ACS Award in Theoretical Chemistry: Peter Pulay - C&EN Global

Jan 2, 2017 - As a chemist, I have at first struggled with many-body quantum theory. Fortunately, physicist friends helped me to overcome this. The fr...
2 downloads 11 Views 2MB Size
CREDIT: UNIVERSITY OF ARKANSAS UNIVERSITY RELATIONS (PULAY); PATRICK O’LEARY/U OF MINNESOTA (QUE); JEFF HANSON (SIGMAN); GENIE LEMIEUX/EVANSTON PHOTOGRAPHIC STUDIOS (SILVERMAN)

challenge: “The challenge of finding the funds, equipment, and the team to solve an exciting problem for which I have a great idea; the slow process of convincing an editor about a paper or a funding agency so that a great idea can come out or be pursued to fruition. And, sometimes, finding the right collaborators to work on a problem I deeply care about.” What his colleagues say: “Terry’s research has concentrated on clearly defined problems of both scientific and technological significance. He was one of the first to recognize the importance of molecularly based interdisciplinary research (biology and engineering) for advancing biochemical engineering. He defined new fields of research activities and thus provided new research opportunities for a whole generation of younger bioengineers.”—Wilfred Chen, University of Delaware

ACS Award in Theoretical Chemistry: Peter Pulay Sponsor: ACS Division of Physical Chemistry

Citation: For the analytical gradient method, NMR parameter calculations, local correlation concept, and direct inversion in the iterative subspace technique. Current position: Roger B. Bost Professor of Chemistry, Mildred B. Cooper Chair, University of Arkansas, Fayetteville Education: Diploma (M.S.) in chemistry, Eötvös L. University, Budapest, Hungary; Ph.D., theoretical inorganic chemistry, University of Stuttgart, Germany Pulay on the biggest research challenge he has had to overcome: “Our field was initially little appreciated by the chemical community. It was challenging to convince most chemists of the possibilities of quantum chemistry. My first focus was the simulation of vibrational spectra. As a chemist, I have at first struggled with many-body quantum theory. Fortunately, physicist friends helped me to overcome this. The fruitful cooperation with Wilfried Meyer (Germany) was especially important, and resulted in the first version of the general-purpose quantum chemistry program MOLPRO.” What his colleagues say: “Few quantum chemists have made a greater impact on chemistry than Peter Pulay. While everyone dreams of hitting one ‘home run,’ Pulay

has four: analytical gradient method, NMR parameter calculation, local correlation, and direct inversion in iterative subspace (DIIS). These are household terms in the field and part of nearly all quantum chemistry programs used by countless chemists.”—So Hirata, University of Illinois, Urbana-Champaign

ACS Award in Inorganic Chemistry: Lawrence Que Jr. Sponsor: Aldrich Chemical Co. Citation: For his many contributions to the field of inorganic chemistry that have profoundly impacted our understanding of the nature of high-valent iron centers in biology.

Current position: Regents Professor, University of Minnesota Education: B.S., chemistry, Ateneo de Manila University; Ph.D., chemistry, University of Minnesota

Que on what gets his creative juices going: “An unexpected twist in an experiment, an anomalous spectroscopic signal, and an unusual structure to make are all stimuli that get my creative juices going, providing opportunities to learn about what we do not understand. From a young age, I have always enjoyed solving puzzles. For me, bioinorganic chemistry presents puzzles that require me to connect the dots to discover how an active site metal center carries out its function.” What his colleagues say: “Larry has produced seminal papers over 35 years and is a leader in the development of this important interdisciplinary field between inorganic chemistry and biology.”—Karl Wieghardt, Max Planck Institute for Chemical Energy Conversion

ACS Award for Creative Work in Synthetic Organic Chemistry: Matthew S. Sigman Sponsor: MilliporeSigma Citation: For his creative, seminal work in synthetic organic chemistry, especially his innovative contributions to the Wacker oxidation and Heck reaction. Current position: Distinguished Profes-

ACS NEWS

sor & Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry, University of Utah Education: B.S., chemistry, Sonoma State University; Ph.D., organometallic chemistry, Washington State University

Sigman on what gets his creative juices going: “Pretty much everything! I often get inspiration while teaching—in the classroom, working with a researcher in my lab, or even while exploring a concept with one of my children. The process of summarizing and articulating my thoughts helps me focus on where we are in the field and what the gaps are, and what next questions are the most important.” What his colleagues say: “Matt Sigman is making lasting, creative contributions to synthesis both in reactions he develops and in insights revealed through his elegant mechanistic studies. He is highly productive and viewed widely as an intellectual force.”—Peter Stang, University of Utah

