65
Acidity,
Accessibility,
and
Stability
of
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch065
Hydroxyl Groups in Y-Zeolites L. MOSCOU Koninklijke Zwavelzuurfabrieken v/h Ketjen N.V., P.O. Box 15-C, Amsterdam, The Netherlands
Determination of acidic OH groups in Y-zeolites by LiAlH reaction and Karl Fischer titration indicates that after heat ing to 200°-300°C, REY zeolite contains only OH groups in α-cages equivalent to one OH for each rare earth ion in troduced. Further heating causes dehydroxylation, which is accompanied by a new formation of Bronsted sites in α-cages, up to a maximum of half the amount present at 250°C. In NH Y zeolite, deammoniation causes OH group formation in both a- and β-cages. Fully exchanged N H Y zeolite contains 10 OH groups in α-cages per gram of zeo lite. HY zeolite behavior compares well with the NH Y zeolite properties. The data support the assumption that OH groups with 3640 cm infrared frequency are the acces sible OH groups in a-cages. 4
4
4
21
4
-1
/ C a t a l y t i c properties o f c r y s t a l l i n e a l u m i n o s i l i c a t e s g e n e r a l l y are c o r r e ^
l a t e d w i t h a c i d i c species i n t h e zeolite f r a m e w o r k .
M a n y reports
d e a l w i t h t h e n a t u r e a n d l o c a t i o n of this a c i d i t y , w h i c h has b e e n exten s i v e l y i n v e s t i g a t e d w i t h i n f r a r e d spectroscopy b e f o r e a n d after r e a c t i o n of t h e zeolite w i t h b a s i c species. T h e l i m i t a t i o n of i n f r a r e d studies o n zeolites is t h e strong a d s o r p t i o n o f w a t e r , g i v i n g rise to b r o a d o v e r l a p p i n g b a n d s i n t h e i n f r a r e d s p e c t r u m . F o r this reason, o n l y those zeolites c a n b e s t u d i e d w h i c h are h i g h l y d e h y d r a t e d , either b y h e a t i n g to 200 ° C a n d a b o v e or b y e v a c u a t i o n . Prior work (3) techniques—loss
has i n d i c a t e d that a c o m b i n a t i o n of 3 a n a l y t i c a l
of w e i g h t o n i g n i t i o n ( L O I ) , K a r l F i s c h e r t i t r a t i o n
( K F ) , a n d reaction w i t h L i A l H — r e s u l t s i n quantitative data o n the 4
a m o u n t of a c i d i c O H groups i n the zeolite, e v e n i n n o n h e a t e d w e t s a m ples.
This method discriminates between
acidic a n d non-acidic O H
337
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
338
MOLECULAR
Table I.
SIEVE
ZEOLITES
Measurement of Water and H y d r o x y l Groups in Y-Zeolites Measured Group
Position
LOI
KF
H 0 H 0 H 0 Acidic O H Nonacidic O H Acidic + nonacidic O H
Between crystallites α-Cages β-Cages α-Cages α-Cages β-Cages
X X X X X X
X X
2
2
2
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch065
Π
Table II.
N a Y zeolite sample R E Y zeolite sample R E Y zeolite sample R E Y zeolite sample N H Y zeolite s a m p l e N H Y zeolite sample H Y zeolite sample 4
LiAlH
4
X X X
Chemical Analysis of Zeolites ( D r y Basis) %
4
With
Να,Ο 13.7 3.53 5.90 9.1 5.95 0.54 5.90
A Β C D Ε F G
%
REzOz
%ΝΗ;
16.1 12.9 7.2 4.02 7.7
g r o u p s a n d also b e t w e e n g r o u p s present i n the supercages
(α-cages)
of
the c r y s t a l a n d groups present i n sodalite cages ( β - c a g e s ) a n d h e x a g o n a l prisms. T h e present p a p e r deals w i t h the a p p l i c a t i o n of these t e c h n i q u e s to s t u d y the f o r m a t i o n , a c c e s s i b i l i t y , a n d s t a b i l i t y o f a c i d i c h y d r o x y l g r o u p s i n Y - t y p e zeolites. C o m p a r i s o n is m a d e b e t w e e n N a Y , R E Y , N H Y , a n d 4
H Y zeolites. Experimental T h e analytical techniques p a p e r (3).
