10 Properties and Uses of Nitrogen and Sulfur Donors Ligands in Actinide Separations
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
C. MUSIKAS, G. Le MAROIS, R. FITOUSSI, and C. CUILLERDIER Division de Chimie, Département de Génie Radioactif, Centre d'Etudes Nucléaires de Fontenay aux Roses, BP N° 6, Fontenay aux Roses, 92260 France
Most of the complexing agents used in actinide separations are oxygen donor ligands (1, 2), because of the hard acceptor character of the f series ions. The aqueous complexes of ligands of which the donor atoms are less electronegative than oxygen (Pauling's electronegativity 3.5) are weak because of the competition with water for the coordination sites of the metal. However, unusual actinide separations involving these weak complexes have been performed. For instance, the group of trivalent lanthanide ions has been separated from trivalent actinides by using concentrated aqueous chloride media (electronegativity 3.0) from which trivalent actinide ions are selectively absorbed in anion exchange resins (3) or extracted by organic solutions of t r i or tetraalkylamonnium chloride salts (4). 4f - 5 f group separation is also possible by using aqueous thiocyanate solutions, where the trivalent actinide ion can be selectively extracted in an organic solution of tetraalkylammonium thiocyanate (5) or fixed on an anion exchange resin (6). For the thiocyanate complexes of lanthanides or actinides, the coordination occurs via the nitrogen atom (electronegativity 3.0). F o r t h e s e two c a s e s , t h e r e i s no o b v i o u s e x p l a n a t i o n o f t h e o r i g i n o f g r o u p s e p a r a t i o n . F o r m a t i o n c o n s t a n t s o f weak c o m p l e x e s are d i f f i c u l t t o measure and t h e expected g r e a t e r c o v a l e n t effect f o r a c t i n i d e has n o t been c l e a r l y e s t a b l i s h e d . This paper reports the r e s u l t s of i n v e s t i g a t i o n s of the complex f o r m a t i o n between a c t i n i d e o r l a n t h a n i d e i o n s and a z i d e o r o r t h o p h e n a n t h r o l i n e . The a i m o f t h i s work was f i r s t t o c o n f i r m whether these r e l a t i v e l y s o f t l i g a n d s give complexes of d i f f e r e n t s t a b i l i t i e s w i t h t h e t r i v a l e n t l a n t h a n i d e and a c t i n i d e i o n s , as a consequence o f t h e b r o a d e r e x t e n s i o n o f 5f o r b i t a l s as compared w i t h 4 f . S e c o n d l y , we a t t e m p t e d t o u s e t h e r e s u l t s i n a c t i n i d e chemical separation processes. Dialkyldithiophosphates are also soft ligands (electronegat i v i t y o f s u l f u r 2.5) and as p a r t o f a s y s t e m a t i c study f o r t h e i r b i n d i n g p r o p e r t i e s t o t h e a c t i n i d e s i o n s we r e p o r t t h e r e s u l t s o f
0-8412-0527-2/80/47-117-131$05.00/0 ©
1980 A m e r i c a n C h e m i c a l Society
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
132
ACTINIDE
solvent
extraction
o f U ( V I ) a n d Np
SEPARATIONS
(IV).