ACS Award for Creative Invention: Richard B. Silverman Sponsor: ACS Corporation Associates Citation: For his fundamental enzyme inhibitor work resulting in his invention of pregabalin, which has become the blockbuster drug Lyrica, marketed by Pfizer for fibromyalgia, neuropathic pain, spinal cord injury pain, and epilepsy. Current position: Patrick G. Ryan/Aon Professor, Chemistry of Life Processes Institute, Center for Molecular Innovation & Drug Discovery, and Center for Developmental Therapeutics, Northwestern University Education: B.S., chemistry, Pennsylvania State University; Ph.D., organic chemistry, Harvard University

Silverman on what gets his creative juices going: “The creative juices start to flow when I’m faced with failure (which occurs way too often) and from challenging problems of any nature. As all scientists know all too well, most experiments fail JANUARY 2, 2017 | CEN.ACS.ORG | C&EN

47

on their first iteration; even before repeating the experiment, I find myself rationalizing what could have happened and beginning to design the next set of experiments. This leads to ideas for new approaches, which are useful even if the original experiment is shown to work after it is repeated.” What his colleagues say: “Silverman has built a long and distinguished record of ingeniously designing molecules for selective inhibition of enzymes. His basic enzyme inhibitor work resulted in his invention of pregabalin, which has become the blockbuster drug Lyrica, marketed by Pfizer for fibromyalgia, neuropathic pain, spinal cord injury pain, and epilepsy.”—Stephen J. Benkovic, Pennsylvania State University

James Bryant Conant Award in High School Chemistry Teaching: Laura E. Slocum Sponsor: Journal of Chemical Education and ChemEd X Citation: For inspiring students to learn the beauty of our molecular world and for contributions to chemistry education as a researcher, editor, and exemplary educator. Current position: chemistry instructor, Heathwood Hall Episcopal School, Columbia, S.C. Education: A.S., respiratory therapy, Indiana University, Indianapolis; B.A., chemistry, Western Connecticut State University; M.S., chemistry, Ball State University

Slocum on what gets her creative juices flowing: “Facing the rigors of helping my students overcome their learning challenges. Some students will learn regardless of who teaches them; however there are others who face major learning challenges and fears. By helping each student to find ways of overcoming those challenges, no matter how big or small, I find great satisfaction. While not all of my students may become chemists, they are finding ways to expand their horizons.” What her colleagues say: “Laura Slocum has an outstanding record of achievement and engagement as a high school chemistry teacher. Her education research has been innovative, high-impact, and influential in not only chemistry education, but also science education.”—Marcy Towns, Purdue University

48

C&EN | CEN.ACS.ORG | JANUARY 2, 2017

ACS Award for Creative Work in Fluorine Chemistry: Antonio Togni Sponsor: ACS Division of Fluorine Chemistry

Citation: For research on electrophilic trifluoromethylation that combines rational experimental design, comprehensive analysis of mechanism, and detailed interpretation of structural influences on bonding and reactivity. Current position: professor of organometallic chemistry and vice-rector for doctoral studies, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland Education: Dipl., chemistry, ETH Zurich; Ph.D., chemistry, ETH Zurich

Togni on his scientific role model and why: “One is for sure John E. Bercaw of Caltech, the supervisor during my postdoc. From him I learned that tolerance and respect toward students and colleagues, and a good degree of modesty in science, are qualities more important than any prima-donna behavior. Another is Dieter Seebach, one of my teachers at ETH, for his exemplary integrity and rigor as a scientist.” What his colleagues say: “Professor Antonio Togni’s contribution to fluorine chemistry is greater than the simple discovery of new, useful reagents. The greatest importance of his research lies in his elevation of the discipline of fluorine chemistry by the creative utilization of chemical bonding principles to direct the synthesis of selectively fluorinated compounds.”— John Welch, University at Albany, State University of New York

ACS Award for Distinguished Service in the Advancement of Inorganic Chemistry: William B. Tolman Sponsor: Strem Chemicals Citation: For impactful contributions to our understanding of copper centers in biology and catalysis and outstanding leadership in service to the inorganic chemistry and larger community. Current position: Distinguished McKnight University Professor and chair of

the department of chemistry, University of Minnesota Education: B.A., chemistry, Wesleyan University; Ph.D., chemistry, University of California, Berkeley

Tolman on what gets his creative juices flowing: “Talking to students about their science and seeing new and unexpected data! In the next decade, I hope to continue to do good science, educate and motivate students, and play a key role in driving positive change in our profession and in the institutions with which I am affiliated, all for the greater good of society.” What his colleagues say: “Bill’s work on the synthesis, characterization, and reactivity of novel copper complexes relevant to copper-containing metalloenzyme active sites has been particularly impactful. He is deeply committed to the broader inorganic chemistry community and has shown this commitment through myriad activities that go well beyond the norm.”—Lawrence Que, University of Minnesota

