Acylation Reactions

Feb 20, 2018 - We report an efficient palladium-catalyzed approach to the synthesis of benzoxazole derivatives via sequential heteroarylation/acylatio...
0 downloads 13 Views 410KB Size
Subscriber access provided by Stockholm University Library

Note

Palladium-Catalyzed Sequential Heteroarylation/Acylation Reactions of Iodobenzenes: Synthesis of Functionalized Benzo[d]oxazoles Pingshun Zhang, Shanfei Pan, Wanzhi Chen, Miaochang Liu, and Huayue Wu J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b03055 • Publication Date (Web): 20 Feb 2018 Downloaded from http://pubs.acs.org on February 20, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Palladium-Catalyzed Sequential Heteroarylation/Acylation Reactions of Iodobenzenes: Synthesis of Functionalized Benzo[d]oxazoles †









Pingshun Zhang Shanfei Pan Wanzhi Chen, * Miaochang Liu and Huayue Wu * †

Department of Chemistry, Zhejiang University, Yuquan Campus, Hangzhou 310027, China. ‡

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, China.

ABSTRACT: We report an efficient palladium-catalyzed approach to the synthesis of benzoxazoles derivatives via sequential heteroarylation / acylation reaction of iodobenzenes. Three readily available starting materials iodobenzenes, anhydrides, and benzoxazoles were

ACS Paragon Plus Environment

1

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 28

smoothly coupled forming new C-C bonds at the ortho and ipso positions of the iodobenzenes to afford 2-heteroaryl-3-acylbenzene derivatives in good yields. KEYWORDS: C-H activation, Catellani reaction, acylation, heteroarylation, palladium catalysis Benzoxazole derivatives are an important class of heterocyclic compounds found in many natural and functional products such as UK-1, MUK-1, DMUK-1, AJI9561,1 estrogen receptor ligand,2 A33853, and Tetraacetyl A33853,3 which show antimicrobial, anti-bacterial, and antitumor activities (Figure 1). 2-Arylbenzoxazoles are important structural units for the construction of functional materials, agrochemicals, and pharmaceutically active compounds.4 Benzoxazoles are typically prepared from the condensation of 2-aminophenols and carboxylates.5 Recently, the C−H arylation of benzoxazoles with an aryl electrophiles has been reported, and the reaction offers an efficient protocol for the derivatization of readily available benzoxazoles. In the presence

of

oxidants,

compounds

such

as

aryl

halides,6

acyl

chlorides,7

and

aryltrimethylammonium triflates,8 or arylboronates,9 arylsilanes,10 and polyfluorinated arenes11 were able to couple with benzoxazoles to generate 2-arylated benzoxazoles in good yields by using an appropriate palladium catalyst. These approaches are quite practical but limited to readily available electrophiles. O

O

OR 1 O

OH

N

O

N

2

R O

HO

N

N

O

O

UK-1 (R1 = Me, R2 = H) MUK-1 (R 1 = Me, R2 = Me) DMUK-1 (R1 = H, R2 = H)

AJI9561 OR N RO

HO

O RN

N

O OR

N OH

O OMe estrogen receptor ligand

O A33853 (I) R = H Tetraacetyl A33853 (II) R = CH 3CO

Figure 1. Important molecules featuring benzoxazole core structure

ACS Paragon Plus Environment

2

Page 3 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

The palladium-catalyzed Catellani reaction allows dual functionalization of aryl halides at both the ortho and ipso sites in one pot.12 Through this protocol, ortho C-H arylation, alkylation, acylation, and amination and ipso C-I alkenylation, alkynylation, cyanation, borylation have been realized in recent years.12,13 The reaction proceeds via a Pd-catalyzed norbornene-mediated activation of the ortho C-H position and subsequent cross-coupling

at the ipso position.12,14

Direct C-H activation and functionalization of benzoxazoles have been recently reported.15 Palladium-catalyzed tandem ortho alkylation/C-H functionalization reactions between aryl iodides and N-bromoalkylindoles,16 3-(bromoalkyl)thiophenes or furans17 have also been reported to give polycyclic heterocycles. We envisioned that this strategy could be applied to the 2-arylation of benzoxazoles in which benzoxazoles act as the nucleophilic partner, and an additional functional group could be simultaneously introduced at the ipso site. Herein, we report palladium-catalyzed three-component reactions of iodoarenes, aromatic anhydrides, and benzoxazoles. A number of 2-arylated benzoxazoles were obtained in good yields. Initially, we chose 2-iodotoluene (1a), benzoic anhydride (2a), and benzoxazole (3a) as the starting materials and used the typical conditions previously reported for acylation/cyanation of iodobenzene.14,18 The results are summarized in Table 1. Reaction did not occur in the presence of palladium chloride (10 mol%), TFP (20 mol%), norbornene (NBE, 2 equiv.), and Cs2CO3 (3 equiv.) at 100 °C in 1,4-dioxane (Table 1, entry 1). To our delight, the same reaction did proceed smoothly when one equivalent of CuBr was added, and target product 4a was isolated in 58% yield (entry 2). When Cs2CO3 was replaced by K2CO3, the yield of 4a sharply increased to 83% (entry 3). Other bases such as Na2CO3 did not work well, and only a trace amount of 4a was obtained (entry 4). After further screening several common solvents, we identified CH3CN as the most effective solvent, and the yield could be further increased to 93% (entries 5-7). The reaction