Experimental Chemicals. A l l r e a g e n t s used i n t h i s s t u d y were a n a l y t i c a l g r a d e a n d were s u p p l i e d by P r o l a b o o r M e r c k . T h e n o y l t r i f l u o r o a c e t o n e (TTA) s u p p l i e d by Koch L i g h t was p u r i f i e d by s u b l i m a t i o n . The a c t i n i d e elements were p r o v i d e d by CEA-SPT (Fontenay aux Roses) a s o x i d e o r n i t r a t e s o l u t i o n s . We u s e d t h e i s o t o p e s 23cy » ?Np, 239 , 241 244 . 152 , 147 169 t r a c e r s were 2 3
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
P u
A n u
C m
E u
N d j
Y b
u
s
e
d
a
s
s u p p l i e d b y I s o t e c ( V e r s a i l l e s ) . B i s - (2 e t h y l h e x y l ) d i t h i o p h o s p h o r i c a c i d ( H D E H D T P ) , t r i o c t y l p h o s p h i n e o x i d e (TOPO) a n d d i h e x y l m e t h o x i o c t y l p h o s p h i n e o x i d e ( P O X 11) w e r e s u p p l i e d b y I r c h a (Vert l e P e t i t ) . Apparatus. U l t r a v i o l e t , v i s i b l e and near i n f r a r e d spectra w e r e r e c o r d e d w i t h a C a r y 17 s p e c t r o p h o t o m e t e r , γ spectroscopy was c a r r i e d o u t w i t h a G e - L i d e t e c t o r a n d a Zoomax ( S e i n ) m u l t i c h a n n e l a n a l y z e r . p H m e a s u r e m e n t s w e r e t a k e n w i t h a n A r i e s 10000 ( T a c u s s e l ) p o t e n t i o m e t e r , α s p e c t r o s c o p y was c a r r i e d w i t h a s o l i d state α detector and a (Intertechnique) m u l t i c h a n n e l a n a l y z e r . Results
nide -
and D i s c u s s i o n
Azide complexes. a z i d e s complexes
The aqueous t r i v a l e n t a c t i n i d e were examined by two t e c h n i q u e s
and l a n t h a :
U . V . , v i s i b l e , near I . R . spectroscopy ( N d , E u , E r , P u , Am, Cm), S o l v e n t e x t r a c t i o n : ( N d , E u , Y b , Am) u s i n g r a d i o a c t i v e tracer techniques.
The s p e c t r a l c h a n g e s o b s e r v e d on a d d i t i o n o f a z i d e i o n s t o t r i v a l e n t a c t i n i d e o r l a n t h a n i d e p e r c h l o r a t e s o l u t i o n s a r e shown i n f i g u r e 1. T o c a l c u l a t e t h e f o r m a t i o n c o n s t a n t s o f t h e c o m p l e x e s we used e q u a t i o n (1),which c o r r e l a t e s t h e m o l e c u l a r e x t i n c t i o n c o e f f i c i e n t o f t h e v a r i o u s m e t a l l i c s p e c i e s ( ε · ) and t h e measured apparent molecular e x t i n c t i o n c o e f f i c i e n t ( ε ^ ) ,with the s t a b i l i ty constants o f the complexes ( 3 J i=i
S
= ε
ο
+ Σ
3
max
i"
i=1
[ N
3
_ ) I L
. 7
i = i max 1
+ Σ
β'-^ν
1
i=1
1
_ . m
1
3 . and ε . were c a l c u l a t e d by l e a s t s q u a r e a d j u s t m e n t . Good a d j u s t m e n t s a r e o b t a i n e d when i i s l i m i t e d t o 2 i n t h e range 0 t o 2Π i n a z i d e . G e n e r a l l y , t o m i n i m i z e t h e n u m b e r o f c o e f f i c i e n t s t o be f o u n d i n o n e a d j u s t m e n t , we u s e d a m a t h e m a t i c a l p r o g r a m (_7) m a k i n g i t p o s s i b l e t o f i x o n e o r m o r e c o e f f i c i e n t s f o u n d i n s e p a r a t e p r e v i o u s e x p e r i m e n t s o r c a l c u l a t i o n s . F o r t h e Nd c o m p l e x e s we u s e d a l s o a d e c o n v o l u t i o n m e t h o d t o o b t a i n t h e f o r m a tion constants. The r e s u l t s o f t h e c a l c u l a t i o n o f f o r m a t i o n m
a
x
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Nitrogen
and Sulfur Donor
Ligands
133
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
10. MusiKAs E T AL.
Figure 1. Absorption spectra of trivalent actinide and lanthanide ions in the absence or presence of azide: ( ) perchloric media, μ = 5, θ = 25°C, pH = 5.4; ( ; 4M azide, = 5,θ = 25°C, pH = 5.4. μ
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
134
ACTINIDE SEPARATIONS
constants
are
stability the f i r s t
i s o b s e r v e d between a c t i n i d e and l a n t h a n i d e f o r m e r b e i n g more s t a b l e . F o r Eu ( I I I ) , t h e
given
i n Table
constants
were
calculated
I.