Joel Henry Hildebrand Award in the Theoretical & Experimental Chemistry of Liquids: Salvatore Torquato Sponsor: ExxonMobil Research & Engineering Citation: For his numerous, unifying theoretical contributions to the statistical mechanics of liquids and glasses and how the interparticle interactions present discriminate among alternative crystal structures. Current position: professor of chemistry, Princeton University Education: B.S., mechanical engineering, Syracuse University; M.S., mechanical engineering, SUNY at Stony Brook; Ph.D., mechanical engineering, SUNY at Stony Brook Torquato on what gets his creative juices flowing: “I enjoy choosing research avenues less traveled because it provides the opportunity to invent new fields. I am fascinated by the fact that the results of research on rather abstract, basic questions often have practical implications.”

CREDIT: COURTESY OF LAURA SLOCUM; ETH CORPORATE COMMUNICATIONS (TOGNI); EILEEN HARVALA (TOLMAN); COURTESY OF SALVATORE TORQUATO

ACS NEWS

What his colleagues say: “Salvatore Torquato has played the role of a theorist’s theorist—bringing clarity and rigor to major conceptual features of the theory of liquids, the consequences of which have been refinement and expansion of our understanding of the structure and properties of liquids.”—Stuart A. Rice, James Franck Institute, University of Chicago

ACS Award for Achievement in Research for the Teaching & Learning of Chemistry: Marcy H. Towns Sponsor: ACS Exams Institute Citation: For research that has increased our understanding of undergraduate laboratory, physical chemistry, and group learning, which has positively impacted teaching and learning in chemistry. Current position: professor of chemistry, Purdue University Education: B.A., chemistry and mathematics, Linfield College; M.S., chemical education, Purdue University; Ph.D., physical chemistry, Purdue University

CREDIT: COURTESY OF MARCY TOWNS; TUFTS UNIVERSITY (WALT); COURTESY OF DOUGLAS WORSNOP

Towns on her scientific role model and why: “My dad modeled what it is like to be curious and ask questions about the world. When I was young, dad would look at constellations with me, or we’d talk about snow crystal formation and morphology. He’s been an enormous influence in my life and he still is.” What her colleagues say: “Marcy’s work to elaborate what laboratory instructors know and translate that into guidelines that help them adopt new and more successful pedagogies represents the best in advancing the learning of chemistry because of research.”—Thomas Holme, Iowa State University

Kathryn C. Hach Award for Entrepreneurial Success: David R. Walt Sponsor: Kathryn C. Hach Award Fund Citation: For inventing and commercializing microwell arrays that benefit research, medicine, and agriculture with tremendous impact on the economy through job and value creation. Current position: university professor,

Howard Hughes Medical Institute Professor, Tufts University Education: B. S., chemistry, University of Michigan; Ph.D., chemical biology, SUNY at Stony Brook

Walt on his scientific role model and why: “I’d have to say George Whitesides. He was my postdoctoral mentor and has been a stalwart supporter and friend for over three decades now. From George, I learned how to look outside of my narrow field for interesting and important problems. He views science as his playground and there is nothing that deters him; in fact, disproving dogma often attracts him. He enjoys being the only naysayer and then sets out to prove he’s right. And many times, he is. George is also a strong supporter of the people who have worked in his lab—another characteristic I admire and try to emulate.” What his colleagues say: “Walt is one of the most successful entrepreneurs in chemistry and perhaps all of science. He has a long record of translating technologies to the commercial sector and has founded multiple successful companies with an aggregate value over $20 billion and that employ thousands of people. His technologies have had a profound impact in the fields of medicine, agriculture, the environment, and pharmaceutical and chemical process control.”—Joseph M. DeSimone, University of North Carolina, Chapel Hill; North Carolina State University; and Memorial Sloan-Kettering Cancer Center

ACS Award for Creative Advances in Environmental Science & Technology: Douglas R. Worsnop Sponsor: ACS Division of Environmental Chemistry, Environmental Science & Technology, and Environmental Science & Technology Letters Citation: For pioneering research on gas-aqueous atmospheric chemistry and the development of the aerosol mass spectrometer, which has revolutionized atmospheric aerosol measurements. Current position: vice president, Aerodyne Research; professor of physics, University of Helsinki Education: B.A., chemistry, Hope College; Ph.D., chemistry, Harvard University Worsnop on what gets his creative juic-

ACS NEWS

es flowing: “My motivation is simple–

interacting with young people (students and postdocs), seeing new data, figuring out what makes sense and what doesn’t, then designing the next experiment. Sometimes even presenting results and interpretations, either orally or in manuscripts. I have been ‘doing’ physical chemistry experiments for over 40 years and am still driven as much as ever to invent, improve, and make the next ones work better. These days I do little ‘real’ work myself. Rather it is students and postdocs who do the work. It is those interactions that keep me going, with as much excitement and drive as I had as a student, now dedicated to atmospheric aerosol chemistry and physics.”