u s e d are d e s c r i b e d f u l l y i n the
earlier
A s u m m a r y is g i v e n i n T a b l e I, s h o w i n g t h e v a r i o u s m e t h o d s
a n d the groups d e t e r m i n e d b y t h e m . T h e L O I is d e f i n e d as t h e w e i g h t loss of the heat-treated s a m p l e o n its subsequent c a l c i n a t i o n at 1000 ° C for 1 h r . T h u s , it gives the s u m of r e s i d u a l w a t e r a n d O H g r o u p s w h i c h c a n b e d e h y d r o x y l a t e d at 1 0 0 0 ° C . F o r N H - c o n t a i n i n g zeolites, the L O I is c o r r e c t e d f o r the w e i g h t of 4
NH
3
i n the s a m p l e .
T h e K F t i t r a t i o n m e t h o d is b a s e d o n t h e r e a c t i o n
of w a t e r w i t h i o d i n e a n d S 0 ; a possible s l o w r e a c t i o n of h y d r o x y l groups 2
w i t h the reagent is e x c l u d e d b y e x t r a p o l a t i n g the t i t r a t i o n c u r v e to zero t i m e , w i t h constant excess of reagent (4).
T h e analysis w i t h L i A l H
4
is
b a s e d o n its r e a c t i o n w i t h w a t e r a n d a c i d i c h y d r o x y l groups, b o t h u n d e r e v o l u t i o n of h y d r o g e n gas.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
65.
Moscou
Hydroxyl
Groups in
Acidity of H y d r o x y l Groups.
339
Ύ-Zeolites
T a b l e I shows that t h e a m o u n t of
a c i d i c O H g r o u p s ( B r o n s t e d sites, O H ) i n α-cages is o b t a i n e d b y t a k i n g +
the difference b e t w e e n L i A l H
4
a n d K F titrations. E a r l i e r w o r k i n d i c a t e d
that e v e n w e a k l y a c i d i c s i l a n o l g r o u p s i n a m o r p h o u s s i l i c a react q u a n titatively w i t h L i A l H ^
(I).
4
E a c h hydrogen i o n w i t h a n a c i d strength
s i l a n o l a c i d i t y is e x p e c t e d t o react w i t h t h e reagent.
Basic hydroxyl
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch065
g r o u p s l i k e those present i n rare e a r t h h y d r o x y d e s are i n e r t to L1AIH4. Accessibility of Acidic H y d r o x y l Groups.
T h e difference
between
L1AIH4 a n d K F t i t r a t i o n d a t a gives the a c i d i c O H content i n α-cages o n l y because n e i t h e r t h e L1AIH4 n o r t h e i o d i n e m o l e c u l e c a n enter t h e β-cage. Stability of Acidic H y d r o x y l Groups.
T h e s t a b i l i t y of a c i d i c O H
g r o u p s is i n v e s t i g a t e d b y t i t r a t i n g zeolites after v a r i o u s heat treatments. C a r e w a s t a k e n that d u r i n g h a n d l i n g of t h e heat-treated
zeolite o n l y
n e g l i g i b l e a m o u n t s of w a t e r c o u l d b e r e a d s o r b e d . Zeolite Preparation.
N a Y zeolite, o b t a i n e d f r o m U n i o n C a r b i d e ,
L i n d e D i v i s i o n , w a s p u r i f i e d f r o m free s o d i u m silicate b y r e p e a t e d w a s h i n g w i t h w a t e r u n t i l t h e m o l a r r a t i o of t h e zeolite w a s N a 0 : A l 0 : S i 0 2
=
1.03:1.00:4.90.