Note
from the
that
a
clear
occurence
of
difference
an
in
complexes, formation
a b s o r p t i o n band
i n the exists
U . V . p o r t i o n of the only i n the spectra
rather charge
s t a b l e d i v a l e n t i o n s , we a t t r i b u t e d i t t o a z i d e t o m e t a l t r a n s f e r s . F i g u r e 2 s h o w s how t h i s b a n d v a r i e s i n t h e
série
Eu,
Yb,
s p e c t r u m . As t h i s a b s o r p t i o n band of l a n t h a n i d e e l e m e n t s , w h i c h have
Sm.
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
The e n e r g y o f a b s o r p t i o n peak t e n d s t o w a r d s h i g h e r v a l u e s as the s t a b i l i t y o f the d i v a l e n t i o n s d e c r e a s e s , i n agreement w i t h t h e s e m i - e m p i r i c a l t h e o r y p o s t u l a t e d by N u g e n t e t a l ( 8 ^ . In order to v e r i f y the d i f f e r e n c e s observed i n 4 f - 5 f complex s t a b i l i t y , we u s e d a n a d d i t i o n a l s o l v e n t e x t r a c t i o n m e t h o d b a s e d on t h e c o m p e t i t i o n b e t w e e n a soluble organic chelatant (TTA) and t h e aqueous s o l u b l e a z i d e i o n s f o r b i n d i n g t h e m e t a l i o n s . The e x t r a c t i o n e q u i l i b r i u m i s shown by e q u a t i o n (2) a n d t h e distribution coefficients (D) o f t h e m e t a l a t c o n s t a n t p H a r e c o r r e l a ted
with
the
formation
(N3 ) +
a q
+ 3
•
constants (ΗΤΤΑ) g o r
= D 0
where D i s i s present i
max
c
by e q u a t i o n *
(n(TTA) ) 3
i=imax / Σ β. i= 0
.
1
the d i s t r i b u t i o n c o e f f i c i e n t i n the aqueous phase. a
n
D
e
determined
by
the
N
(3).
o
r
g
+ 3
(H ) +
a
q
(2)
(3)
Q
3
when no
maximum s l o p e
complexing of
the
agent
curve
D = f azide
(log N3-). Its value i s closed to three i n concentrated solutions. T y p i c a l e x t r a c t i o n s c u r v e s a r e shown i n f i g u r e 3 . By t h e least square adjustment of experimental D to equation (3), we c a l c u l a t e d t h e c o e f f i c i e n t s β/| a n d β 2 °^ w h i c h v a l u e a r e 2 a n d
8.
I t c a n be s e e n t h a t t h e r e s u l t s f o u n d by s p e c t r o p h o t o m e t r y are c o n f i r m e d . F i g u r e 4 shows t h e r a t i o o f Eu ( I I I ) t o Am ( I I I ) dis t r i b u t i o n c o e f f i c i e n t s as a f u n c t i o n of f r e e a z i d e c o n c e n t r a t i o n . T h i s c u r v e shows c l e a r l y t h e h i g h e r s t a b i l i t y o f t h e aqueous, Am ( I I I ) a z i d e c o m p l e x e s . D i s t r i b u t i o n c o e f f i c i e n t s o f Am (III) a n d E u ( I I I ) , p r e s e n t i n t h e same s o l u t i o n s , w e r e d e t e r m i n e d b y γ s p e c t r o s c o p y . I n c o n c l u s i o n , i t a p p e a r s t h a t the a z i d e com p l e x e s o f a c t i n i d e s a r e more stable. As shown by t h e v a l u e s o f t h e f o r m a t i o n c o n s t a n t s f o u n d by s o l v e n t e x t r a c t i o n ( o v e r a l l f o r m a t i o n c o n s t a n t s ) and by s p e c t r o photometry (inner sphere formation c o n s t a n t s ) , i t i s safe to assume t h a t a z i d e complexes a r e m o s t l y i n n e r s p h e r e . T h i s i s a l s o s u p p o r t e d by t h e v a l u e s o f t h e f o r m a t i o n c o n s t a n t o f Eu (III) c a l c u l a t e d u s i n g t h e c h a r g e t r a n s f e r band whose a p p e a r a n c e must be a t t r i b u t e d t o c l o s e c o n t a c t b e t w e e n a z i d e a n d m e t a l i o n .