ACS Paragon Plus Environment

3

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 28

resulted in a lower yield when other solvents such as toluene and DME were chosen. Further experiments showed that without PdCl2 the reaction did not proceed, and other palladium catalysts such as Pd2(dba)3·CHCl3, Pd(OAc)2,and [Pd(C3H5)Cl]2 were not effective for this threecomponent reaction (entries 8-11).

Table 1. Optimization of the catalysts and the reaction conditions a

Entry

[Pd]

Ligand

Base

Solvent

Additive

Yield (%)

1

PdCl2

TFPb

Cs2CO3

1,4-dioxane

--

0

2

PdCl2

TFP

Cs2CO3

1,4-dioxane

CuBr

58

3

PdCl2

TFP

K2CO3

1,4-dioxane

CuBr

83

4

PdCl2

TFP

Na2CO3

1,4-dioxane

CuBr

trace

5

PdCl2

TFP

K2CO3

toluene

CuBr

53

6

PdCl2

TFP

K2CO3

DME

CuBr

35

7

PdCl2

TFP

K2CO3

CH3CN

CuBr

93

8

--

TFP

K2CO3

CH3CN

CuBr

0

9

Pd2(dba)3·CH Cl3

TFP

K2CO3

CH3CN

CuBr

trace

10

Pd(OAc)2

TFP

K2CO3

CH3CN

CuBr

trace

CH3CN

CuBr

Trace

11

[Pd(C3H5)Cl] 2

TFP

K2CO3

a

Reaction conditions: 1a (0.3 mmol), 2a (0.9 mmol), 3a (0.6 mmol), catalyst (0.03 mmol), TFP (0.06 mmol), NBE (0.6 mmol), base (0.9 mmol), CuBr (0.3 mmol), solvent (3.0 mL), 100 °С, 16 h in a sealed tube under N2. b TFP is tri(2-furyl)phosphine.

ACS Paragon Plus Environment

4

Page 5 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Under the optimized reaction conditions described above, we next examined the scope of the acid anhydride substrates. Various acid anhydrides bearing either electron-withdrawing or electron-donating functional groups such as methyl, methoxyl, and fluoride reacted smoothly with iodobenzene and benzoxazoles and afforded the corresponding products 4a–4m in good yields (Table 2). Generally, electron-rich aromatic acid anhydrides were good reaction partners, and target products 4a and 4d could be obtained in greater than 90% yields. The reactions of acid anhydrides containing strong electron-withdrawing groups gave somewhat lower yields. When 2-naphthoic anhydride was used, 4g was obtained in 58% yield, illustrating that steric hindrance has little influence on the reaction. Unfortunately, we found that aliphatic acid anhydrides were not active in the three-component reaction. The substrate scope of the reaction was further extended to a range of iodobenzenes and heterocyclic compounds, and the results are shown in Tables 3 and 4, respectively. In general, all the reactions occurred smoothly and gave the desired products in moderate yields. The reactions of iodobenzenes bearing alkyl and alkoxyl groups afforded the corresponding products in good yields. However, iodobenzenes bearing fluoro and chloro substituents were much less active. When 1-iodonaphthalene was used, 5a was obtained in 85% yield. These results illustrated that strong electron-donating groups have a significant influence on the reaction. 2,4Difluoroiodobenzene was also tolerated and afforded corresponding product 5e in moderate yield. To examine the compatibility of benzo[d]oxazoles, a few substituted benzo[d]oxazoles were subjected to the optimized reaction conditions. The results are given in Table 3. Benzo[d]oxazoles with electron-donating and electron-withdrawing groups were all compatible with the reaction conditions. The desired products were obtained in moderate yields. Under the

ACS Paragon Plus Environment

5

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 28

same conditions, thiazoles could also participate in the reaction and gave 2-arylated thiazole derivatives. When benzo[d]thiazole and 4-methylthiazole were used, 6h and 6i were obtained in 58% and 24% yields, respectively. However, when 5-(tert-butyl)benzo[d]oxazole was used, 6g was only obtained in 45% yield, illustrating that steric hindrance has a significant influence on the reaction. Other heterocyclic compounds such as benzofuran, benzothiophene, and benzoimidazole were also tested. Unfortunately, no desired coupling products were obtained. Table 2. Scope of acid anhydrides

ACS Paragon Plus Environment

6

Page 7 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Reaction conditions: 1 (0.3 mmol), 2 (0.9 mmol), 3a (0.6 mmol), PdCl2 (0.03 mmol), TFP (0.06 mmol), NBE (0.6 mmol), K2CO3 (0.9 mmol), CuBr (0.3 mmol), acetonitrile (3.0 mL), 100 °С, 16 h in a sealed tube under N2.

