n s t a n t i n a n y g i v e n r u n a n d is d e t e r m i n e d as a first o r d e r c o n s t a n t .
T h u s , n u m e r i c a l v a l u e s were o b t a i n e d for k , the p s e u d o c o n f
1 — „ , as a f u n c t i o n of [S04~ ]. P l o t s of 77 vs. [SO4 J Κ + [0U4 J k 1 gave a n o r d i n a t e i n t e r c e p t of 7 a n d a n a b s c i s s a i n t e r c e p t of —K. T h u s , the equilibk kK
stant, where k
=
2
9
r i u m c o n s t a n t for t h e r e a c t i o n b e t w e e n p y r o s u l f a t e a n d n i t r a t e w a s d e t e r m i n e d . A p p a r e n t l y , t h e s a m e r a t e d e t e r m i n i n g step is i n v o l v e d i n t h e d i e h r o m a t e r e a c t i o n , a n d t h e e q u i l i b r i u m c o n s t a n t c a n be c a l c u l a t e d for t h e d i e h r o m a t e case a l s o . e q u i l i b r i u m c o n s t a n t for t h e p y r o s u l f a t e r e a c t i o n is 50.8 21.8 X 10~ a t 2 7 5 ° C . (5). 3
a t 2 5 0 ° C . a n d 3.8 X 1 0 ~
12
X
The
10~~ a t 3 0 0 ° C , a n d 3
T h e c o n s t a n t for t h e d i e h r o m a t e r e a c t i o n is 8.5 X 1 0 ~
14
at 300°C.
T h e existence of t h e n i t r y l i o n i n t h e presence of a c i d i c substances t h a t n i t r a t e i o n i n fused a l k a l i n i t r a t e s m i g h t d i s s o c i a t e i n t o N 0
2
+
suggested
a n d O " i o n s (5). 2
T o d e t e r m i n e t h e e x t e n t of t h e d i s s o c i a t i o n , i t w a s necessary t o d e v e l o p a n elec t r o d e p o t e n t i o m e t r i c a l l y responsive t o e i t h e r N 0 for a r e v e r s i b l e N 0 over platinum.
2
+
o r O" .
+
2
2
T h e only possibility
electrode t h a t c a m e t o m i n d w a s n i t r o g e n d i o x i d e gas b u b b l i n g
T h i s electrode d i d r e s p o n d t o N 0
2
+
i n a c i d i c s o l u t i o n s , b u t as e x -
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
222
M E C H A N I S M S O F I N O R G A N I C REACTIONS
p e c t e d , t h e f o l l o w i n g n o n - e l e c t r o c h e m i c a l r e a c t i o n o c c u r r e d i n t h e presence of o x i d e ion: N0
2
+ O"
-s. N 0 - +
2
NO3-
2
T h u s , t h e u t i l i t y of the o x y g e n electrode w a s e x p l o r e d . T h e p o t e n t i a l of o x y g e n o v e r p l a t i n u m r e s p o n d e d n i c e l y t o changes i n o x y g e n pressure a c c o r d i n g t o t h e N e r n s t e x p r e s s i o n (5).
T h e reference electrode w a s s i l v e r
i m m e r s e d i n 0 1 i f s i l v e r n i t r a t e i n t h e fused a l k a l i n i t r a t e s , t h e m i x t u r e b e i n g c o n t a i n e d i n a t h i n glass e n v e l o p e .
T o test t h e effect of changes i n o x i d e i o n c o n c e n
t r a t i o n o n the p o t e n t i a l , a source of p u r e a l k a l i o x i d e w a s n e e d e d .
I t is a l s o u l t i -
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
KNO3
KNO3
x
m a t e l y necessary t o k n o w E° for t h e c e l l O2» P t :
} 0~
2
NaN0 0.1 Ai ; A g , i n o r d e r t o c a l c u l a t e t h e s e l f - d i s s o c i a t i o n c o n s t a n t s . 3
(
g
l
a
S
s
)
N a N 0
A
A
3
g
'
Since a l k a l i oxides
are extremely difficult to prepare i n the pure state a n d to handle, i t was decided to produce the oxide i o n coulometrically.
C o n s e q u e n t l y , a k n o w n c u r r e n t of a p p r o x i
m a t e l y 8 m i c r o a m p . w a s r u n t h r o u g h t h e c e l l , t h e o x y g e n e l e c t r o d e a c t i n g as t h e cathode.
T h e current was d r a w n from a n electronically controlled constant cur
r e n t d e v i c e a n d t i m e d so t h a t t h e n u m b e r of e q u i v a l e n t s of charge p a s s i n g c o u l d be calculated.
T h i s w a s a s s u m e d t o be t h e n u m b e r of o x i d e i o n s p r o d u c e d .
The
v a r i a t i o n i n potential w i t h oxide ion followed the N e r n s t expression very precisely. T o d e t e r m i n e t h e p o t e n t i a l of t h e electrode o n the a c i d side, p y r o s u l f a t e of k n o w n c o n c e n t r a t i o n w a s p l a c e d i n t h e fused s a l t .
K n o w i n g the e q u i l i b r i u m c o n
s t a n t t o p r o d u c e N 0 2 , i t w a s possible t o c a l c u l a t e the N C V " c o n c e n t r a t i o n c o r r e s +
p o n d i n g to the p o t e n t i a l measured.
T h e n the self-dissociation constant was c a l
c u l a t e d as f o l l o w s : ^
RT
P
m
02
i n c l u d i n g t h e reference e l e c t r o d e p o t e n t i a l i n t h e £ ° . O n t h e a c i d side, since KD = [ N 0 ] [ 0 ~ ] , t h e e q u a t i o n b e c o m e s 2
+
2
Po "*[N0 ]
RT
2
2
T h u s , KD m a y be c a l c u l a t e d as d e s c r i b e d a b o v e . 0.27 X 1 0 ~ a t 250° C . a n d 5.66 ± 0.1 X 1 0 ~ 26
24
+
KD w a s f o u n d t o be 2.74
a t 300° C .
±
T h e e n t h a l p y of d i s s o c i a
t i o n is 64 k c a l . p e r m o l e . T h e b a s i c i t i e s of B r 0 ~ , C10 "~ a n d I 0 ~ (6) were s t u d i e d n e x t . 3
determined that B r O e
-
3
3
I t was
first
a n d I O e " were c o n s i d e r a b l y m o r e b a s i c t h a n n i t r a t e i o n .
T h u s , these h a l a t e s were s t u d i e d i n fused a l k a l i n i t r a t e s o l u t i o n s .
T h e reactions
studied were: 2Ba+
2
+ XO3- + C r 0 2
7
2
P r o d u c t s ( B r , 0 ) 2
2
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
9.
DUKE
Acid-Base
Reactions
223
C 1 0 + + C I " ~* P r o d u c t s ( C l 2
+ C10
2
2
+
0 ) 2
I0 + + B r ~ -* Products (Br , IBr) 2
2
T h e b r o m y l i o n decomposes spontaneously.
C h l o r y l a n d i o d y l ions
studied through their a t t a c k on chloride a n d bromide ions respectively.
were
B y de
t e r m i n i n g the r a t e of d i s a p p e a r a n c e of d i e h r o m a t e a n d u s i n g a n a n a l y s i s s i m i l a r t o t h e p y r o s u l f a t e - n i t r a t e case, t h e f o l l o w i n g e q u i l i b r i u m c o n s t a n t s were f o u n d f o r t h e d i c h r o m a t e - h a l a t e r e a c t i o n s w h i c h p r o d u c e h a l y l a n d c h r o m a t e i o n s (not c a l c u l a t e d as B a C r 0 , b u t as [ C r 0 4
4
- 2
] i n solution) it r0 -
= 3.5 X 1 0 ~
8
^cio -
= 4.0 Χ Ι Ο "
11
Kio -
= 2.2 Χ Ι Ο "
9
Knot-
-
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
B
3
3
z
4.5 X 1 0 ~
N i t r a t e is included for comparison. since C 1 0
2
+
(2). M "
1
M~
l
M~
l
M~
l
u
T h e c h l o r a t e w a s r u n w i t h c h l o r a t e as s o l v e n t
h a s a b o u t t h e s a m e a c i d i t y as N 0
2
+
.