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
10.
Nitrogen
MUSIKAS E T AL.
TABLE
I
:
Formation
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
actinide data.
Complex
β. 1
2 +
1,2
Eu(N )
2 +
4,0
3
3
E r ( N
3
2 r 2
+
2
+
3
3
Sulfur Donor
of
azides
Ligands
complexes
135
of
trivalent
lanthanide
derived
from
Electronic
trar
Calculation
sition
f-f
observée
(800
charge
nm)
spectrophotometry
method
deconvolution
transfer
see
ref.
(16)
+
Pu(N )
Am(Ν
constants and
Nd(N )
and
)
1,2
f-f
(525
nm)
adjustment t o equation
(4)*
f-f
(665
nm)
deconvolution
10
f-f
(503
nm)
adjustment
to
equation
(1)
23
f-f
(503
nm)
adjustment
to
equation
(1)
8
f-f
(397
nm)
adjustment
to
equation
(1)
24
f-f
(397
nm)
adjustment
to
equation
(1)
(1)
Am(N )2 3
CmCN ) 3
2 +
Cm(N )* 3
χ A t pH 5 , 4 lue
is
Pu
less
(III)
is
reliable
partially than
oxidizied and Pu(N )
Am(l\L)
+
2 +
or
Cm(l\L)
2 +
3
,
value.
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
β
va
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
136
ACTINIDE SEPARATIONS
Figure 2. UV absorption band of aqueous mixtures of selected lanthanide ions in the presence of azide (1-mm cell); C = 0.05M, 2.4M azide, pH = 5.4, μ = 5. M
Nd
Figure 3. Distribution coefficients of Nd (III) between aqueous azide solu tions and 0.0075M ΗΤΤΑ in benzene at 23°C; aqueous phases μ = 5, Nd ~ 10 M. 5
(III)
0.1
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1
C j (M) N
10.
Nitrogen
MUSIKAS E T AL.
Orthophenanthroline chemical
affinity with
behavior
line
(Ci2HôN )
which
has
and g i v e
bonds
in
2
lent
lanthanide,
Many
solids
have but
been
as
prepared
complexes
We s t u d i e d potentiometry. competition of
complexes.
bidentate two the
by
This
between
donors
precipitation in
of
of
method
is
based
H
the
and
χ HL
constants and (6).
+
(L)
stability
check
A from of
each
triva-
methods
and
from aqueous the
lanthanides
(_9).
lanthanides
solutions of
the
(JUD),
aqueous
3 +
the
-
a
ions
5.2),
Χ χ H
+
the
by
due
to
. L
1
the
coordination
shown by e q u a t i o n
+ Ν Ι_
were
χ
(4).
(4)
3 +
calculated
by
V
i =4 i η = Σ 1=1
for as
complexes
(H,
a n d Am [ I I I )
o n pH v a r i a t i o n s
metal
(pk
+ Π
of
2.75 sphere
spectroscopic
to
ghenantro-
literature.
complexes +
1-10
at
coordination
several
greater
we t r i e d
We c h o s e
nitrogen
measurement
orthophenanthroline
The f o r m a t i o n equations [5)
ligand.