Table 3. Scope of iodobenzenes and heterocycles

ACS Paragon Plus Environment

7

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 28

Reaction conditions: 1a (0.3 mmol), 2a (0.9 mmol), 3a (0.6 mmol), PdCl2 (0.03 mmol), TFP (0.06 mmol), NBE (0.6 mmol), K2CO3 (0.9 mmol), CuBr (0.3 mmol), acetonitrile (3.0 mL), 100 °С, 16 h in a sealed tube under N2. In the case of 6-nitrobenzo[d]oxazole, the reaction with 2-iodotoluene and benzoic anhydride under the standard conditions afforded two products, 7a and 7a’, in 45% and 30% yields, respectively (Table 4). 1H NMR and mass spectral analyses showed that 7a is the normal threecomponent coupling product, and 7a’ contains a bicyclo[2.2.1]heptane moiety. Similarly, the reactions of 2,4-dimethyliodobenzene, 2,4-fluoroiodobenzene, 2-isopropyliodobenzene, and 1iodonaphthalene with 6-nitrobenzo[d]oxazole under the optimized reaction conditions also gave mixtures of two products. It seemed that in the case of electron-deficient benzoxazoles the elimination of norbornene is more difficult. The ratios of the two products depends on the reactants. Single crystals of compound 7c’ were grown by slow diffusion of its hexane solution, and its structure determined by X-ray diffraction analysis and is shown in the Supporting Information. However, when 4-nitrobenzoic anhydride and 2-iodophenol were used, the normal three-component coupling product was not obtained, but 7g and 7f were obtained in 46% and 65% yields, respectively. Acylation at the ortho position did not occur. Obviously, anhydrides with strong electron-withdrawing groups disfavored the acylation process. Table 4. Reactions of 6-nitrobenzo[d]oxazole

ACS Paragon Plus Environment

8

Page 9 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Reaction conditions: 1a (0.3 mmol), 2a (0.9 mmol), 3a (0.6 mmol), PdCl2 (0.03 mmol), TFP (0.06 mmol), NBE (0.6 mmol), K2CO3 (0.9 mmol), CuBr (0.3 mmol), acetonitrile (3.0 mL), 100 °С, 16 h in sealed tube under N2. A plausible mechanism of the three-component reaction was proposed based on the literature reports and is depicted in Figure 2.12-14 The first step involves oxidative addition of the iodobenzene on to Pd(0) to produce intermediate I. Insertion of a molecule of norbornene into the C-Pd bond of I would form intermediate II. Subsequent C-H activation and elimination of HI leads to palladacycle III. Further oxidative addition of acid anhydride to III was proposed to form Pd(IV) species IV. Reductive elimination of intermediate IV leads to ortho-acylated intermediate V. Decarbopalladation with expulsion of norbornene would give intermediate VI. Reductive elimination would release the final product. Because nitro-containing benzoxazole is

ACS Paragon Plus Environment

9

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 28

more acidic, the oxidative addition of the C-H bond would form Pd(IV) species IV'. In this case, products 7’ were obtained.

Figure 2. A plausible mechanism CONCLUSION In summary, we have described a palladium-catalyzed sequential ortho acylation/ipso heteroarylation of iodobenzenes using readily available anhydrides and benzoxazoles as the coupling reagents. The reaction proceeds via a palladium-catalyzed/norbornene-mediated regioselective ortho C-H activation/acylation and subsequent oxidative coupling at the C-I position. A number of 2-heteroaryl-3-acylbenzene derivatives were obtained in good yields in a one-pot manner. EXPERIMENTAL SECTION All chemicals were of reagent grade quality obtained from commercial sources and used as received. Benzoic anhydrides 219 and benzoxazoles 320 were prepared according to the literatures.