2
3
2
T h e R E Y zeolites w e r e o b t a i n e d f r o m t h e p u r i f i e d
N a Y z e o l i t e b y exchange of s o d i u m ions w i t h rare earth ions i n R E C 1
3
s o l u t i o n . N H Y zeolites w e r e o b t a i n e d b y t r e a t i n g the p u r i f i e d N a Y zeo 4
lite w i t h NH4CI s o l u t i o n ( 5 0 % e x c h a n g e ) .
M o r e exchange steps w e r e
n e e d e d t o r e m o v e 9 5 % o f t h e N a ions. H Y z e o l i t e w a s o b t a i n e d f r o m +
the p u r i f i e d N a Y z e o l i t e b y t r e a t i n g a z e o l i t e - w a t e r suspension w i t h a w e a k l y a c i d i c i o n - e x c h a n g e r e s i n i n the p r o t o n f o r m at 2 0 ° C (2).
Table
I I shows t h e c h e m i c a l c o m p o s i t i o n of the zeolites o b t a i n e d . A l l zeolites w e r e h i g h l y c r y s t a l l i n e i n x-ray analysis. Results A n a l y s i s d a t a of 4 samples of zeolites are s u m m a r i z e d i n T a b l e I I I , w h e r e N a Y , R E Y , N H Y , a n d H Y zeolites are c o m p a r e d . F o r e a c h zeo 4
lite, 3 sets of d a t a are g i v e n : t h e loss o n i g n i t i o n , t h e difference b e t w e e n LOI
a n d L1AIH4 =
H
2
0 - f O H i n β-cages
α - c a g e s ) , a n d t h e difference b e t w e e n L i A l H α-cages.
4
( a n d nonacidic O H i n and K F =
acidic O H i n
N o n a c i d i c O H i n α-cages c a n n o t b e d i s t i n g u i s h e d separately
a n d h e n c e are n o t d i s c u s s e d f u r t h e r .
H e a t p r e t r e a t m e n t o f zeolites w a s
c a r r i e d o u t i n 2 w a y s — i . e . , h e a t i n g f o r a f e w h o u r s at a constant
tem
p e r a t u r e a n d h e a t i n g at a constant rate of 1 0 ° C / m i n u n t i l a g i v e n t e m p e r ature is r e a c h e d . X - r a y d i f f r a c t i o n analysis o f t h e v a r i o u s heat-treated
samples i n
dicates that f r a m e w o r k collapse occurs a b o v e the f o l l o w i n g
tempera
tures: N a Y , 8 0 0 ° C ; R E Y , 9 0 0 ° C ; N H Y , 8 0 0 ° C ; H Y , 8 0 0 ° C .
T h e data
4
i n T a b l e I I I s h o w that i n N a Y z e o l i t e n o a c i d i c O H g r o u p s are present
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
340
MOLECULAR
Table III. NaY,
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch065
Pretreatment Temp., °C At At Till Till Till Till Till Till Till Till Till Till a
LOI
H0 2
Sample A +
OH
(»
120 160 200 250 300 350 400 500 600 700 800 900
SIEVE
LOI
(«)
7.9 10.3
3.4 2.9
0.0 0.0
4.1
2.1
0.0
2.0 1.6 1.3 1.0
1.1 1.1 0.9 0.6
0.0 0.1 0.0 0.0
II
A n a l y s i s o f Zeolites, REY,
0H+
ZEOLITES
H0 2
Sample
Β
+ OH (β)
0H+
(«)
15.3 8.0 19.4
5.8 3.9 4.2
0.0 1.0 0.0
4.8 4.5 2.9 2.4 1.9 1.6 1.4 0.6
2.5 3.4 1.8 1.7 1.3 1.1 1.1 0.4
0.9 0.3 0.5 0.5 0.5 0.4 0.1 0.0
All data in % H 0 d.b. 2
i n «-cages.