137
exhibit
ions,
orthophenanthroline
appears
the
Ligands
As a z i d e s
actinide
first
shown by
containing
no q u a n t i t a t i v e
soluble
site
a
Sulfur Donor
trivalent
this other
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
for
and
using
[5)
i=4 / Σ
(6)
i =0
where_ η i s the metal. and
average
Cpj a r e
the
number ligand
of
ligand molecules
and m e t a l
bonded
concentrations
to
the
respec
tively. a n d Hjvj a r e t h e a b s c i s s a e v a l u e s o f t h e c u r v e s i n f i g u r e 5 and r e p r e s e n t t h e amounts of a c i d i n t h e p r e s e n c e o f m e t a l . $± i s t h e f o r m a t i o n c o n s t a n t o f t h e c o m p l e x N L ? . We l i m i t e d i to 4 because of s t e r i c hindrance. T h e c a l c u l a t i o n r e s u l t s a r e s h o w n i n t a b l e I I . We a l s o report f o r m a t i o n c o n s t a n t s d e t e r m i n e d f r o m s p e c t r o p h o t o m e t r y f o r Ho a n d N d , and by s o l v e n t e x t r a c t i o n f o r E r . W i t h o u t g o i n g i n t o d e t a i l f o r t h e s e t w o m e t h o d s , i t may b e n o t e d t h a t t h e r e s u l t s s h o w f a i r agreement. That f a c t p o i n t s out the i n n e r sphere c h a r a c t e r of o r t h o p h e n a n t h r o l i n i u m l a n t h a n o u s c o m p l e x e s . The m a i n a b s o r p t i o n b a n d o f Am ( I I I ) i s m o d i f i e d by t h e p r e s e n c e o f orthophenanthro l i n e . We u s e d t h e s e s p e c t r a l v a r i a t i o n s t o c a l c u l a t e t h e f o r m a t i o n c o n s t a n t s o f Am ( I I I ) , a s d e s c r i b e d i n t h e p r e v i o u s p a r a g r a p h . A s f o r a z i d e c o m p l e x e s , we o b s e r v e d t h a t Am m o n o o r t h o p h e n a n t h r o l i n e i s more s t a b l e t h a n t h e e q u i v a l e n t l a n t h a n i d e c o m p l e x , and f o r t h e b i s o r t h o p h e n a n t h r o l i n e s p e c i e s , the difference
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
138
ACTINIDE
' E u (III) /
D
SEPARATIONS
Am(lll
60 J
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
40 J
Figure
4.
Variation in the ratio as a function of azide concentration at 25°C; organic phase ΗΤΤΑ in benzene, aqueous phase μ = 5, pH = 5.4. ^Eu(iii)/^Am(ni)
'U (VI) 100 J
10
0.1
Figure 5. Distribution coefficients of U (VI) between 5 M aqueous phosphoric acid and mixture of HDEHDTP and neutral oxygen donors in solution in dodecane as a function of the reagent con centration ratio; (1) 0.5M (HDEHDTP + POX 11), (2) 0.5M (HDEHDTP + TOPO), (3) 0.5M (HDEHDTP + TBP).
OXYGEN DONOR
0.01 . 0.25
0.50
0.75
1
REAGENTS FRACTION
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
10.
Nitrogen
MUSIKAS E T AL.
TABLE
II
:
Formation actinide
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
from
and
constants complexes
various
Log
3
1
of
Log
Nd
1.09
3.99
Sm
1.17
3.99
Eu
1.31
4.02
Gd
1.22
4.00
Dy
1.50
4.10
Ho
1.66
4.16
Er
1.78
4.16
Lu
1.88
4.3
Am
2.68
4.66
lanthanide
orthophenanthroline techniques
Spectrophotometry
B
2
Log
1.67
2.56
139
Ligands
trivalent
with
investigation
Potentiometry
Element
Sulfur Donor
β
1
Log
β
2
and derived
data.
Solvent
Log
extraction
^
Log
e>
0.79
3.53
1.99
4.03
3.95
4.03
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
2
140
ACTINIDE SEPARATIONS
between
t h e two s e r i e s
We a t t e m p t e d For a
this
purpose
reagent
able
phenanthroline poor
i t
to
because
Eu [ I I I ] At
neutralize
metallic i t
organic
shown
by t h e
mixture
significant.
We c h o s e
phases.
soiubilizes
phase
and i t s
higher
acid,
an
extractant.
charge
of
nonanoic
Nitrobenzene
mixture
i n the
acid
is
higher
affinity
and E u ( I I I )
ions
phase,
the
ortho
w h i c h has
suitable The
as
a
results
nitrobenzene/ortho-
are given is
i n Table present
III. mostly
f o r Am ( I I I ) i o n s
distribution coefficients.
Am ( I I I )
nonaoic
as
i n the organic
orthophenanthroline.
extraction
acid
have,
the t r i p o s i t i v e
species.
a n d Am ( I I I )
to
t h e w o r k i n g pH o r t h o p h e n a n t h r o l i n e
nanthroline
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
not as
was n e c e s s a r y
phenanthroline/nonaoic the
is
use o r t h o p h e n a n t h r o l i n e
s o l u b i l i t y i n aqueous
diluent of
to
Without
are not extracted
in
is
orthophe i n the
nitrobenzene.