A l s o , note t h a t B r C ^ " is the
strongest base of t h e t h r e e i o n s . K u s t (4) h a s p o t e n t i o m e t r i c a l l y d e t e r m i n e d t h e e q u i l i b r i u m c o n s t a n t f o r c a r b o n a t e d i s s o c i a t i o n i n fused s o d i u m - p o t a s s i u m n i t r a t e e u t e c t i c : C0 - 2 a n d NOf.
T h e r e is some e v i
+
d e n c e t h a t s o m e of t h i s does e x i s t i n s o l u t i o n as m o l e c u l a r N2O5, a n d t h e n d e c o m poses t o 2NO2 a n d o x y g e n .
I t is f i r s t - o r d e r i n NO2 ", g i v i n g a n o x y g e n a t o m a t t h e 4
e n d , p r o b a b l y NO3, o r o x y g e n s o l v a t e d w i t h t h e n i t r a t e i o n o r s o m e t h i n g else.
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
a n y rate i t ends u p as oxygen molecules e v e n t u a l l y . tion anyway.
At
W e decided to study this reac
I t t u r n s o u t t h a t , e v e n i n t h e presence of a g o o d p r e c i p i t a n t for t h e
c h r o m a t e i o n , t h e r e a c t i o n w i l l n o t go f r o m left t o r i g h t s u f f i c i e n t l y t o s e p a r a t e t h e rate constant from the e q u i l i b r i u m constant. W e t h o u g h t of u s i n g n i t r y l p e r c h l o r a t e i n fused n i t r a t e s a n d m e a s u r i n g t h e a b s o l u t e r a t e a t w h i c h NO2 " d i d d e c o m p o s e i n c o m b i n a t i o n w i t h n i t r a t e i o n .
But
4
there are too m a n y problems connected getting and keeping it d r y .
w i t h the using n i t r y l
perchlorate—e.g.
W e d e c i d e d i t w o u l d be easier a n d m o r e
convenient
s i m p l y to a d d a stronger acid at this point to displace the e q u i l i b r i u m far enough to separate the e q u i l i b r i u m constant from the rate constant. o n l y s l i g h t l y f r o m left t o r i g h t .
T h e e q u i l i b r i u m goes
B y t h e n the subsequent reaction is a l w a y s s t r i c t l y
inverse second-order i n chromate.
If t h i s o c c u r s a p p r e c i a b l y t o w a r d t h e m i d d l e ,
s a y 10 o r 2 0 % of t h e t o t a l a c i d a p p e a r i n g i n t h e f o r m of N 0
2
+
, then the inverse
o r d e r i n t h i s i o n b e g i n s t o decrease, a n d c a n go a s f a r a s zero o r d e r i f t h e e q u i l i b r i u m goes f a r e n o u g h f r o m left t o r i g h t .
F r o m t h a t decrease i n a n i n v e r s e o r d e r i t i s
possible—just like M i c h a e l i s a n d M e n t o n d i d w i t h e n z y m e s — t o separate the rate and
equilibrium constants.
We
did
this simply
by
substituting sulfur
for
c h r o m i u m , a n d r a t h e r t h a n a d d i n g a p r e c i p i t a n t for t h e s a l t w e h a d t o a d d excess sulfate on the right to keep the reaction from going too far to the right a n d the d e c o m p o s i t i o n of t h e n i t r y l i o n f r o m g o i n g t o o f a s t . I t i s i n t e r e s t i n g t h a t i n b o t h t h e d i c h r o m a t e a n d t h e p y r o s u l f a t e case t h e d e c o m p o s i t i o n of t h e n i t r y l i o n i s i n d e p e n d e n t of t h e a c i d a d d e d t o create i t .
There
fore, h a v i n g t h e p r o d u c t of t h e r a t e a n d e q u i l i b r i u m c o n s t a n t s i n t h e case of t h e dichromate a n d the rate constants separated out from the pyrosulfate work, the r a t e c o n s t a n t w a s d i v i d e d i n t o t h e p r o d u c t t o g i v e t h e e q u i l i b r i u m c o n s t a n t for t h e dichromate.
T h i s c a n be d o n e for a w h o l e series of a c i d s r e g a r d l e s s of
their
s t r e n g t h s , w h e t h e r t h e y a r e s t r o n g e n o u g h so t h a t i t c a n be d o n e i n d e p e n d e n t l y o r not. T h e r e i s a g r o u p of a c i d s w h i c h a r e m e t a l i o n s — z i n c i o n p l u s n i t r a t e i o n , f o r example.
T h i s goes t o i n s o l u b l e z i n c o x i d e p l u s NO2" ". 1
One reason t h a t I d i d n ' t
m e n t i o n these a c i d s i s t h a t we are n o t sure t h a t i t i s t h e d e c o m p o s i t i o n of N 0 2 t h a t l e a d s t o NO2 a n d o x y g e n .
+
I t c o u l d be a d i r e c t d e c o m p o s i t i o n
of t h e z i n c
n i t r a t e c o m p l e x i o n , a n d w e f o u n d t h a t t h i s w a s t h e case w i t h b r o m a t e .
If bromate
i s a d d e d t o fused n i t r a t e s a l o n g w i t h z i n c i o n , i t i s n o t a n e q u i l i b r i u m i n v o l v i n g z i n c oxide a n d B r 0
2
+
w h i c h occurs, b u t Z n B r 0 3 is formed.
t o t h e p r o d u c t s , one of w h i c h i s z i n c o x i d e .
+
T h i s decomposes directly
H e n c e we really don't k n o w whether
these b e l o n g t o t h e same c a t e g o r y as d i c h r o m a t e i n t h e d e t a i l e d w a y t h a t one h a s t o a s s u m e t o get t h e e q u i l i b r i u m c o n s t a n t s e p a r a t e d f r o m t h e r a t e c o n s t a n t .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
226
T h i s c o n s i d e r a t i o n l e d us t o d e t e r m i n e t h e e q u i l i b r i u m c o n s t a n t for t h i s r e a c t i o n ΝΟΓ
^
N0 + 2
+
Ο"
2
w h i c h i s a s e l f - d i s s o c i a t i o n of n i t r a t e i o n a n d l o o k s v e r y m u c h l i k e t h e s e l f - d i s s o c i a tion
of
water.
In
to measure either N 0
order 2
to
o r 0~~ .
+
2
determine
t h i s one
needs a
sensitive
method
Analagous to the w a y i t was done i n aqueous s o l u
t i o n we looked for a n electrode t h a t w o u l d respond t o either N 0 O n e c a n get a g o o d electrode for N 0
2
simply by bubbling N 0
+
2
2
+
ions or oxide ions.
over p l a t i n u m , but
i t c a n ' t be u s e d i n t h e presence of o x i d e i o n because there is a d i r e c t r e a c t i o n of N 0 w i t h oxide i o n to m a k e nitrate a n d nitrite.
T h a t excluded this method.
2
W e used
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
i t o n l y as a p o i n t of i n t e r e s t t o see i f i t w o u l d w o r k o n t h e a c i d s i d e , a n d i t does. N e x t we c o n s i d e r e d t h e o x i d e i o n e l e c t r o d e , a n d we were a l i t t l e f e a r f u l of t h i s one.