ACS Paragon Plus Environment

10

Page 11 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

General Procedure for Synthesis of 4, 5, 6 and 7. To a 15 mL of Schlenk tube equipped with a Teflon-coated magnetic stir bar was charged with aryl iodide 1a (65.4 mg, 0.3 mmol, 1.0 equiv), benzoxazole 3a (71.4 mg, 0.6 mmol, 2.0 equiv), anhydride 2a (203.5 mg, 0.9 mmol, 3.0 equiv), PdCl2 (5.4 mg, 0.03 mmol, 10 mol%), TFP (13.9 mg, 0.06 mmol, 20 mol%), K2CO3 (124.4 mg, 0.9 mmol, 3.0 equiv), CuBr (43.0 mg, 0.3 mmol, 1.0 equiv), norbornene (56.5 mg, 0.6 mmol, 2.0 equiv), and acetonitrile (3.0 mL). The resulting suspension was stirred at room temperature for 5 min under N2, and then heated to 100 °C for 16 h. Upon completion of the reaction as monitored by TLC, the reaction was allowed to cool to room temperature, diluted with ethyl acetate (10 mL) and water (15 mL), and extracted with ethyl acetate (15 mL x 3). The organic phase was collected and washed with brine, dried over Na2SO4, then filtered and concentrated. The crude residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate (10/1) as eluent to give the corresponding products 4-7. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(phenyl)methanone (4a) Light yellow oil. Yield: 87.4 mg, 93%. 1H NMR (400 MHz, CDCl3): δ 7.66-7.70 (m, 2H), 7.59-7.64 (m, 1H), 7.53 (d, J = 4.8 Hz, 2H), 7.46-7.49 (m, 1H), 7.31-7.40 (m, 2H), 7.21-7.28 (m, 4H), 2.59 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 197.0, 161.2, 150.3, 141.4, 141.1, 139.3,

137.1, 133.2, 132.7, 130.2, 129.4, 128.1, 127.0, 126.5, 125.1, 124.3, 121.5, 120.1, 111.5, 110.5, 20.7. HRMS (EI-TOF) m/z calcd. for C21H15NO2: 313.1103; found: 313.1108. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(o-tolyl)methanone (4b) Light yellow oil. Yield: 82.4 mg, 84%. 1H NMR (400 MHz, CDCl3): δ 7.59-7.64 (m, 1H), 7.49-7.54 (m, 3H), 7.36-7.41 (m, 1H) , 7.23-7.29 (m, 2H), 7.19 (dd, J = 1.2, 7.6 Hz, 1H), 7.08 (dt, J = 1.6, 7.6 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 2.49 (s, 3H), 2.45 (s,

ACS Paragon Plus Environment

11

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

3H).

13

Page 12 of 28

C NMR (100 MHz, CDCl3): δ 198.6, 161.4, 150.4, 142.1, 141.3, 139.2, 138.5, 137.2,

133.5, 130.9, 130.3, 130.1, 127.7, 127.0, 125.0, 124.9, 124.3, 120.1, 110.5, 20.7, 20.3. HRMS (EI-TOF) m/z calcd. for C22H17NO2: 327.1259; found: 327.1262. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(m-tolyl)methanone (4c) Light yellow oil. Yield: 70.7 mg, 72%. 1H NMR (400 MHz, CDCl3): δ 7.60-7.66 (m, 1H), 7.50-7.54 (m, 3H), 7.43-7.49 (m, 2H), 7.36-7.41 (m, 1H), 7.22-7.28 (m, 2H), 7.10-7.17 (m, 2H), 2.58 (s, 3H), 2.25 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 197.2, 161.3, 150.4, 141.4, 141.2,

139.3, 137.9, 137.1, 133.4, 133.1, 130.1, 129.9, 127.9, 127.1, 126.9, 126.7, 125.1, 124.3, 120.1, 110.5, 21.2, 20.6. HRMS (EI-TOF) m/z calcd. for C22H17NO2: 327.1259; found: 327.1258. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(3,5-dimethylphenyl)methanone (4d) Light yellow oil. Yield: 96.2 mg, 94%. 1H NMR (400 MHz, CDCl3): δ 7.60-7.66 (m, 1H), 7.49-7.53 (m, 2H), 7.45-7.48 (m, 1H), 7.36-7.41 (m, 1H), 7.29 (s, 2H), 7.22-7.27 (m, 2H), 6.97 (s, 1H), 2.56 (s, 3H), 2.21 (s, 6H).

13

C NMR (100 MHz, CDCl3): δ 197.3, 161.4, 150.4, 141.5,

141.3, 139.3, 137.7, 137.1, 134.3, 133.0, 130.0, 127.4, 127.1, 126.8, 125.0, 124.2, 120.1, 110.5, 21.1, 20.6. HRMS (EI-TOF) m/z calcd. for C23H19NO2: 341.1416; found: 341.1417. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(p-tolyl)methanone (4e) Light yellow solid, mp: 83-85 °C. Yield: 78.5 mg, 80%. 1H NMR (400 MHz, CDCl3): δ 7.587.66 (m, 3H), 7.48-7.51 (m, 2H), 7.42-7.46 (m, 1H), 7.35-7.41 (m, 1H), 7.21-7.27 (m, 2H), 7.07 (d, J = 8.0 Hz, 2H), 2.58 (s, 3H), 2.26 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 196.6, 161.4,

150.4, 143.6, 139.4, 134.5, 132.9, 130.1, 129.7, 128.8, 127.6, 126.9, 126.5, 125.8, 125.1, 124.3,

ACS Paragon Plus Environment

12

Page 13 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

121.5, 120.2, 111.5, 110.5, 21.6, 20.7. HRMS (EI-TOF) m/z calcd. for C22H17NO2: 327.1259; found: 327.1257. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(mesityl)methanone (4f) White solid, mp: 189-191 °C. Yield: 67.1 mg, 63%. 1H NMR (400 MHz, CDCl3): δ 7.71-7.76 (m, 1H), 7.49-7.54 (m, 2H), 7.44-7.48 (m, 2H), 7.29-7.34 (m, 2H), 6.70 (s, 2H), 2.35 (s, 3H), 2.18 (s, 3H), 2.13 (s, 6H).