S u l f u r donor l i g a n d s . Complexes o f a c t i n i d e s o r l a n t h a n i d e s i o n s w i t h s u l f u r donor l i g a n d s such as d i t h i o c a r b a m a t e (S2CNR2) (11) and d i a l k y l d i t h i o p h o s p h a t e s ( ( R 0 ) Ρ S ) Π 2 ) have been o b t a i n e d i n non-aqueous s o l u t i o n s . The uses o f d i a l k y l d i t h i o p h o s 2
2
p h a t e s as e x t r a c t a n t s f o r u r a n i u m (VI) have been r e p o r t e d (13) , (14). Dialkyldithiophosphates are poorer extractants than d i a l k y l phosphates because t h e s o f t s u l f u r atom has l e s s a f f i n i t y t h a n oxygen f o r the hard f c a t i o n s . However, the P $ group has a lower tendency than P^Q|_J t o d i m e r i z e v i a hydrogen bonds. F u r S
H
thermore, the d i s t r i b u t i o n c o e f f i c i e n t s of m e t a l l i c species bet ween a q u e o u s p h a s e s a n d o r g a n i c p h a s e s c o n t a i n i n g d i a l k y l d i t h i o p h o s p h a t e s c a n h a v e h i g h e r v a l u e s d e s p i t e t h i s l o w e r a f f i n i t y . We found one example o f t h i s e f f e c t i n U (VI) e x t r a c t i o n from concen t r a t e d p h o s p h o r i c a c i d s o l u t i o n s . We i n v e s t i g a t e d t h e s y n e r g i s t i c e x t r a c t i o n o f U ( V I ) by m i x t u r e s o f d i (2 e t h y l h e x y l ) d i t h i o p h o s p h o r i c a c i d (HDEHDTP) a n d n e u t r a l o x y g e n d o n o r s s u c h a s t r i b u t y l phosphate (TBP), t r i o c t y l p h o s p h i n e oxide ( Τ 0 Ρ 0 ) , and dihexylmet h o x i o c t y l p h o s p h i n e o x i d e (POX 11) i n d o d e c a n e . Distribution coefficients o f U ( V I ) a s a f u n c t i o n o f t h e com p o s i t i o n o f t h e o r g a n i c p h a s e a r e shown i n f i g u r e 5 . T h e maximum of the d i s t r i b u t i o n c o e f f i c i e n t s always occurs f o r the proportion 1 : 1 o f HDEHDTP a n d n e u t r a l o x y g e n d o n o r . T h i s s u g g e s t s t h a t t h e e x t r a c t e d s p e c i e s have t h e f o r m u l a U 0 (DEHDTP) ( R P0) ( H P 0 ) 2
3
2
4
w h e r e R3PO r e p r e s e n t s t h e n e u t r a l oxygen d o n o r . The v a r i a t i o n o f d i s t r i b u t i o n a s a f u n c t i o n o f HDEHDTP o r Τ 0 Ρ 0 o r g a n i c concentra t i o n s a r e shown i n l o g a r i t h m i c c o o r d i n a t e s i n f i g u r e 6. The s l o p e 1 f o r the s t r a i g h t l i n e observed supports the proposed formula the extracted species. The e f f e c t o f t h e aqueous c o n c e n t r a t i o n
of of
phosphoric a c i d on the d i s t r i b u t i o n c o e f f i c i e n t s of U (VI) i s shown i n f i g u r e 7. They d e c r e a s e p r o b a b l y b e c a u s e o f U ( V I ) p h o s p h a t e complex f o r m a t i o n i n aqueous s o l u t i o n s . The h i g h e r v a l u e s ο t h e d i s t r i b u t i o n c o e f f i c i e n t s o f U ( V I ) i n m i x t u r e s o f HDEHDP a n d Τ 0 Ρ 0 as compared w i t h e q u i v a l e n t m i x t u r e s o f d i ( 2 e t h y l h e x y l ) p h o s p h o r i c a c i d and Τ 0 Ρ 0 (15) a r e p r o b a b l y due t o t h e d i f f e r e n c e i n n a t u r e o f t h e e x t r a c t e d s p e c i e s as s u g g e s t e d by t h e p o s i t i o n o f
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
10.