T h e r e h a d been s o m e w o r k d o n e i n s u l f a t e s , a n d s e v e r a l h u n d r e d degrees
w a r m e r t h a n t h i s , i n w h i c h t h e r e w a s s o m e q u e s t i o n as t o w h e t h e r o r n o t t h e o x y g e n electrode
was really acting reversibly on p l a t i n u m .
F u r t h e r m o r e , studies
by
Y e a g e r a n d o t h e r s h a v e s h o w n t h a t w h e n e v e r one uses o x y g e n i n a q u e o u s s o l u t i o n a t electrodes t h e r e i s a t e n d e n c y t o e q u i l i b r a t e w i t h p e r o x i d e r a t h e r t h a n w i t h o x i d e or hydroxide.
W e were a f r a i d t h a t w e m i g h t e n d u p w i t h s o m e o n e - e l e c t r o n t r a n s
fer r e a c t i o n s a n d get p e r o x i d e i o n s a n d t h e l i k e ; b u t we h a d t o t r y i t because t h e other electrode just w o u l d n ' t w o r k .
A s it turned out, i t worked very nicely.
W e h a d t o d e t e r m i n e £ ° f o r these cells i n o r d e r t o s w i t c h t o t h e a c i d side a n d i n v o l v e t h e e q u i l i b r i u m c o n s t a n t i n s u c h a w a y t h a t i t c o u l d be d e t e r m i n e d .
This
m e a n t a d d i n g a c a r e f u l l y k n o w n c o n c e n t r a t i o n of o x i d e i o n w h i c h i s b y n o m e a n s simple when working w i t h sodium or potassium. oxide.
I t is possible t o m a k e p u r e s o d i u m
I t m a y be possible t o m a k e p u r e p o t a s s i u m o x i d e .
B u t one a l w a y s l o o k s
for easier w a y s t o d o t h i n g s because these are d i f f i c u l t t h i n g s t o h a n d l e ; a n d we were w o r k i n g w i t h v e r y l o w - c o n c e n t r a t i o n s of o x i d e i o n .
O n e does n o t l i k e t o m e a s u r e
p H u p a r o u n d 14 o r 15, b u t r a t h e r a r o u n d 8, 9, o r 10, a n d we w a n t e d t o m e a s u r e a n oxide i o n electrochemically. o n t h e o r d e r of 1 0 i k f .
It was rather small i n molar
concentration—
F i r s t we s h o w e d t h a t as we c h a n g e d t h e pressure of o x y g e n
- 6
o v e r a buffered s o l u t i o n (buffered a t a n u n k n o w n o x i d e i o n v a l u e b y p u t t i n g i n o r t h o s i l i c a t e , s o d i u m o r t h o s i l i c a t e ) we d i d i n d e e d get t h e N e r n s t slope.
T h e n we
coulometrically added the oxide i o n from the oxygen electrode w i t h a constant c u r r e n t g e n e r a t o r a n d e a s i l y p u t i n s m a l l c o n c e n t r a t i o n s of o x i d e i o n . T h i s w o r k has been c r i t i c i z e d r a t h e r s e v e r e l y b y s a y i n g t h a t w e are j u s t d u m p i n g e l e c t r o n s i n t o t h e r e a c t i o n , a n d there h a d been a l o t of pressure o n us t o m a k e s o d i u m o x i d e a n d see i f i t r e a l l y gives t h e s a m e a n s w e r .
I d o t h i n k i t w o u l d be a
v e r y nice t h i n g to have done, b u t I really d o n ' t w a n t to do i t .
I have lost m y
e n t h u s i a s m for t h a t p o r t i o n of t h e p r o b l e m . T h e o t h e r p r o b l e m c o n n e c t e d w i t h t h i s e q u i l i b r i u m is t h e f a c t t h a t N 0
2
+
does
n o t r e m a i n as s u c h i n t h e r e a c t i o n m i x t u r e w h i l e one m a k e s m e a s u r e m e n t s ; i t decomposes fairly rapidly.
H e n c e , i t was necessary to k n o w the e q u i l i b r i u m c o n
s t a n t for t h e p y r o s u l f a t e p r e c i s e l y a n d t h e r a t e a t w h i c h i t d e c o m p o s e d p r e c i s e l y i n o r d e r t o k n o w , a t a n y p a r t i c u l a r t i m e a f t e r w e a d d p y r o s u l f a t e t o t h e fused n i t r a t e , exactly how much N 0
2
+
was there.
I t t u r n s o u t t h a t one c a n e l e c t r o c h e m i c a l l y
f o l l o w t h e r a t e of d e c o m p o s i t i o n of N 0 persists.
A s the N 0
2
+
2
+
p o t e n t i o m e t r i c a l l y since this e q u i l i b r i u m
d i s a p p e a r s one c a n f o l l o w i t a n d o b t a i n m u c h b e t t e r d a t a
t h a n w e were a b l e t o get w i t h c h e m i c a l a n a l y s e s .
T h e r e f o r e , t h e w h o l e j o b of d e -
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
9.
DUKE
227
Discussion
t e r m i n i n g t h i s e q u i l i b r i u m c o n s t a n t i s a n i n t e r n a l one.
W e redetermined the equili
b r i u m a n d r a t e c o n s t a n t s for t h i s r e a c t i o n s i m u l t a n e o u s l y . T h e e q u i l i b r i u m c o n s t a n t is a b o u t 2.74 X 1 0 ~ 10~~ a t 300°C. w i t h a large AH.
26
a t 250°C. a n d a b o u t 5.66
X
T i t r a t i o n s w i t h oxide ion w i t h strong acids i n this
24
s o l v e n t g i v e a large p o t e n t i a l c h a n g e , s o m e 26 p H u n i t s .
S i n c e w e were w o r k i n g
a t a h i g h e r t e m p e r a t u r e , RT/2F
I n some w o r k done i n
becomes a l i t t l e l a r g e r .
E g y p t , p e r o x i d e r a t h e r t h a n oxide i o n has b e e n u s e d t o d o t h e t i t r a t i o n s , a n d i t i s r e p o r t e d t h a t t h e p e r o x i d e i o n , as i t h i t s t h e a c i d , d e c o m p o s e s i n t o o x i d e i o n a n d oxygen.
W e h a v e l o o k e d a t t h i s a l i t t l e a n d are n o t sure t h a t one does get c o m
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
p l e t e d e c o m p o s i t i o n of t h e p e r o x i d e i o n .
Some decomposition occurs, c e r t a i n l y .
H a v i n g d e t e r m i n e d t h e e q u i l i b r i u m c o n s t a n t one s h o u l d be a b l e t o d i s s o l v e a n y p o s s i b l e source of o x i d e i o n — b r o m a t e , c h l o r a t e , s i l i c a t e , p h o s p h a t e , z i n c o x i d e — m a k e measurements, a n d tell how basic or acidic the solution is.
F o r e x a m p l e , we
b e l i e v e t h a t t r a n s f e r of o x i d e i o n f r o m b r o m a t e o c c u r s i n t h e s a m e w a y as n i t r a t e a n d one gets B r 0 oxidant.
+
2
.
This B r 0
2
+
, i f i n d e e d t h a t i s w h a t we d o get, is a n e x c e l l e n t
It reacts w i t h iodide, bromide a n d a n y t h i n g t h a t bromate n o r m a l l y
oxidizes i n acid solution. s u c h a case a s b r o m a t e .
I t m a k e s us b e l i e v e t h a t i t is u l t i m a t e l y t h e o x i d a n t i n U s i n g H B r 0 3 + , one h a s t o d i s p l a c e w a t e r f r o m i t w i t h a 2
r e d u c i n g a g e n t , for e x a m p l e b r o m i d e , for t h e r e a c t i o n t o p r o c e e d . T h e o r g a n i c c h e m i s t s h a v e been c l a i m i n g for y e a r s t h a t t h e y h a v e e x c e l l e n t proof that N 0
2
i s i n d e e d t h e e l e c t r o p h i l i c d i s p l a c e m e n t a g e n t t h a t causes n i t r a t i o n ,
+
particularly on aromatic compounds.