T h e m a x i m a l a c i d i c O H - a content f o u n d f o r t h e 3 R E Y
zeolites u n d e r i n v e s t i g a t i o n is g i v e n i n T a b l e I V , c o m p a r i n g t h e e x p e r i m e n t a l l y f o u n d values w i t h t h e values c a l c u l a t e d f r o m t h e R E content of t h e z e o l i t e , a s s u m i n g that e a c h R E i o n gives o n e a c i d i c O H g r o u p ( 5 ) . T a b l e I V i n d i c a t e s that e a c h rare e a r t h i o n i n t h e zeolite forms a p p r o x i m a t e l y one a c i d i c h y d r o x y l g r o u p i n α-cages. In
F i g u r e 1, t h e difference b e t w e e n
L O I and L i A l H
4
is p l o t t e d
against t h e L O I f o r t h e 4 types o f zeolites u n d e r i n v e s t i g a t i o n . I t shows that t h e curves f o r t h e R E Y a n d N a Y zeolites a b o v e 4 . 5 % L O I are n e a r l y i d e n t i c a l . A t l o w e r L O I v a l u e s , the R E Y c u r v e is i d e n t i c a l to t h e N H Y 4
a n d H Y curves. T h e t h e r m a l s t a b i l i t y of a c i d i c O H groups i n α-cages is s h o w n i n F i g u r e 2. T h e c u r v e f o r R E Y zeolite shows 2 characteristics—viz.,
a sig
n i f i c a n t m i n i m u m i n t h e c u r v e at temperatures b e t w e e n 3 5 0 ° a n d 500 ° C , a n d t h e h e i g h t of t h e s e c o n d p a r t of t h e c u r v e is h a l f that of t h e first p a r t of t h e c u r v e . these
A l l 3 R E Y zeolite samples
( B , C , and D ) showed
characteristics.
T h e results f r o m t h e N H Y 4
a n d H Y zeolite analysis are g i v e n i n
T a b l e s I I I a n d V a n d i n F i g u r e s 1 a n d 2. F i g u r e 1 indicates that f o r b o t h N H Y a n d H Y zeolites, t h e content 4
of w a t e r a n d O H g r o u p s i n β-cages is s i g n i f i c a n t l y h i g h e r t h a n f o r N a Y a n d R E Y zeolites, w h i c h indicates that i n contrast to N a Y a n d R E Y , t h e N H Y a n d H Y zeolites d o c o n t a i n O H groups i n t h e β-cages. 4
T h i s agrees
w e l l w i t h t h e d a t a i n T a b l e s I I I a n d V , s h o w i n g that N H Y s a m p l e Ε 4
exposes a m a x i m u m of a c i d i c O H groups i n α-cages after a 250 ° C treat-
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
65.
Moscou
Hydroxyl
Groups in
341
Y-Zeolites
Dried at Different Temperatures NH Y, 4
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch065
LOI
H0 2
10.4 15.8 6.0
Sample + OH (β) 5.2 5.9 3.9
3.9 3.6 2.8 1.9 1.6
2.8 2.4 1.9 1.3 1.0
Table I V .
Ε
HY, Sample
OH+
LOI
H0 2
(«) 0.8 0.0 1.1
0.6 0.6 0.4 0.1 0.2
+
(»
OH
G OH+ («)
11.8 21.9
7.9 6.4
0.0 0.0
6.4
5.1
0.4
3.6 3.4 1.6 1.3 1.3
2.5 2.6 0.9 0.7 0.8
0.7 0.6 0.4 0.4 0.2
Comparison of Measured and Calculated O H (a) Densities in R E - Y Zeolites Measured
Sample R E Y sample Β R E Y sample C R E Y sample D
Max. OH (a) content, %H 0 2
1.04 0.82 0.58
Calculated
Number of OH (a) per gram zeolite 6.9 Χ 1 0 5.5 Χ 1 0 3.9 Χ 1 0
20 20 20
%
RE O in zeolite 2
16.1 12.9 7.2
z
Number of (λ per gram zeolite 6.4 Χ 1 0 5.2 Χ 1 0 2.9 Χ 1 0
20 20 20
Figure 1. Relation between the difference of LOI and LiAlHt (H 0 + OH in β-cages and nonacidic OH in α-cages) and foss on ignition for Y-type zeolites 2
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
342
MOLECULAR SIEVE ZEOLITES II
Acidic 1 2 , OH in o c c a g e s ( % H 0 ) 2
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch065
RE-Y HY 2 0 0 4 0 0 6 0 0 8 0 01 0 0 0 >P r e t r e a t m e n t t e m p (°C) Figure 2.