Nitrogen
MUSIKAS E T A L .
TABLE
III
:
Distribution between
HN0
3
aq
and 0.25 nitric
equi
of
of
M nonanoic
°Eu
and Eu
0.25
acid
concentration
(III)
141
Ligands
Am ( I I I )
mixtures
acid
°Am
librium
(N)
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
aqueous
pH a t
coefficients
nitrobenzenic
nanthroline of
and Sulfur Donor
as
a
function
(μ =
(III)
(III)
ΙΊ 1 - 1 0 p h e 0.1) °Am
(III)
Eu
(III)
D
0.004
5.08
51
2.8
18.3
0.006
4.89
22.8
1.4
16.6
0.008
4.75
10.1
0.6
17.1
0.01
4.64
7.2
0.4
18.5
0.012
4.55
4.9
0.3
16.5
U (VI) 50
J
0.05
0.1
0.2
0.5
1
Figure 6. Distribution coefficients of U (VI) between 5 M aqueous phosphoric acid and mixtures of HDEHDTP and TOPO in solution in dodecane; (1) 0.01M HDEHDTP, TOPO variable, (2) 0.01 M TOPO, HDEHDTP variable.
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
142
ACTINIDE
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
D
U
SEPARATIONS
(VI)
100 J
10 J
1
4
0.1 J
Figure 7. Distribution coefficients of U (VI) as a function of aqueous phosphoric acid concentration; organic phases 0.25M HDEHDTP + 0.25M TOPO.
0.01
' 0
I 1
1
5
10
1
15 C H PO ( ) 3
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4
M
10.
M u s i K A S E T AL.
Nitrogen
and Sulfur Donor
Ligands
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
Np(iv)
0.01
HDEHDTP
Figure 8.
Distribution coefficients of Np (IV) as a function of HDEHDTP ganic concentrations [(1 ),(2)] or aqueous HCl (3)
or
O.D.
Np (DEHDTP) C l
3
Np (DEHDTP) CI 2
2
Figure 9. Spectra of Ν ρ (IV) extracts in do de cane-Η DEHDTP solutions; C ( EHDTP) Cl2 = 0.001M; CNP(DEHDTP)CI = 0.00033M. NP D
700
λ nm
2
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
S
144
ACTINIDE
SEPARATIONS
t h e d i s t r i b u t i o n c o e f f i c i e n t s maximum a s a f u n c t i o n o f o r g a n i c p h a s e s c o m p o s i t i o n . The s t r o n g h y d r o g e n bonds i n HDEHP a r e p r o b a b l y e x t r a c t i o n i n h i b i t o r s by two e f f e c t s : l o w e r a c t i v i t y o f f r e e l i g a n d , and f o r m a t i o n o f s p e c i e s w h i c h do n o t e a s i l y a l l o w o t h e r l i g a n d s present i n the system t o e n t e r the c o o r d i n a t i o n sphere o f t h e m e t a l . A n o t h e r example o f h i g h number o f s p e c i e s w h i c h can be e x t r a c t e d i n o r g a n i c phase by u s i n g HDEHDTP a s l i g a n d i s shown i n f i g u r e 8, where we c a n s e e t h e d i s t r i b u t i o n c o e f f i c i e n t s o f Np (IV) f r o m c h l o r i d e s o l u t i o n s a s a f u n c t i o n o f pH and HDEHDTP c o n c e n t r a t i o n . These c u r v e s s u g g e s t t h a t t h e s p e c i e s e x t r a c t e d have t h e f o r m u l a s :
Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
Np ( D E H D T P ) C 1
3
Np ( D E H D T P ) C 1 2
2