T o t e s t t h i s we a d d e d p y r o s u l f a t e t o fused
n i t r a t e a n d b u b b l e d s o m e benzene v a p o r s t h r o u g h i t o n n i t r o g e n o r a r g o n .
Nothing
b u t benzene c a m e o u t , i n s p i t e of t h e f a c t t h a t t h e r e a c t i o n m i x t u r e w a s h o t , 2 5 0 ° C , and contained N 0 d i d have a n y N 0
2
2
+
+
ions.
N o w t h e o r g a n i c c h e m i s t s are g o i n g t o s a y t h a t we n e v e r
there.
T o f o r e s t a l l t h a t a r g u m e n t we t h e n a d d e d w a t e r t o t h e
b e n z e n e a n d b u b b l e d t h e n i t r o g e n t h r o u g h b o t h t h e w a t e r a n d t h e benzene as i t w e n t i n t o t h e fused s a l t c o n t a i n i n g t h e N 0
2
+
.
A l o t of n i t r o b e n z e n e c a m e o v e r .
I
d o n ' t k n o w w h e t h e r t h i s m e a n s t h a t t h e n i t r a t i n g a g e n t is r e a l l y Η Ν Ο ^ o r w h e t h e r 2
one needs as g o o d a p r o t o n a c c e p t o r as w a t e r i n o r d e r t o d i s p l a c e t h e h y d r o g e n — whether it is catalytic, or stoichiometric, or just what.
W e d e c i d e d t o find o u t
u s i n g a h o m o g e n o u s m i x t u r e r a t h e r t h a n a t w o - p h a s e (or m o r e ) s y s t e m .
W e took
s o m e s o d i u m b e n z e n e s u l f o n a t e , w h i c h i s a g o o d s a l t a n d d i s s o l v e s i n fused n i t r a t e s , a n d a d d e d i t t o fused n i t r a t e s . the acid, the N 0
2
+
W e were a b o u t t o a d d some p y r o s u l f a t e t o generate 7
, when a metathetical reaction occurred, call i t a n acid-base inter
change, t o give nitrobenzene a n d sulfate ions. tion.
T h i s a p p e a r s t o be a r e v e r s i b l e r e a c
W e h a v e s t u d i e d t h e k i n e t i c s of t h i s r e a c t i o n a n d k n o w t h e o r d e r a n d s o m e
a c t i v a t i o n energies.
W e d o n ' t k n o w h o w v a l i d o u r figures are since we h a v e n e v e r
been a b l e t o get m o r e t h a n a 5 0 % y i e l d i n n i t r o b e n z e n e ; a n d we t h i n k t h a t e i t h e r the nitrobenzene oxidizes the unreacted sulfonic a c i d or itself.
T h i s seems t o r e a c t
a l i t t l e f a s t e r t h a n j u s t a d d i n g n i t r o b e n z e n e t o t h e fused n i t r a t e — i t s t a r t s t u r n i n g black after a while.
S i n c e w e u s e d a c o l o r o m e t r i c m e t h o d for f o l l o w i n g t h e r e a c
t i o n s , we are s k e p t i c a l of t h e d a t a .
W e t r i e d large a m o u n t s t o see i f we c o u l d m a k e
a p o u n d of n i t r o b e n z e n e t h i s w a y , b u t t h e y i e l d s decrease g r e a t l y w h e n w e t r y t o m a k e the sulfonic acid more concentrated. b e t t e r t h e y i e l d of n i t r o b e n z e n e . groups on the heterocycles.
B u t the more dilute we make i t , the
P e r h a p s t h i s w o u l d be a g o o d w a y t o p u t n i t r o
B u t , t h a t i s a l i t t l e t o o o r g a n i c for m o s t of u s .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
228
M E C H A N I S M S O F I N O R G A N I C REACTIONS W e h a v e d o n e a few o x i d a t i o n - r e d u c t i o n r e a c t i o n s i n fused s a l t s , b u t t h e y
aren't terribly interesting.
T h e o n l y r e a c t i o n t h a t m i g h t be i n t e r e s t i n g i s a d d i n g
i o d i d e i o n t o c h l o r a t e i n a n e u t r a l t o a l k a l i n e s o l u t i o n of f u s e d n i t r a t e s t o give i o d a t e plus chloride.
T h i s r e a c t i o n i s n o t u n u s u a l ; i t h a s been u s e d for y e a r s i n a q u e o u s
solution to make iodate.
B u t we d i d s o m e i n t e r e s t i n g t h i n g s w i t h t h i s r e a c t i o n .
W e m a d e t h e h y p o i o d i t e a n d c h l o r i d e i n t e r m e d i a t e s t h a t w o u l d o c c u r i f one t r a n s ferred one o r t w o o x y g e n s a t a t i m e a n d n o t a l l t h r e e .
These intermediates react
w i t h n i t r a t e i o n t o give p r o d u c t s t h a t are r e a d i l y i d e n t i f i a b l e .
W e d i d n ' t get a n y 7
of these p r o d u c t s ; so we feel t h a t a W a l d e n i n v e r s i o n o p e r a t e s here.
T h e iodide
comes up a n d a l l the oxygens s w i t c h over to the iodine at the same time from the
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
chloride.
W e d o n ' t h a v e r e a l p r o o f of t h i s , because t h e r e a r e o t h e r w a y s t o e x p l a i n
the observations.
T h e s e i n t e r m e d i a t e s m a y be f a r m o r e r e a c t i v e w i t h t h e r e a g e n t s
t h a n w i t h t h e n i t r a t e , b u t a t least t h e r e is a l i t t l e e v i d e n c e t h a t a l l three o x y g e n s transfer at once. Dieter G r u e n :
P r o f . D u k e h a s g i v e n a n a d m i r a b l e d i s c u s s i o n of
properties in molten nitrates.
acid-base
I w o u l d l i k e t o suggest a m o d e l for t h e t r a n s i t i o n
state c o m p l e x i n t h e r e a c t i o n Y 0f
+
2
2
^
XO3-
X0 +
+
2
2YO4-
studied b y Prof. D u k e in molten alkali metal nitrates. C 1 0 ~ , B r 0 - o r IO3-; Y2O73
3
= Cr 0 -
2
2
7
2
Here X 0 "
=
3
NO3-,
or S 0 " .
2
2
7
2
T h e Y 0 f ~ ions c a n be r e p r e s e n t e d b y t w o o x y g e n t e t r a h e d r a s h a r i n g a c o r n e r 2
2
w i t h t h e c h r o m i u m o r s u l f u r a t o m s a t t h e centers of t h e t e t r a h e d r a . complex [ Y 0 Z X 0 ] 2
7
3
- 2
The activated
t h e n c o n s i s t s of a n a l k a l i m e t a l i o n , Z , i n t h e c e n t e r of a n
o c t a h e d r o n of o x y g e n s : three f r o m t h e Y 0 2
7
g r o u p a n d three f r o m t h e X O 3 -
- 2
group. T h i s m o d e l w a s suggested b y s p e c t r o s c o p i c m o l t e n a l u m i n u m c h l o r i d e (7).
s t u d i e s of d i p o s i t i v e 3d i o n s i n
T h e a b s o r p t i o n s p e c t r a of d i p o s i t i v e T i , V , C r ,
M n , F e , C o , N i a n d C u i n m o l t e n AICI3 c a n be i n t e r p r e t e d o n t h e basis of o c t a h e d r a l c o n f i g u r a t i o n s of c h l o r i d e s a b o u t t h e c e n t r a l t r a n s i t i o n m e t a l i o n s .