Thermal stability
of acidic OH groups in α-cages zeolites
of
Y-type
m e n t w h i c h is exactly h a l f the a m o u n t of O H g r o u p s , as c a l c u l a t e d f r o m the N H
content of the zeolite.
4
F o r the H Y zeolite, 1/3
a m o u n t of O H g r o u p s is present i n α-cages.
of the t o t a l
T h e temperature
regions
w h e r e f o r m a t i o n a n d d e h y d r o x y l a t i o n of O H g r o u p s i n α-cages of H Y a n d N H Y zeolites o c c u r are clear f r o m F i g u r e 2. 4
Discussion I n N a Y zeolite, no a c i d i c h y d r o x y l groups are f o u n d i n α-cages;
the
presence of O H groups i n β-cages c a n n o t b e d e t e r m i n e d q u a n t i t a t i v e l y , b u t seems v e r y u n l i k e l y f r o m i n f r a r e d studies
(10).
T h e m a x i m u m i n the a c i d i c O H content i n α-cages of R E Y zeolites is present after h e a t i n g the z e o l i t e to 2 0 0 ° - 3 0 0 ° C
(Figure 2), while under
these c o n d i t i o n s O H groups i n β-cages are p r o b a b l y absent, as c a n be i n f e r r e d f r o m the i d e n t i t y of the N a Y a n d R E Y curves i n F i g u r e 1. absolute
q u a n t i t y of O H ( a ) Table V .
groups is i n g o o d agreement w i t h
Max. OH (a) content. % H0 2
N H Y sample Ε 4
1.06
Number of OH (a) per gram zeolite 7.1 X 10
2(
Δ = 2.5 X N H Y sample F
1.44
9.6 X
10 )
H Y sample
0.69
4.6 X
10
4
G
the
Comparison of Measured and Calculated Measured
Sample
The
10 ' 2
20
20
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
65.
Moscou
Hydroxyl
343
Groups in Y-Zeolites
p r o p o s e d f o r m a t i o n of a c i d sites b y P l a n k ( 5 ) RE + (H 0) 3
2
> [RE(OH)] + + H+ 2
w h e r e e a c h rare e a r t h i o n f o r m s o n e B r o n s t e d site ( T a b l e I V ) . A t h i g h e r temperatures ( 3 0 0 ° - 4 0 0 ° C ) , d e h y d r o x y l a t i o n o c c u r s ; t h e d i s t i n c t m i n i m u m i n the R E Y c u r v e of F i g u r e 2 indicates that at t h e same Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch065
m o m e n t n e w h y d r o x y l s a r e f o r m e d b y another d i s s o c i a t i o n of w a t e r m o l e c u l e s , u p to a m a x i m u m w h i c h has h a l f t h e v a l u e of t h e l o w - t e m p e r a t u r e m a x i m u m . P e r h a p s this c a n b e e x p l a i n e d b y t h e d e h y d r o x y l a t i o n m e c h a n i s m w h e r e 5 0 % of t h e O H g r o u p s lose t h e i r o x y g e n a t o m d u r i n g dehydroxylation a n d consequently cannot be restored b y a n e w l y f o r m e d p r o t o n . It is l i k e l y that t h e increase i n the R E Y c u r v e i n F i g u r e 1 d u r i n g d r y i n g f r o m 5 to 4 % L O I ( w h i c h occurs b e t w e e n 3 0 0 ° a n d 4 0 0 ° C u n d e r t h e c o n d i t i o n s u s e d ) is c a u s e d b y t h e f o r m a t i o n o f O H groups i n t h e β-cage system. T h e o b s e r v e d f o r m a t i o n a n d d e h y d r o x y l a t i o n of B r o n s t e d sites i n R E Y zeolite c a n b e s u m m a r i z e d as f o l l o w s : b e t w e e n 2 0 0 ° a n d 3 0 0 ° C e a c h R E i o n dissociates one w a t e r m o l e c u l e w i t h t h e f o r m a t i o n of o n e B r o n s t e d site i n α-cages, f o l l o w e d b y a d e h y d r o x y l a t i o n b e t w e e n and 400°C.