Spectrophotometry c o n f i r m s t h e s e changes i n t h e Np ( I V ) e n v i r o n ment a s shown i n f i g u r e 9. Conclusions I n v e s t i g a t i o n s o f c o m p l e x e s o f 5 f i o n s and 4£ i o n s w i t h n i t r o g e n d o n o r l i g a n d s show t h a t t r i v a l e n t a c t i n i d e i o n s a r e more s t r o n g l y c o m p l e x e d t h a n t r i v a l e n t l a n t h a n i d e i o n s , and t h e s e p r o p e r t i e s c a n be e x p l o i t e d i n a c t i n i d e - l a n t h a n i d e g r o u p s e p a r a t i o n by t h e c h o i c e o f a p p r o p r i a t e e x t r a c t i o n s y s t e m s . The h i g h e r a f f i n i t y o f n i t r o g e n l i g a n d f o r 5f t r i v a l e n t ions i s not a t t r i b u t a b l e t o t h e o c c u r e n c e o f d i f f e r e n t t y p e o f complex f o r t h e two s e r i e s ( i n n e r v s o u t e r s p h e r e ) , a s shown by t h e u s e o f s e v e r a l c o m p l e x a t i o n t e c h n i q u e s . T h i s d i f f e r e n c e m i g h t be a t t r i b u t e d t o g r e a t e r c o v a l e n t bond c o n t r i b u t i o n s i n t h e a c t i n i d e c o m p l e x e s . D i a l k y l d i t h i o p h o s p h a t e s c a n be b e t t e r e x t r a c t a n t s t h a n t h e i r d i a l k y l p h o s p h a t e e q u i v a l e n t s , a s shown by t h e s y n e r g i s t i c e x t r a c t i o n o f U (VI) f r o m c o n c e n t r a t e d p h o s p h o r i c a c i d . T h i s e f f e c t i s p r o b a b l y due t o t h e w e a k e r h y d r o g e n bonds o f t h e P^||_j g r o u p which a l l o w the formation o f a g r e a t e r v a r i e t y o f e x t r a c t e d s p e c i e s . I n t h i s p a r t i c u l a r c a s e , we showed t h a t t h e e x t r a c t e d s p e c i e s has t h e f o r m u l a : U 0 ( H P 0 ) ( R PO) (DEHDTP). 2
2
4
3
Literature cited 1. 2. 3. 4.
Gmelin Handbuch der Anorganischen Chemie Band 21 Transurane Teil 2 von Günter Koch Springer Verlag 1975 Comprehensive Inorg. Chem. Bailar J.C., Emeleus H.A., Sir R. Nyholm, Trotman Dickenson A.F. - Vol 5 Actinides Pergamon Press (1973) Hulet E.K., Gutmacher R.G., Coops M.S. J. Inorg. Nucl. Chem. 1961 17, 350 Leuze R.E., Lloyd N.H. Process Chemistry 1970 4, 597
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
MUSIKAS ET AL.
5.
Gerontopoulos P. Th., Rigali L., Barbano P.G., Radiochimica Acta 1965 4, 75 Coleman J.S., Asprey L.B., and Chisholm R.C. J. Inorg. Nucl. Chem. 1969 31, 1167 Ngyen-Ngoc Η., Rapport D.I. n° 465 CEN-S (Mars 1971) Nugent L.J., Baybarz R.D., Burnett J.L., Ryan J.L., J. Phys. Chem. 1973 77, 1528 Sinka S.P., Butter E. Mol. Phys. 1969 16, 285 Mac Whinnie W.R., Niller J.D., in "Advances in Inorg. Chem. and Radiochem." - Academic Press 1969 12, 135 Bagnall K.W., Brown D., Holah D.G., J. Chem. Soc. (A) 1968 1149 Pinkerton Α.Α., Inorg. Nucl. Chem. Lett. 1974 10, 495 J. Chem. Soc. Dalton 1978 267 Curtui N., Haiduc I., Marcu Gh., J. of Radioanal. Chem. 1978 44, 109 Marcu G., Curtui Ν., Haiduc I., J. Inorg. Nucl. Chem. 1977 39, 1415 Bunus F.T., Domocos V.C., Dimitrescu P., J. Inorg. Nucl. Chem. 1978 40, 117 Ahrland S., Acta Chem. Scand. 1949 3, 783
6. 7. 8. 9. 10. Downloaded by GEORGE MASON UNIV on June 15, 2016 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch010
Nitrogen and Sulfur Donor Ligands
10.
11. 12. 13. 14. 15. 16.
RECEIVED
June 18, 1979.
Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
145