A n explanation
of t h i s f a c t i s m a d e p l a u s i b l e b y t h e f o l l o w i n g c o n s i d e r a t i o n s . I n t h e l i q u i d s t a t e , x - r a y d i f f r a c t i o n m e a s u r e m e n t s (3) h a v e s h o w n a l u m i n u m c h l o r i d e t o c o n s i s t of A I C l e d i m e r s .
T h e r e is c o n s i d e r a b l e e v i d e n c e t h a t a d d i t i o n
2
of C l ~ t o A l C l e is a s t e p w i s e p r o c e s s c h a r a c t e r i z e d b y t h e t w o e q u i l i b r i a 2
Al Cl 2
e
Al Clr 2
+
CI"
=
+
CI"
=
A1 C1 2
7
2AICI4-
I t i s l i k e l y therefore t h a t t h e 3d m e t a l d i c h l o r i d e s d i s s o l v e i n m o l t e n A l C l e a c c o r d 2
ing to the equation MC1
2
+
2A1 C1 2
6
=
A m o d e l for t h i s c o m p l e x is s h o w n i n F i g u r e A .
M(A1 C1 ) 2
7
2
I n this model, the M
+
2
i o n is o c t a -
hedrally surrounded b y six chlorides belonging to t w o A 1 C 1 " groups, the A 1 C 1 " 2
7
2
7
g r o u p i n t u r n h a v i n g a s t r u c t u r e c o m p o s e d of t w o AICI4 g r o u p s s h a r i n g a c o r n e r . T h e a n a l o g y of t h e M ( A 1 C 1 ) 2
7
2
complex
w i t h the proposed
[Y 0 ZX0 ] 2
7
3
- 2
a c t i v a t e d state c o m p l e x resides i n t h e f a c t t h a t b o t h c o m p l e x e s p r o v i d e a n o c t a h e d r a l site for t h e m e t a l i o n .
S p e c t r o s c o p i c d a t a o n 3d m e t a l i o n s i n m o l t e n n i t r a t e s
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
9.
DUKE
229
Discussion
Figure A.
Model of M(AhClT)2
complex
c a n be m o s t e a s i l y i n t e r p r e t e d i n t e r m s of o c t a h e d r a l c o o r d i n a t i o n b y
oxygens.
A l t h o u g h s u c h m e a s u r e m e n t s c a n n o t be p e r f o r m e d o n a l k a l i m e t a l i o n s since t h e y d o n o t possess u n p a i r e d ^-electrons, i t i s n o t u n r e a s o n a b l e t o p o s t u l a t e s i x f o l d oxygen
coordination
[Y2O7ZXO3]-
2
complex
for
these
ions
as
well.
An
a t t r a c t i v e feature
of
the
is t h a t i t b r i n g s t h e t w o r e a c t a n t s i n t o close p r o x i m i t y
w i t h o u t r e q u i r i n g a n excessive a c c u m u l a t i o n of n e g a t i v e c h a r g e a t t h e r e a c t i o n s i t e . Joseph J . Jordan:
P r o f . D u k e s a i d t h a t one of h i s m o t i v a t i o n s for e x p l o r i n g
o x i d a t i o n - r e d u c t i o n i n m o l t e n s a l t s w a s h i s desire t o s t u d y s e p a r a t e l y t h e e l e c t r o n t r a n s f e r process p r o p e r , w h i c h i n a q u e o u s s o l u t i o n s i s i n v a r i a b l y c o m p l i c a t e d a n d encumbered b y overlapping proton transfer. T o m e , t h e m o s t i n t e r e s t i n g feature of t h e L u x - F l o o d a c i d - b a s e c h e m i s t r y i n m o l t e n n i t r a t e s o l v e n t s i s t h e f a c t t h a t one does e n c o u n t e r t h e s a m e t y p e of i n t e r p l a y between acid-base a n d oxidation-reduction chemistry.
However, i n this i n
s t a n c e t h e a c i d - b a s e r e a c t i o n h a p p e n s t o be, n o t a p r o t o n t r a n s f e r , b u t a n o x i d e transfer.
I s h o u l d h o p e , as P r o f . D u k e s a i d , t h a t m o r e p e o p l e w o u l d b e c o m e
a c t i v e i n t h e field of a c i d - b a s e a n d e l e c t r o n t r a n s f e r c h e m i s t r y i n m o l t e n s a l t s .
This
is s t i l l a n a r e a w h e r e i t m i g h t be p o s s i b l e t o d r a w c o n c l u s i o n s f r o m r e l a t i v e l y s i m p l e , almost qualitative, observations.
I f one r e v i e w s i n r e t r o s p e c t t h e i n g e n i o u s a n d
s o p h i s t i c a t e d m a t e r i a l p r e s e n t e d here, t h e i m p r e s s i o n is t h a t a l m o s t a n y c o n c l u s i o n t h a t r e m a i n s t o be d r a w n i n a q u e o u s i n o r g a n i c m e c h a n i s m s c h e m i s t r y h a s t o be based on rather complicated quantitative arguments.
B e c a u s e of t h e m a n y a p
p r o x i m a t i o n s t h a t m u s t be r e l i e d o n i n these s i t u a t i o n s , one c a n n o t h e l p f e e l i n g t h a t he m i g h t lose c o n t a c t w i t h t h e t a n g i b l e r e a l i t y of t h e c h e m i s t r y i n v o l v e d .
One
of t h e v i r t u e s of m o l t e n s a l t s is t h a t a great d e a l of s t r a i g h t f o r w a r d c h e m i s t r y r e m a i n s t o be e l u c i d a t e d , p e r h a p s because t h i s field i s s t i l l m a n y d e c a d e s b e h i n d t h e p r e s e n t d e v e l o p m e n t of a q u e o u s i n o r g a n i c c h e m i s t r y . L u x - F l o o d base d i s s o c i a t i o n e q u i l i b r i a c a n be d i v i d e d i n t o t w o b r o a d c a t e g o r i e s : (a) T h o s e i n w h i c h t h e c o n j u g a t e a c i d is n o t a n e l e c t r o n a c c e p t o r ; (b) T h o s e w h i c h y i e l d a n o x i d i z i n g a g e n t as c o n j u g a t e
acid.
C a r b o n a t e i o n i n a n a p p r o p r i a t e m o l t e n s a l t s o l v e n t i s a n e x a m p l e of (a), t h e c o n -
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
230
j u g a t e a c i d ' s b e i n g CO2, w h i c h is n o t a n e l e c t r o n a c c e p t o r .
P r o f . D u k e focused o n
(b), a t y p i c a l e x a m p l e of w h i c h is t h e n i t r a t e i o n w h o s e c o n j u g a t e a c i d , t h e n i t r o n i u m i o n NC>2 , is a s t r o n g o x i d i z i n g a g e n t . +
I should like t o present some tangible
e v i d e n c e t h a t o x i d e d i s s o c i a t i o n is i n d e e d a p h e n o m e n o n w h i c h is a n a l o g o u s w i t h t h e d i s s o c i a t i o n of h y d r o g e n i o n s f r o m B r 0 n s t e d a c i d s i n c o n v e n t i o n a l s o l v e n t s . R e l e v a n t experimental d a t a are presented i n F i g u r e B , w h i c h is based on the w o r k of K a r l R o m b e r g e r (8) a n d r e p r e s e n t s a f a m i l y of p o l a r o g r a m s o b t a i n e d a t a r o t a t e d p l a t i n u m d i s k electrode i n a n a l k a l i nitrate solvent melt.
I n the residual current
c u r v e (the t o p c u r v e , o b t a i n e d i n t h e p u r e s o l v e n t ) as t h e p o t e n t i a l is m a d e m o r e a n o d i c , one n o t i c e s a c u r r e n t w h i c h reflects t h e o x i d a t i o n of o x i d e i o n r e s u l t i n g f r o m t h e d i s s o c i a t i o n of n i t r a t e . in
the
massive
base C O 3 - . 2
nitrate melt,
T h e o t h e r p l o t s i n Β were o b t a i n e d b y d i s s o l v i n g , various small concentrations
of
C a r b o n a t e is a s t r o n g e r L u x - F l o o d base t h a n n i t r a t e .
the L u x - F l o o d Curves A , B ,
C , D , a n d Ε c o r r e s p o n d t o t h e e l e c t r o - o x i d a t i o n of t h e o x i d e i o n s d i s s o c i a t e d f r o m the carbonate.