What his colleagues say: “Doug, his group, and his collaborators worldwide have created a new paradigm for applying mass spectrometry in atmospheric science, from laboratory chambers and flow reactors to ambient sampling on ground, mobile, and airborne platforms. The Aerodyne mass spectrometry group has delivered 250 mass spectrometry systems that are in active application, across the globe. Doug’s leadership has been crucial in training atmospheric scientists in instrument operation, data analysis, and science publication of chemical composition and processing of gases and condensed species underlying suspended aerosol in the atmosphere.”—John H. Seinfeld, California Institute of Technology

Frank H. Field & Joe L. Franklin Award for Outstanding Achievement in Mass Spectrometry: Vicki H. Wysocki Sponsor: Waters Corp. Citation: For her outstanding accomplishments in the development of surface-induced dissociation for native mass spectrometry structural characterization of noncovalent complexes. Current position: professor of chemistry and biochemistry, Ohio Eminent Scholar, Ohio State University Education: B.S., chemistry, Western Kentucky University; Ph.D., chemistry, Purdue University

Wysocki on her scientific role model and why: “Nobel Prize winner John Fenn moved to my department when I was an assistant JANUARY 2, 2017 | CEN.ACS.ORG | C&EN

49

professor at Virginia Commonwealth University and showed that you can set up a lab and do strong science without a huge group or a huge budget; he remained humble and attended our joint analytical chemistry group meetings and insisted he was just one of the students. Carol Robinson of Oxford is also a great role model. She worked in industry first and took eight years off to have children and has become one of the top scientists in the world today. Some people may see this as a single outlier datapoint, but I think it is simply an illustration that our ideas of what ‘works’ in a career are often false.”

What her colleagues say: “Her more recent research in the area of mass spectrometry of large protein complexes, which builds upon her fundamental studies of surface-induced dissociation, has provided structural biology research groups around the world with new approaches for macromolecule characterization. Fundamental studies of surface-induced dissociation (SID), which has been a focus of her research for the past

20-plus years, has led to the development of novel approaches for interrogation of macromolecule complexes, including the conformations of the protein complexes and subunits as well as stoichiometry of the subunits.”—Facundo Fernandez, Georgia Institute of Technology

Roger Adams Award in Organic Chemistry: Hisashi Yamamoto Sponsor: Organic Reactions Inc. and Organic Syntheses Inc. Citation: For pioneering and highly creative contributions to the development of methods for the catalytic asymmetric synthesis for carbon–carbon, carbon–oxygen, and carbon–nitrogen bond formations. Current position: professor and director of the Molecular Catalyst Research Center, Chubu University, Japan; professor emeritus, University of Chicago;

professor emeritus, Nagoya University; president, Chemical Society of Japan Education: B. S., organic chemistry, Kyoto University; Ph. D., organic chemistry, Harvard University

Yamamoto on his scientific role models: “My mentor is Professor E. J. Corey, since 1967 even until now! In addition, numerous chemists gave me important influences: Professors R. B. Woodward, H. Nozaki, R. Noyori, B. Sharpless, E. E. van Temelen, and H. Hironaka.” What his colleagues say: “Yamamoto’s most influential work has been in the ingenious design and development of Lewis and Brønsted acid catalysts for asymmetric synthesis. He is a pioneer in this field and continues to lead it. Yamamoto used extensive structural, spectroscopic, and computational studies to develop a fundamental understanding of the factors that govern the coordination of Lewis acids with organic substrates. His introduction of binaphthol in early 1980s as a key ligand for chiral catalysts was a forerunner of the extensive work on C2-symmetry-based chiral Lewis acid catalysts. His insights on and success with the rational design of Lewis and Brønsted acids helped establish accepted paradigms of modern molecular catalysis.”—Viresh Rawal, University of Chicago ◾

SHARE My ACS helps me share my passion for chemistry with all my students. I encouraged all of them to attend recent ACS on Campus events because it’s a great experience, especially for career training and learning how to communicate your science. I show my students the career options they have as chemistry majors, and even those that aren’t, I advise them on how they can use chemistry in their everyday lives. ACS gives me the resources to share advice on getting a recommendation letter from a professor and landing an internship.

LaKeisha McClary Member, 8 years

®

Connect to chemistry with ACS. Tell us your story at my.acs.org

American Chemical Society

50

C&EN | CEN.ACS.ORG | JANUARY 2, 2017

®

American Chemical Society

CREDIT: COURTESY OF VICKI WYSOCKI; COURTESY OF HISASHI YAMAMOTO

ACS NEWS