300°
T h i s is a c c o m p a n i e d b y a n e w d i s s o c i a t i o n of w a t e r m o l e
cules, g i v i n g rise to | B r o n s t e d site i n α-cages f o r e a c h R E i o n a n d to t h e f o r m a t i o n of O H groups i n β-cages. T h i s is i n reasonable agreement w i t h W a r d ' s c o n c l u s i o n that f o r e v e r y 3 exchange sites a m a x i m u m of 2 B r o n s t e d sites are f o r m e d i n R E Y zeolite ( 8 ) .
T h e t h e r m a l s t a b i l i t y c u r v e f o r a c i d i c O H ( a ) groups i n
R E Y zeolites is i n r e m a r k a b l e agreement w i t h its a l k y l a t i o n a c t i v i t y c u r v e as g i v e n b y V e n u t o ( 7 ) . T h e analysis of N H Y zeolites shows that ex 4
c h a n g e of N a b y N H +
4
+
p r i m a r i l y results i n e q u a l amounts of O H groups
i n a- a n d β-cages ( T a b l e V , S a m p l e E ) . E x c h a n g e of t h e m o r e d i f f i c u l t l y e x c h a n g e a b l e N a ions m a i n l y leads H
to inaccessible O H groups i n β-cages
( T a b l e V , Δ b e t w e e n samples Ε
a n d F ) , w h i c h is i n agreement w i t h W a r d ' s conclusions (10).
T h i s agree-
O H ( a ) Densities in N K U Y and H Y Zeolites Calculated % NH in zeolite A
4.02 7.7
Ratio of Measured OH (a) and Total Number of OH
Total number of OH (a) per gram zeolite 14.0 Χ 1 0
20
27.0 X 10* 14.0 Χ 1 0
20
Δ =
13 X 10 ' 2
1 : 2.0 1 : 5.2 1 : 2.7 1 : 3.0
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
344
M O L E C U L A R SIEVE
ZEOLITES
II
m e n t supports t h e a s s u m p t i o n that O H groups w i t h 3640 c m " i n f r a r e d 1
f r e q u e n c y are the accessible O H groups i n α-cages of t h e zeolite
(6,9,11).
T h e b e h a v i o r o f H Y z e o l i t e resembles c l o s e l y that o f N H Y z e o l i t e ; h o w 4
ever, i t is s u r p r i s i n g that H Y z e o l i t e does n o t s h o w accessible O H g r o u p s after l o w - t e m p e r a t u r e d r y i n g o f t h e samples.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch065
Acknowledgment T h e a u t h o r is g r a t e f u l t o M . L a k e m a n a n d S. L u b f o r excellent as sistance i n t h e e x p e r i m e n t a l w o r k , a n d to P . G . M e n o n f o r m a n y v a l u a b l e c o m m e n t s a n d a d v i c e o n t h e m a n u s c r i p t . T h a n k s are d u e t o J . I. d e J o n g f o r h i s c o n t i n u o u s s t i m u l a t i n g interest i n this w o r k .
Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Moscou, L., unpublished results, 1967. Moscou, L., Dutch Patent Application 6713340. Moscou, L., Lakeman, M.,J.Catalysis 1970, 16, 173. Noll, W., Damm, K., Fauss, R., Kolloid-Z.1960,169, 18. Plank, C. J., Proc. Intern. Congr. Catalysis, 3rd, 1965, 1, 727. Uytterhoeven, J. B., Jacobs, P., Makay, K., Schoonheydt, R.,J.Phys. Chem. 1968, 72, 1768. Venuto, P. B., Hamilton, L. Α., Landis, P. S., Wise, J. J.,J.Catalysis 1966, 5, 81. Ward, J. W.,J.Catalysis 1969, 13, 321. Ward, J. W.,J.Phys. Chem. 1969, 73, 2086. Ward, J. W., Hansford, R. C.,J.Catalysis 1969, 13, 364. White, J. L., Jelli, A. N., André, J. M., Fripiat, J. J., Trans. Faraday Soc. 1967, 63, 461.