T h e y e v e n t u a l l y l e v e l off i n a l i m i t i n g c u r r e n t d o m a i n , because t h e
p r o c e s s i s m a s s t r a n s f e r c o n t r o l l e d ( b y d i f f u s i o n a n d forced c o r r e s p o n d i n g r a n g e of p o t e n t i a l s .
convection)
i n the
T h e difference i n p o t e n t i a l s a t w h i c h 0~~ i s 2
e l e c t r o - o x i d i z e d i n t h e presence of c a r b o n a t e is s t r i k i n g c o m p a r e d t o w h a t h a p p e n s i n the pure nitrate melt.
N e g l e c t i n g i r r e v e r s i b i l i t y , t h i s difference r e s u l t s f r o m t h e
fact t h a t carbonate is a m u c h more strongly dissociated oxide donor t h a n nitrate ; t h e e q u i l i b r i u m c o n c e n t r a t i o n of o x i d e i o n i n t h e presence of c a r b o n a t e i s a b o u t 20 o r d e r s of m a g n i t u d e l a r g e r t h a n i n p u r e n i t r a t e .
A s a r e s u l t , e l e c t r o - o x i d a t i o n of
0~~ c a n o c c u r a t m u c h less a n o d i c p o t e n t i a l s i n t h e presence t h a n i n t h e absence of 2
co - . 3
2
H y d r o g e n r e d u c t i o n w a v e s are w e l l k n o w n i n a q u e o u s p o l a r o g r a p h y (6) ; t h i s completely analogous phenomenon brings out convincingly a n d tangibly the similar
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
9.
DUKE
Discussion
231
nature between oxide transfer c h e m i s t r y i n m o l t e n salts a n d p r o t o n transfer c h e m i s t r y i n conventional solvents. A c t u a l l y , t h e m o r e i n t e r e s t i n g s i t u a t i o n i s (b) w h e r e t h e c o n j u g a t e a c i d is a n o x i d i z i n g a g e n t (12).
A s t r i k i n g d e m o n s t r a t i o n of t h e i n t e r d e p e n d e n c e of e l e c t r o n
transfer a n d oxide transfer is inherent i n the following observations.
I t is p o s s i b l e
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
t o p r e p a r e a s o l u t i o n of p o t a s s i u m i o d i d e i n a v e r y p u r e n i t r a t e m e l t a n d m a i n t a i n
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
232
M E C H A N I S M S O F I N O R G A N I C REACTIONS
s t a b i l i t y i n d e f i n i t e l y , i n t h e sense t h a t t h e r e is n o o x i d a t i v e loss of t h e i o d i d e b y conversion to iodine.
If, h o w e v e r , t h e n i t r a t e m e l t c o n t a i n s a t r a c e of a h e a v y
m e t a l s a l t , s u c h as l e a d o r a l u m i n u m , one sees a n i n s t a n t a n e o u s e v o l u t i o n of i o d i n e . T h e r e a s o n f o r t h i s is t h a t l e a d a n d a l u m i n u m i o n s a r e L u x - F l o o d a c i d s w h i c h a b stract the oxide i o n from the nitrate dissociation e q u i l i b r i u m , thus increasing the a c t i v i t y of t h e c o n j u g a t e a c i d , N 0 2 .
T h e n i t r o n i u m i o n functions as a n electron
+
acceptor w h i c h oxidizes iodide to iodine. I n o r d e r t o i l l u s t r a t e t h e n a t u r e of i n t e r p r e t i v e p r o b l e m s w h i c h p r e v a i l i n c o n t e m p o r a r y m o l t e n s a l t c h e m i s t r y , I s h o u l d l i k e t o describe a n i n t e r e s t i n g c a t a l y t i c r e a c t i o n , v i z . , t h e r e d u c t i o n of n i t r a t e t o n i t r i t e i n d u c e d b y t h e e l e c t r o - r e d u c t i o n
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
of t r a c e s of w a t e r .
I believe t h a t t h i s m a y e x e m p l i f y t h e m e c h a n i s t i c p r o b l e m s
encountered t y p i c a l l y i n molten salt chemistry a n d hope that this w i l l
engender
s o m e d i s c u s s i o n a n d r e s e a r c h b y t h i s g r o u p w h i c h h a s so a b l y h a n d l e d m u c h m o r e complex problems i n aqueous chemistry.
If one r e c o r d s a d i r e c t c u r r e n t v o l t a g e
c u r v e i n a n i t r a t e a l k a l i n i t r a t e m e l t w h i c h c o n t a i n s t r a c e s of w a t e r , one o b t a i n s t h e p o l a r o g r a m s (2) s h o w n i n F i g u r e C .
T h e curves correspond to a cathodic reduc
t i o n process, a n d t h e " w a v e h e i g h t s " increase w i t h the a m o u n t of m o i s t u r e p r e s e n t . S i m i l a r findings h a v e been r e p o r t e d p r e v i o u s l y f r o m t h e U n i v e r s i t y of I l l i n o i s {11). O n e of m y g r a d u a t e s t u d e n t s , T . E . G e c k l e , b e c a m e i n t e r e s t e d i n t h i s m a t t e r , b e cause t h e q u e s t i o n w h e t h e r a w a t e r m o l e c u l e c a n be e l e c t r o - r e d u c e d d i r e c t l y a s s u c h ( r a t h e r t h a n v i a p r i o r d i s s o c i a t i o n t o a h y d r o g e n ion) is a m a t t e r of c o n s i d e r a b l e , fundamental importance.
M r . Geckle found that, while the limiting currents ob
t a i n e d i n t h e n i t r a t e m e l t were p r o p o r t i o n a l t o t h e c o n c e n t r a t i o n of w a t e r , t h e o n l y p r o d u c t s of t h e e l e c t r o d e r e a c t i o n were n i t r i t e i o n a n d o x i d e i o n s (one h a l f m o l e of e a c h p e r f a r a d a y of e l e c t r i c i t y ) . produced i n a n y w a y or form.
T h e s u r p r i s i n g t h i n g w a s t h a t no h y d r o g e n w a s
D u r i n g e l e c t r o l y s i s one c o u l d o b s e r v e i n t h e m e l t t h e
y e l l o w c o l o r of N O 2 w h i c h f a d e d as s o o n a s t h e e l e c t r o l y s i s w a s s t o p p e d . M a t h e m a t i c a l a n a l y s i s of t h e p o l a r o g r a m s i n d i c a t e d t h a t t h e o v e r a l l electrode r e a c t i o n i n v o l v e d one m o l e of r e a c t a n t , t w o e l e c t r o n s , a n d t h r e e m o l e s of p r o d u c t . T h e m e c h a n i s m w h i c h a c c o u n t s for t h e e x p e r i m e n t a l r e s u l t s i s i l l u s t r a t e d i n F i g u r e D. NET
RESULT
NO3-
+
2e
(from ->
coulometry)
N0 2
+
O"
2
MECHANISM rate controlling
H 0°°
H 0° 2
2
H 0°
+
2
2H°
2e
+
CT
2
fast
NO3-
+
Figure D.
2H°
2H
2 H[00
H 0°° 2
0 0
-h
NOr
Mechanism of the electrode-reduction
W a t e r f r o m t h e b u l k of t h e m e l t i s t r a n s p o r t e d , b y d i f f u s i o n a n d forced c o n v e c t i o n , i n a r a t e - c o n t r o l l i n g s t e p t o t h e electrode surface (this a c c o u n t s for t h e p r o p o r t i o n a l i t y of t h e l i m i t i n g c u r r e n t t o w a t e r c o n c e n t r a t i o n ) ; a t t h e electrode i n t e r f a c e w a t e r
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
9.
