ACS Journals Celebrate 10 Years of Perovskite Photovoltaics - ACS

Apr 17, 2019 - Department of Chemistry & Biochemistry, and Department of Chemistry & Biomolecular Engineering, University of Notre Dame , Notre Dame ...
0 downloads 0 Views 507KB Size
http://pubs.acs.org/journal/aelccp

ACS Journals Celebrate 10 Years of Perovskite Photovoltaics

ACS Energy Lett. Downloaded from pubs.acs.org by 178.57.68.171 on 04/17/19. For personal use only.

W

hat started as a curiosity, exploring the photosensitizing property of a metal halide hybrid material in a liquid junction solar cell (or dyesensitized solar cell), quickly led to the emergence of perovskite photovoltaics and optoelectronics. Since the appearance of the first perovskite solar cell paper in the April 2009 issue of the Journal of American Chemical Society (ref 1), several other American Chemical Society (ACS) journals have published seminal and significant papers related to metal halide perovskites. In order to celebrate the 10 year anniversary of metal halide perovskite photovoltaics, we would like to draw the attention of readers to these major contributions in the field. Key developments in the field highlighted in our earlier Virtual Issues: • Organometal Halide Perovskites for Transformative Photovoltaics. J. Am. Chem. Soc. 2014, 136, 3713−3714. DOI: 10.1021/ja501108n. Link: https://pubs.acs.org/ doi/10.1021/ja501108n. • Virtual Issue on Metal-Halide Perovskite NanocrystalsA Bright Future for Optoelectronics. Chem. Mater. 2017, 29, 8915−8917. DOI: 10.1021/acs.chemmater.7b04336. Link: https://pubs.acs.org/doi/10.1021/ acs.chemmater.7b04336. • Lead-Free Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 904−905. DOI: 10.1021/acsenergylett.7b00246. Link: https://pubs.acs.org/doi/10.1021/ acsenergylett.7b00246. • A Promising Beginning for Perovskite Nanocrystals: A Nano Letters Virtual Issue. Nano Lett. 2018, 18, 2747− 2750. DOI: 10.1021/acs.nanolett.8b01420. Link: https://pubs.acs.org/doi/10.1021/acs.nanolett. 8b01420. • Hybrid Perovskites for Multijunction Tandem Solar Cells and Solar Fuels. A Virtual Issue. ACS Energy Lett. 2018, 3, 28−29. DOI: 10.1021/acsenergylett.7b01134. Link: https://pubs.acs.org/doi/10.1021/acsenergylett. 7b01134. In this virtual issue, we recognize a few selected papers from ACS Applied Materials & Interfaces, ACS Energy Letters, ACS Nano, Chemistry of Materials, Journal of the American Chemical Society, The Journal of Physical Chemistry C, The Journal of Physical Chemistry Letters, and Nano Letters (refs 2−26). Papers published in these ACS journals have significantly contributed to the advance of metal halide perovskites in photovoltaics and optoelectronics. More than 2500 metal halide perovskite papers published by these ACS journals have garnered nearly 120 000 citations over a short time period. The number of published papers in these journals during 2009−2019 and the citations that they carry are presented in Figure 1. The seminal papers compiled in this virtual issue are part of many high-impact innovations in perovskite photovoltaics and © XXXX American Chemical Society

Figure 1. Total number of metal halide perovskite papers published in different ACS journals and citation counts during the period 2009−2019. Source: Web of Science, Clarivate Analytics as of March 2, 2019. Search Phrase = (Perovskite and (Halide or Chloride or Bromide or Iodide)).

related topics. They serve as building blocks to achieve new and important developments in the field. The collection of these articles (ordered chronologically) is meant to show the growth of the perovskite field since 2009 and the impact they carry in directing future research.

Prashant V. Kamat, Editor-in-Chief



Department of Chemistry & Biochemistry, and Department of Chemistry & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States

AUTHOR INFORMATION

ORCID

Prashant V. Kamat: 0000-0002-2465-6819 Notes

Views expressed in this Energy Focus are those of the author and not necessarily the views of the ACS. The author declares no competing financial interest.



REFERENCES

(1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050−6051. (2) Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Gratzel, M. Mesoscopic CH3NH3PbI3/TiO2

Received: March 20, 2019 Accepted: April 11, 2019 1055

DOI: 10.1021/acsenergylett.9b00609 ACS Energy Lett. 2019, 4, 1055−1056

Energy Focus

Cite This: ACS Energy Lett. 2019, 4, 1055−1056

ACS Energy Letters

Energy Focus

Heterojunction Solar Cells. J. Am. Chem. Soc. 2012, 134, 17396− 17399. (3) Colella, S.; et al. MAPbl(3−x) Cl−x Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chem. Mater. 2013, 25, 4613−4618. (4) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Gratzel, M.; De Angelis, F. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. J. Phys. Chem. C 2013, 117, 13902−13913. (5) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable InorganicOrganic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764−1769. (6) Park, N. G. Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. J. Phys. Chem. Lett. 2013, 4, 2423−2429. (7) Snaith, H. J.; Perovskites. The Emergence of a New Era for LowCost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623− 3630. (8) Chen, Q.; Zhou, H. P.; Hong, Z. R.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y. S.; Li, G.; Yang, Y. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J. Am. Chem. Soc. 2014, 136, 622−625. (9) Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. J. Am. Chem. Soc. 2014, 136, 758−764. (10) Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett. 2014, 14, 2584− 2590. (11) Kim, H. S.; Im, S. H.; Park, N. G. Organolead Halide Perovskite: New Horizons in Solar Cell Research. J. Phys. Chem. C 2014, 118, 5615−5625. (12) Koh, T. M.; Fu, K. W.; Fang, Y. N.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 16458−16462. (13) Pang, S. P.; et al. NH2CHNH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chem. Mater. 2014, 26, 1485−1491. (14) Snaith, H. J.; et al. Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1511−1515. (15) You, J. B.; et al. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano 2014, 8, 1674−1680. (16) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692−3696. (17) Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L. Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. ACS Nano 2015, 9, 1955−1963. (18) Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533−4542. (19) Huang, H. L.; Zhao, F. C.; Liu, L. G.; Zhang, F.; Wu, X. G.; Shi, L. J.; Zou, B. S.; Pei, Q. B.; Zhong, H. Z. Emulsion Synthesis of SizeTunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128−28133. (20) Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X. W.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H.

Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Appl. Mater. Interfaces 2015, 7, 25007−25013. (21) Giustino, F.; Snaith, H. J. Toward Lead-Free Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1233−1240. (22) Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016, 28, 284−292. (23) Slotcavage, D. J.; Karunadasa, H. I.; McGehee, M. D. LightInduced Phase Segregation in Halide-Perovskite Absorbers. ACS Energy Lett. 2016, 1, 1199−1205. (24) Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chem. Mater. 2016, 28, 2852−2867. (25) Werner, J.; et al. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Lett. 2016, 1, 474−480. (26) Zhumekenov, A. A.; et al. Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length. ACS Energy Lett. 2016, 1, 32−37.

1056

DOI: 10.1021/acsenergylett.9b00609 ACS Energy Lett. 2019, 4, 1055−1056