13

C NMR (100 MHz, CDCl3): δ 199.8, 162.0, 150.8, 141.6, 140.0,

139.1, 136.1, 135.3, 134.4, 130.5, 128.5, 128.3, 127.6, 124.9, 124.2, 120.1, 110.6, 29.7, 21.1, 20.0, 19.7. HRMS (EI-TOF) m/z calcd. for C24H21NO2: 355.1572; found: 355.1574. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(naphthalen-2-yl)methanone (4g) Light yellow oil. Yield: 63.2 mg, 58%. 1H NMR (400 MHz, CDCl3): δ 8.13 (s, 1H), 7.89 (dd, J = 1.6, 8.8 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.42-7.58 (m, 6H), 7.287.34 (m, 1H), 7.14-7.19 (m, 2H), 2.61 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 196.9, 161.4,

150.4, 141.4, 141.3, 139.6, 135.3, 134.5, 133.2, 132.1, 131.9, 130.1, 129.5, 128.4, 128.2, 127.7, 127.0, 126.8, 126.6, 125.1, 124.8, 124.3, 120.1, 110.5, 20.8. HRMS (EI-TOF) m/z calcd. for C25H17NO2: 363.1259; found: 363.1263. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(2-methoxyphenyl)methanone (4h) Light yellow solid, mp: 110-111 °C. Yield: 57.6 mg, 56%. 1H NMR (400 MHz, CDCl3): δ 7.52-7.58 (m, 1H) , 7.39-7.48 (m, 3H), 7.31-7.36 (m, 1H) , 7.26 (dd, J = 1.6, 7.6 Hz, 1H), 7.177.21 (m, 2H) , 7.06-7.13 (m, 1H), 6.65 (dt, J = 0.4, 7.2 Hz, 1H) , 6.60 (d, J = 8.4 Hz, 1H), 3.57 (s, 3H), 2.39 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 195.9, 161.6, 158.1, 150.5, 142.3, 141.5,

ACS Paragon Plus Environment

13

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 28

138.8, 133.1, 132.9, 131.1, 130.1, 127.5, 127.3, 126.6, 124.8, 124.1, 120.0, 119.9, 111.3, 110.6, 55.7, 20.1. HRMS (EI-TOF) m/z calcd. for C22H17NO3: 343.1208; found: 343.1207. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(3-fluorophenyl)methanone (4i) Light yellow oil. Yield: 51.7 mg, 52%. 1H NMR (400 MHz, CDCl3): δ 7.61-7.65 (m, 1H), 7.53-7.57 (m, 2H), 7.46-7.50 (m, 1H), 7.37-7.44 (m, 3H), 7.25-7.28 (m, 2H), 7.18-7.23 (m, 1H), 7.00-7.06 (m, 1H), 2.61 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 195.6 (d, JC-F = 2.3Hz), 162.4

(d, JC-F = 246.5 Hz), 161.0, 150.3, 141.3, 140.5, 139.5, 139.2 (d, JC-F = 6.3), 133.5, 130.3, 129.8 (d, JC-F = 7.4 Hz), 127.0, 126.5, 125.3, 125.2 (d, JC-F =2.8), 124.4, 120.2, 119.6 (d, JC-F = 21.5 Hz), 115.8 (d, JC-F = 22,2 Hz), 110.5, 20.7. HRMS (EI-TOF) m/z calcd. for C21H14FNO2: 331.1009; found: 331.1011. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(4-fluorophenyl)methanone (4j) Light yellow oil. Yield: 47.8 mg, 48%. 1H NMR (400 MHz, CDCl3): δ 7.61-7.68 (m, 2H), 7.53-7.59 (m, 1H), 7.47 (d, J = 4.8 Hz, 2H), 7.39 (t, J = 4.4 Hz, 1H), 7.29-7.34 (m, 1H), 7.197.24 (m, 2H), 6.86 (t, J = 8.8 Hz, 2H), 2.53 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 195.5, 165.4 (d, JC-F = 253.4 Hz), 161.1, 150.3, 141.1 (d, JC-F = 44.4 Hz), 139.4, 133.5 (d, JC-F =3.0 Hz), 133.2, 132.0 (d, JC-F = 9.6 Hz), 130.3, 126.8, 126.4, 125.3, 124.5, 120.2, 115.3 (d, JC-F = 21.8 Hz), 110.5, 29.7, 20.7. HRMS (EI-TOF) m/z calcd. for C21H14FNO2: 331.1009; found: 331.1012. (2-(benzo[d]oxazol-2-yl)-3-methylphenyl)(2-fluorophenyl)methanone (4k) Light yellow oil. Yield: 44.7 mg, 45%. 1H NMR (400 MHz, CDCl3): δ 7.60-7.66 (m, 1H), 7.51-7.58 (m, 3H), 7.40-7.47 (m, 2H), 7.19-7.29 (m, 3H), 6.95 (td, J = 0.8, 7.6 Hz, 1H), 6.826.89 (m, 1H), 2.53 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 193.6, 161.1, 160.6 (d, JC-F = 254.7