DUKE
Discussion
233
is r e d u c e d t o a t o m i c h y d r o g e n , w h i c h diffuses r a p i d l y t o the b u l k of t h e s o l u t i o n ; there i t reacts w i t h n i t r a t e , p r o d u c i n g n i t r i t e a n d r e g e n e r a t i n g w a t e r ; t h e w a t e r t h e n " r e t u r n s " ( b y d i f f u s i o n a n d forced c o n v e c t i o n ) t o t h e electrode surface a n d c o n t r o l s the c u r r e n t . T h e i n t e r e s t i n g r e a c t i o n t o t h i s sequence is t h e l a s t s t e p : i t m u s t necessarily p r o c e e d v i a a m e c h a n i s m w h i c h i s c o n s i s t e n t w i t h t h e t r a n s i e n t a p p e a r a n c e of t h e c o l o r of N O 2 i n t h e b u l k of t h e s o l u t i o n . c a n a c c o u n t for t h i s o b s e r v a t i o n .
Figure Ε contains two alternatives which
T h e r e a c t i o n sequence o n t h e left i s b a s i c a l l y a n
o x i d e t r a n s f e r m e c h a n i s m a n d is c o n s i s t e n t w i t h s o m e of P r o f . D u k e ' s i d e a s ; h y d r o gen is a s s u m e d t o r e d u c e n i t r a t e t o N O 2 ; N 0
acts as a " m i x e d a c c e p t o r " for oxide
2
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
y i e l d i n g n i t r a t e p l u s n i t r i t e ; a n d h y d r o x y l i o n s are r e c o n v e r t e d t o o x i d e a n d w a t e r via a known reaction. T h e second sequence i n F i g u r e Ε i n v o l v e s h y d r i d e as a r e a c t i o n i n t e r m e d i a t e . NO3-
+
2H
+
2
N O r
OXIDE
TRANSFER
2NO3-
+
2H
->
2N0
2
+
20H-
2N0
+
CT
->
NO3-
+
N0 "
-»
Ο"
2
2
20HHYDRIDE
2NO320-2 2N0 + 2N0
+ +
2
2
+
Figure E. Gilbert Haight:
2
H 0
+
2
2
TRANSFER
->
2N0
2
+
+
4H
-+
2H-
—
2N0
2
+
2H
Ο"
+
NO3-
+
N0 -
->
Ο"
2
2
+
20-2
2H-
20H-
mechanism.
H 0
-+
+
20H-
2
H 0 2
Alternative mechanisms
I a m g l a d t h a t P r o f . D u k e has d e m o l i s h e d a s t a i d o l d o r g a n i c
I w o u l d l i k e t o c o m m e n t o n t h i s a p p a r e n t n o n p a r t i c i p a t i o n of
N0
2
+
i n n i t r a t i o n r e a c t i o n s because t h e r e is n o w c o n s i d e r a b l e k i n e t i c e v i d e n c e o n w h a t happens when H N 0
2
is a n o x i d a n t i n s o l u t i o n .
T h e Ingold school, a n d specifically
C . A . B u n t o n a n d G . S t e d m a n i n E n g l a n d , h a v e e l a b o r a t e l y s t u d i e d t h e k i n e t i c s of t h e r e a c t i o n of n i t r o u s a c i d w i t h a z i d e i o n .
T h e y conclude t h a t the active inter
m e d i a t e , o r a n a c t i v e i n t e r m e d i a t e is H N 0
2
2
t h e a n h y d r i d e of H N 0 2
2
+
+
.
T h e y offer e v i d e n c e t h a t N O * ,
, is n o t a c t i v e i n the k i n e t i c s , a n d i n f a c t , o n l y w h e n N O *
is a t t a c h e d t o o t h e r t h i n g s does i t b e c o m e l a b i l e a n d a g o o d o x i d a n t . f u r t h e r e v i d e n c e for t h i s . m e t h o d for NOz~.
T h e r e is
H i d d e n i n t h e a n a l y t i c a l l i t e r a t u r e (0) is a n i n c r e d i b l e
T h e m e t h o d is t o reduce n i t r a t e i n c o n c e n t r a t e d s u l f u r i c a c i d
w i t h ferrous i o n g i v i n g a q u a n t i t a t i v e t w o - e l e c t r o n r e d u c t i o n of t h e n i t r a t e .
To
m e , t h i s m e a n s t h a t N O * i s a t least a l i k e l y p r o d u c t a n d t h a t i t i s i n e r t . R e c e n t l y I h a v e a l s o h e a r d f r o m one of S z a b o ' s c o l l a b o r a t o r s ( B a r t h a ) a t Szeged i n H u n g a r y t h a t o x a l a t e i n c o n c e n t r a t e d s u l f u r i c a c i d reduces n i t r a t e b y t w o e q u i v a l e n t s , a g a i n i n d i c a t i n g t h a t N O * is i n e r t .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
234
MECHANISMS OF INORGANIC
REACTIONS
Simply by inference, I suggested to one of m y organic friends recently that maybe N 0 2 is inert. +
It is isoelectronic with CO2, has a higher charge on the cen
tral atom, and ought to be unreactive.
B y analogy with H N O 2 kinetics (/, 10),
H2NO3* " may be the kinetically active species of nitrate. 1
I think Prof. Duke has
offered a strong indication that that is so. Dr. Duke:
I would like to warn D r . Haight that organic mechanisms are not
that easily destroyed.
B u t I will let him go ahead and destroy if if he really
chooses to do so. Harry Gray:
I would like to ask D r . Gruen about the nitrate melts.
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
T h e nitrate ion itself has its first spin-allowed but orbitally-forbidden transi tion at about 3000 A . in aqueous solution, e = 7.
Nitrate ion is planar in the ground
state and in this Dzh symmetry, the band at 3000 Α . , it is orbitally forbidden. If the oxygens in nitrate are bent to form a pyramidal ion, one observes, not a substantial movement in energy of this band, but a substantial increase in intensity because the band becomes orbitally allowed if the planar symmetry is destroyed. I think the intensity is probably a fairly sensitive function of distortion, and I wonder if you have looked in this region to get additional information from the spectra on the structure of the nitrate ion in these melts. I would also like you to speculate on whether the nitrate is bidentate or monodentate. Dr. Gruen: have.
W e have not looked at this particular band, but other people
Pedro Smith at O a k Ridge, for example, has made an extensive study of
this particular band for pure alkali nitrates and finds substantial variations in i n tensity, depending on whether he is looking at lithium, sodium, or potassium nitrate. H e interprets these effects, if I recall correctly, as owing to polarization effects re sulting in slight distortions of the nitrate group.
A s far as our work is concerned
we have not studied these charge transfer bands, and in fact we would not be able to pick up intensity changes because our transition metal ion concentrations are 10~ M. 2
T h e effect of the transition metal ion on the nitrate absorption would be
very difficult to measure.
Y o u r point certainly raises a very interesting problem.
One may learn something about the structure of the nitrate group in the melt b y detailed consideration of the first band. Dr. Gray:
I have observed that in some cases the € of that band goes well
over 1,000, in one case to 5,000. Dr. Duke:
A l l of these equilibrium constants involving oxide ion, such as a
carbonate going to oxide ion in the nitrates, are much too large.
I believe that we
are getting orthonitrate here and would like to have some comments on that. Leonard K a t z i n : tion spectrum.
M y first point refers to the question of the nitrate absorp
If one goes back a decade or more in the literature, there are ob
servations on this peak of a nitrate in nonaqueous solutions of inorganic salts, and I don't believe that the wave length stays
fixed.