RECEIVED January 21, 1970.
Discussion J . R a b o ( U n i o n C a r b i d e R e s e a r c h Institute, T a r r y t o w n , Ν. Y . 10591 ) : Y o u r conclusions g e n e r a l l y agree w i t h t h e results w e r e p o r t e d at t h e last I n t e r n a t i o n a l C o n g r e s s o n C a t a l y s i s i n M o s c o w . W h a t rare e a r t h cations d i d y o u use, a n d w h a t w a s t h e total c a t i o n e q u i v a l e n t to a l u m i n u m r a t i o of y o u r catalyst p r e p a r a t i o n s ? L . M o s c o u : W e u s e d a c o m m e r c i a l l y a v a i l a b l e rare earth c h l o r i d e s o l u t i o n i n w h i c h t h e m a i n rare earth elements are l a n t h a n u m a n d c e r i u m . T h e t o t a l c a t i o n e q u i v a l e n t to a l u m i n u m ratio w a s b e t w e e n 1.00 a n d 1.05. D . A . H i c k s o n ( C h e v r o n R e s e a r c h C o . , R i c h m o n d , C a l i f . 9 4 8 0 2 ) : If, as s h o w n i n F i g u r e 2, a c i d i c h y d r o x y l g r o u p s i n a c i d - e x c h a n g e d Y zeolite
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
65.
Moscou
Hydroxyl
Groups in
345
Y-Zeolites
a p p e a r o n l y o n h e a t i n g above 200 ° C , w h e r e are these groups l o c a t e d i n t h e z e o l i t e structure b e l o w 2 0 0 ° C ? L . Moscou: I n o u r o p i n i o n , the H - Y c u r v e i n F i g u r e 2 i n d i c a t e s that at l o w e r temperatures the a c i d i c h y d r o x y l g r o u p s are l o c a t e d i n β cages a n d that t h e y m o v e i n t o a cages at . — 2 0 0 ° C .
These data support the
c o n c e p t of p r o t o n m o b i l i t y i n zeolites. Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch065
F. W . Kirsch ( S u n O i l C o . , M a r c u s H o o k , P a . 1 9 0 6 1 ) : C a n y o u t e l l m e the size r a n g e of samples u s e d f o r K a r l F i s c h e r a n d l i t h i u m a l u m i n u m h y d r i d e titrations? L . Moscou: T h e size of samples d e p e n d s strongly o n the w a t e r c o n tent a n d thus o n p r e t r e a t m e n t t e m p e r a t u r e of the s a m p l e .
In practice,
it varies b e t w e e n 0.1 a n d 1.0 g r a m . P. Chu
( M o b i l R e s e a r c h & D e v e l o p m e n t C o r p . , P a u l s b o r o , N . J.
0 8 0 6 6 ) : I a m v e r y interested i n the w a y y o u p r e p a r e d the H - Y s a m p l e . W h y d i d w e a k l y a c i d i c o r g a n i c exchange resins h a v e to b e used?
What
degree of exchange c a n y o u a c h i e v e w i t h o u t d a m a g e to the z e o l i t e struc ture? H o w stable t h e r m a l l y is the final H — Y s a m p l e ? L . Moscou: G e n e r a l l y , w e a k l y a c i d i c i o n exchange resins h a v e b e e n u s e d i n o r d e r to p r e v e n t loss of z e o l i t e c r y s t a l l i n i t y . T h i s m e t h o d enables one to exchange at least 7 5 % of the s o d i u m i n Y - t y p e zeolites. s t a b i l i t y of these H - N a - Y zeolites is b e t w e e n 7 0 0 ° a n d 8 0 0 ° C .
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Thermal