ACS Paragon Plus Environment

14

Page 15 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Hz), 150.4, 141.6, 141.4, 139.3, 133.8, 133.6 (d, JC-F = 8.9 Hz), 131.0 (d, JC-F = 1.4 Hz), 130.4, 127.0, 126.4, 126.3 (d, JC-F = 11.3 Hz), 125.1, 124.3, 123.7 (d, JC-F = 3.6 Hz), 120.1, 116.1 (d, JCF

= 21.7 Hz), 110.6, 20.3. HRMS (EI-TOF) m/z calcd. for C21H14FNO2: 331.1009; found:

331.1010. (3-methyl-2-(5-methylbenzo[d]oxazol-2-yl)phenyl)(p-tolyl)methanone (4l) Light yellow solid, mp: 94-95 °C. Yield: 51.2 mg, 50%. 1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 8.4 Hz, 2H), 7.46-7.51 (m, 2H), 7.40-7.44 (m, 2H), 7.23-7.26 (m, 1H), 7.03-7.10 (m, 3H), 2.57 (s, 3H), 2.40 (s, 3H), 2.27 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 196.6, 161.4, 148.6,

143.6, 141.7, 141.3, 139.3, 134.5, 134.0, 132.9, 130.0, 129.8, 128.9, 126.8, 126.6, 126.2, 120.0, 109.9, 21.6, 21.4, 20.7. HRMS (EI-TOF) m/z calcd. for C23H19NO2: 341.1416; found: 341.1420. 1-(2-(benzo[d]oxazol-2-yl)-3-methylphenyl)ethan-1-one (4m) Orange yellow solid, mp: 59-61 °C. Yield: 37.6 mg, 56%.1H NMR (400 MHz, CDCl3): δ 7.797.81 (m, 1H), 7.66 (dd, J = 1.6, 6.8 Hz, 1H), 7.58-7.60 (m, 1H), 7.49-7.55 (m, 2H), 7.38-7.40 (m, 2H), 2.42 (s, 3H), 2.39 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 200.1, 162.2, 150.7, 141.6,

140.4, 140.0, 133.8, 130.5, 126.4, 126.3, 125.2, 124.5, 120.3, 110.8, 28.5, 20.0. HRMS (EI-TOF) m/z calcd. for C16H13NO2: 251.0946; found: 251.0943. (1-(benzo[d]oxazol-2-yl)naphthalen-2-yl)(phenyl)methanone (5a) Light yellow solid, mp: 134-136 °C. Yield: 89.0 mg, 85%. 1H NMR (400 MHz, CDCl3): δ 8.46-8.65 (m, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.83-7.89 (m, 1H), 7.48-7.64 (m, 6H), 7.23-7.29 (m, 1H), 7.12-7.20 (m, 3H), 7.05-7.12 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 197.3, 160.5, 150.4, 141.5, 139.3, 137.0, 134.3, 132.7, 131.4, 130.9, 129.3, 128.5, 128.5, 128.1, 127.9, 126.5, 125.4,

ACS Paragon Plus Environment

15

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 28

125.3, 124.6, 124.3, 121.5, 120.3, 111.5, 110.6. HRMS (EI-TOF) m/z calcd. for C24H15NO2: 349.1103; found: 349.1101. (2-(benzo[d]oxazol-2-yl)-3,4-dimethylphenyl)(phenyl)methanone (5b) White solid, mp: 87-89 °C. Yield: 81.4 mg, 83%. 1H NMR (400 MHz, CDCl3): δ 7.61-7.66 (m, 3H), 7.39-7.42 (m, 3H), 7.32-7.34 (m, 1H), 7.22-7.26 (m, 4H), 2.44 (s, 3H), 2.39 (s, 3H).