It shifts toward shorter wave
lengths—not a great deal, but perceptibly (5). I have doubts about the nonplanarity.
Our infrared studies (4) on some nitrate
salts in nonaqueous systems indicate that we are taking one of these nitrates, tying it down, and shifting the vibrational pattern.
B u t whether or not a nonplanarity
occurs with this, I can't say.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
9.
DUKE
Discussion
235
I a m i n t r i g u e d b y one a s p e c t of P r o f . D u k e ' s w o r k , n a m e l y , t h a t a c o o r d i n a t i o n n u m b e r a n d c o n f i g u r a t i o n c h a n g e of t h e c a t i o n o c c u r s . to metal ion situations.
T h i s has certain analogies
I t raises i n t e r e s t i n g a n d p r o v o k i n g q u e s t i o n s .
I w o u l d l i k e t o a d d r e s s m y s e l f t o t h e s e c o n d p a r t of D r . G r a y ' s
Dr. Gruen: question.
W e have considered how m a n y nitrate groups are a r o u n d a m e t a l i o n .
T o get
s i x - f o l d c o o r d i n a t i o n one m a y h a v e s i x n i t r a t e g r o u p s o r m o n o d e n t a t e , o r f o u r w i t h t w o b i d e n t a t e a n d t w o m o n o d e n t a t e , o r t h r e e w i t h t h r e e of t h e m a c t i n g b i d e n t a t e , o r t w o w i t h t w o of t h e m a c t i n g t r i d e n t a t e . T o d i s t i n g u i s h a m o n g these a l t e r n a t i v e s o n the basis of m e l t s p e c t r a is i m p o s
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
sible, I t h i n k .
I h a v e been i n t e r e s t e d i n f o l l o w i n g t h e w o r k of P i p e r I b e l i e v e , w h o
h a s i s o l a t e d d o u b l e s a l t s of t h i s t y p e , o r s i m i l a r t h i n g s , i n w h i c h I b e l i e v e t h i s s i t u a tion is found. A s f a r a s I k n o w , c r y s t a l s t r u c t u r e s t u d i e s h a v e n o t been p u b l i s h e d o n t h i s k i n d of c o m p o u n d .
B u t I t h i n k t h e y w o u l d be r e v e a l i n g a n d b y a n a l o g y p e r h a p s t e l l
us s o m e t h i n g a b o u t t h e m e l t s i t u a t i o n .
If one c a n d e t e r m i n e — a n d I a m sure i t i s
possible b y x - r a y a n a l y s i s of these c o m p o u n d s — w h a t
the nitrate coordination is
a r o u n d t h e m e t a l i o n , one m i g h t be a b l e t o i n f e r s o m e t h i n g a b o u t t h e m e l t s i t u a t i o n . Dr. Jordan:
I should like to reorient the discussion to the question
D u k e addressed to the audience.
Prof.
If I understood this question correctly i t referred
t o t h e d e t a i l e d n a t u r e , t h e f o r m , i n w h i c h t h e o x i d e i o n m a y be p r e s e n t i n m o l t e n nitrates.
H e suggested t h a t t h i s m a y w e l l be t h e i o n N O 4 " .
T h i s is a n i t r a t o
3
s o l v a t e of t h e i o n Or —i.e.,
0 ~ · NO3".
2
2
I p r e s u m e t h a t one c a n v i s u a l i z e i n a m a s
s i v e c a r b o n a t e m e l t a s i m i l a r aggregate, v i z . , Ο · CO3 » o r C O 4 - . - 2
-2
4
T h i s is related
t o t h e n a t u r e of t h e species a c t u a l l y p r e s e n t i n c o n v e n t i o n a l s o l v e n t s , w h i c h a r e ignored i n chemical formula-writing shorthand.
T h e solvated hydrogen is quite
different i n a q u e o u s s o l u t i o n f r o m w h a t i t is i n g l a c i a l a c e t i c a c i d .
A r e there a n y
suggestions r e g a r d i n g t h e n a t u r e of t h e " s o l v a t e d o x i d e i o n " i n m o l t e n s a l t s ? I feel t h a t o r t h o n i t r a t e i s v e r y r e a s o n a b l e .
F o r carbonate I would postulate
the analog. Dr. Y a l m a n : Dr. Jordan: Dr. Yalman:
Y e s , t h e p r o t o n a n d t h e o x i d e i o n are n o t a n a l o g o u s . I c e r t a i n l y agree t h a t t h e y are n o t a n a l o g o u s i n a l l respects. T h e o x i d e d o e s n o t h a v e t o be s o l v a t e d i n t h e s a m e w a y t h a t t h e
proton or electron is solvated. Dr. Jordan:
D o y o u feel t h a t t h e o x i d e i o n i s u n s o l v a t e d i n t h e m e l t s ?
I did
not i n t e n d to i m p l y a complete analogy between oxide ions a n d protons. Dr. Yalman:
I t h i n k t h e a n a l o g y b e t w e e n t h e o x i d e a n d t h e p r o t o n is a b a d
one, a n d I d o n ' t t h i n k t h a t t h e o x i d e i o n h a s t o be n e c e s s a r i l y s o l v a t e d i n t h e s a m e w a y t h a t w e a c c e p t t h e s o l v a t i o n of a p r o t o n o r a n e l e c t r o n . Arthur Adamson:
A c t u a l l y , D r . H a r r i s is the better m a n to make this p a r
ticular r e m a r k , I suspect.
I n t h e case of o x a l a t e c o m p l e x e s i t seems n e c e s s a r y t o
a s s u m e a n o r t h o o r h y d r a t e d f o r m u l a t i o n of one e n d of a n o x a l a t e as i t d e t a c h e s f r o m t h e c o o r d i n a t i o n sphere i n o r d e r t o e x p l a i n t h e 0
1 8
exchange.
T h i s is not
e x a c t l y w h a t y o u are t a l k i n g a b o u t , b u t i t is a n i l l u s t r a t i o n of one i n s t a n c e w h e r e o r t h o a c i d f o r m a t i o n seems d e s i r a b l e . Michael E . Mirhej:
I p r o p o s e t h a t t h i s m i g h t be a p o l y m e r of a s t r u c t u r e
similar to either tungstates or
phosphates.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
236 Literature
MECHANISMS OF INORGANIC REACTIONS Cited
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch009
(1) (2) (3) (4) (5) (6)
B u n t o n , C. Α., S t e d m a n , G., J. Chem. Soc. 1959, 3466. G e c k l e , T. E., Thesis, P e n n s y l v a n i a State U n i v e r s i t y , 1964. H a r r i s , R. L., W o o d , R. E., R i t t e r , H. L., J. Am. Chem. Soc. 73, 3151 (1951). K a t z i n , L. I., J. Inorg. Nucl. Chem. 24, 245 (1962). K a t z i n , L. I., J. Chem. Phys. 18, 789 (1950). Holthoff, I. M., L i n g a n e , J. J., " P o l a r o g r a p h y , " V o l . I, P. 409, Interscience, N e w Y o r k , 1952. (7) O y e , H., G r u e n , D. M., Inorg. Chem. 3, 836 (1964). (8) Romberger, Κ. Α., P e n n s y l v a n i a State U n i v e r s i t y , unpublished results. (9) Scott, W i l f r e d W., ed., " S t a n d a r d M e t h o d s of C h e m i c a l A n a l y s i s , " 6th e d i t i o n , V a n N o s t r a n d , P r i n c e t o n , 1962. (10) S t e d m a n , G., J. Chem. Soc. 1959, 2943, 2946. (11) Swofford, H. S., L a i t i n e n , Η. Α., J. Electrochem. Soc. 110, 814 (1963). (12) V a n N o r m a n , J. D., Osteryoung, R. Α., Anal. Chem. 32, 398 (1960).
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.