13

C

NMR (100 MHz, CDCl3): δ 196.8, 161.9, 150.4, 141.4, 141.1, 138.6, 137.9, 137.2, 132.4, 131.4, 129.5, 128.0, 127.4, 127.2, 125.0, 124.2, 120.1, 110.6, 20.8, 16.9. HRMS (EI-TOF) m/z calcd. for C22H17NO2: 327.1259; found: 327.1257. (3-methoxy-2-(5-methylbenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (5c) Brown oil. Yield: 84.4 mg, 82%. 1H NMR (400 MHz, CDCl3): δ 7.67-7.69 (m, 2H), 7.60 (t, J = 8.0 Hz, 1H), 7.39 (s, 1H), 7.34 (t, J = 7.3Hz, 1H), 7.24 (t, J = 8.0 Hz, 5H), 7.04 (d, J = 8.4 Hz, 1H), 3.94 (s, 3H), 2.39 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 196.2, 159.2, 158.4, 148.7,

142.2, 141.6, 136.9, 133.9, 132.7, 131.9, 129.4, 128.1, 126.1, 121.4, 120.0, 116.5, 113.7, 109.8, 56.4, 21.4. HRMS (EI-TOF) m/z calcd. for C22H17NO3: 343.1208; found: 343.1205. (2-(benzo[d]oxazol-2-yl)-3,5-dimethylphenyl)(phenyl)methanone (5d) Light yellow solid, mp: 80-82 °C. Yield: 75.6 mg, 77%. 1H NMR (400 MHz, CDCl3): δ 7.657.70 (m, 2H), 7.57-7.62 (m, 1H), 7.30-7.36 (m, 3H), 7.29 (s, 1H), 7.25-7.27 (m, 1H), 7.21-7.25 (m, 3H), 2.58 (s, 3H), 2.45 (s, 3H),. 13C NMR (100 MHz, CDCl3): δ 197.3, 161.4, 150.2, 141.4, 141.2, 140.7, 139.1, 137.2, 133.9, 132.5, 129.3, 128.0, 127.6, 124.9, 124.2, 123.6, 120.0, 110.4, 21.4, 20.7. HRMS (EI-TOF) m/z calcd. for C22H17NO2: 327.1259; found: 327.1259. (2-(benzo[d]oxazol-2-yl)-3,5-difluorophenyl)(phenyl)methanone (5e)

ACS Paragon Plus Environment

16

Page 17 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Light yellow solid, mp = 105-106 °C, (53%yeild). mp: 105-106 °C. Yield: 53.3 mg, 53%. 1H NMR (400 MHz, CDCl3): δ 7.61-7.68 (m, 2H), 7.52-7.58 (m, 1H), 7.28-7.37 (m, 2H), 7.21-7.28 (m, 2H), 7.16-7.20 (m, 2H), 7.06-7.14 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 193.9, 163.9 (dd, JC-F = 12.3, 256.3 Hz), 161.4 (dd, JC-F = 11.8, 260 Hz), 156.1, 150.4, 143.9 (dd, JC-F = 1.2, 8 Hz), 141.2, 136.1, 133.5, 129.3, 128.5, 125.6, 124.6, 120.4, 112.7 (dd, JC-F = 3.6, 22.8 Hz), 111.8 (dd, JC-F = 4.1, 13.5 Hz), 110.6, 106.8 (t, JC-F = 25.3 Hz). HRMS (EI-TOF) m/z calcd. for C20H11F2NO2: 335.0758; found: 335.0757. (2-(benzo[d]oxazol-2-yl)-3-fluorophenyl)(phenyl)methanone (5f) Light yellow solid, mp: 90-92 °C. Yield: 50.4 mg, 53%. 1H NMR (400 MHz, CDCl3): δ 7.717.76 (m, 2H), 7.60-7.67 (m, 2H), 7.36-7.49 (m, 4H), 7.28-7.33 (m, 2H), 7.24-7.27 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 195.2 (d, JC-F = 2.5 Hz), 160.7 (d, JC-F = 256.8 Hz), 156.9 (d, JC-F = 3.4 Hz), 150.5, 142.4, 141.3, 136.7, 133.1, 132.5 (d, JC-F = 8.9 Hz), 129.4, 128.4, 125.6, 124.9 (d, JC-F = 3.5 Hz), 124.5, 120.5, 118.6 (d, JC-F = 21.8 Hz), 115.2 (d, JC-F = 13.5 Hz), 110.6. HRMS (EI-TOF) m/z calcd. for C20H12FNO2: 317.0852; found: 317.0851. (2-(5-methylbenzo[d]oxazol-2-yl)-1,3-phenylene)bis(phenylmethanone) (5g) Light brown solid, mp: 165-167 °C. Yield: 52.6 mg, 42%. 1H NMR (400 MHz, CDCl3): δ 7.71-7.77 (m, 7H), 7.34-7.38 (m, 2H), 7.25-7.28 (m, 4H), 7.17 (s, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.90 (dd, J = 1.2, 8.4 Hz, 1H), 2.28 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 196.2, 159.1, 148.6, 141.3, 140.8, 136.7, 134.1, 133.1, 130.6, 130.6, 130.2, 129.4, 128.5, 128.3, 126.5, 125.2, 120.1, 109.6, 21.3. HRMS (EI-TOF) m/z calcd. for C28H19NO3: 417.1365; found: 417.1363. (2-(benzo[d]oxazol-2-yl)-3-isopropylphenyl)(phenyl)methanone (5h)

ACS Paragon Plus Environment

17

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 28

White solid, mp: 100-101 °C. Yield: 40.9 mg, 40%. 1H NMR (400 MHz, CDCl3): δ 7.65-7.71 (m, 3H), 7.58-7.64 (m, 2H), 7.48 (dd, J = 1.2, 7.6 Hz, 1H), 7.40-7.44 (m, 1H), 7.34-7.40 (m, 1H), 7.24-7.30 (m, 4H), 3.33 (m, 1H), 1.28 (d, J = 6.8 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ 197.0, 161.3, 150.5, 150.1, 141.4, 140.8, 137.0, 132.6, 130.4, 129.7, 128.5, 128.0, 127.1, 126.2, 125.8, 125.0, 124.3, 121.5, 120.2, 111.5, 110.6, 30.3, 24.0. HRMS (EI-TOF) m/z calcd. for C23H19NO2: 341.1416; found: 341.1420. (3-chloro-2-(5-methylbenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (5i) Light yellow oil. Yield: 36.4 mg, 35%.

1

H NMR (400 MHz, CDCl3): δ 7.72-7.74 (m, 1H),

7.67 (d, J = 8.4 Hz, 2H), 7.57-7.59 (m, 2H), 7.37-7.42 (m, 2H), 7.28-7.32 (m, 3H), 7.10 (d, J = 8Hz, 1H), 2.42 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 195.5, 158.8, 148.8, 142.6, 141.3, 136.4, 135.2, 134.3, 133.1, 132.4, 131.3, 129.6, 128.2, 127.7, 126.9, 126.7, 120.2, 110.0, 21.4. HRMS (EI-TOF) m/z calcd. for C21H14ClNO2: 347.0713; found: 347.0711. (3,4-dimethyl-2-(5-methylbenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (6a) Light yellow oil. Yield: 74.7 mg, 73%.

1

H NMR (400 MHz, CDCl3): δ 7.64-7.67 (m, 3H),

7.39-7.40 (m, 3H), 7.31-7.33 (m, 1H), 7.22-7.27 (m, 3H), 7.05 (d, J = 8.4 Hz, 1H), 2.42 (s, 3H), 2.40 (s, 3H), 2.38 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 196.8, 162.0, 148.7, 141.6, 141.0,

138.6, 137.9, 137.3, 134.0, 132.5, 131.3, 129.6, 128.0, 127.6, 127.1, 126.1, 120.0, 109.9, 21.4, 20.8, 16.9. HRMS (EI-TOF) m/z calcd. for C23H19NO2: 341.1416; found: 341.1415. (3,5-dimethyl-2-(5-methylbenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (6b) Light yellow solid, mp: 99-101 °C. Yield: 71.6 mg, 70%. 1H NMR (400 MHz, CDCl3): δ 7.657.70 (m, 2H), 7.38 (s, 1H), 7.31-7.36 (m, 2H), 7.19-7.28 (m, 4H), 7.03 (dd, J = 1.2, 8.4 Hz, 1H),

ACS Paragon Plus Environment

18

Page 19 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

2.57 (s, 3H), 2.44 (s, 3H), 2.40 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 197.3, 161.5, 148.5,

141.6, 141.2, 140.5, 139.1, 137.2, 134.0, 133.8, 132.6, 129.4, 128.0, 127.5, 126.0, 123.7, 119.9, 109.7, 31.0, 21.4, 21.4, 20.7. HRMS (EI-TOF) m/z calcd. for C23H19NO2: 341.1416; found: 341.1420. (2-(5-chlorobenzo[d]oxazol-2-yl)-3-methylphenyl)(phenyl)methanone (6c) Light brown oil. Yield: 43.7 mg, 42%. 1H NMR (400 MHz, CDCl3): δ 7.66-7.71 (m, 2H), 7.61 (d, J = 2.0 Hz, 1H), 7.51-7.55 (m, 2H), 7.46-7.50 (m, 1H), 7.36-7.42 (m, 1H), 7.25-7.32 (m, 3H), 7.22 (dd, J = 2, 8.8 Hz, 1H), 2.57 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 196.8, 162.7, 148.9, 142.5, 141.0, 139.4, 137.0, 133.3, 132.9, 130.4, 129.8, 129.5, 128.2, 127.2, 126.1, 125.4, 120.1, 111.3, 20.7. HRMS (EI-TOF) m/z calcd. for C21H14ClNO2: 347.0713; found: 347.0712. (3-methyl-2-(6-methylbenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (6d) Light yellow solid, mp: 78-79 °C. Yield: 53.0 mg, 54%. 1H NMR (400 MHz, CDCl3): δ 7.677.71 (m, 2H), 7.50-7.54 (m, 2H), 7.44-7.50 (m, 2H), 7.33-7.39 (m, 1H), 7.24-7.30 (m, 2H), 7.18 (s, 1H), 7.06 (dd, J = 0.8, 8.0 Hz, 1H), 2.59 (s, 3H), 2.42 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 197.0, 160.6, 150.6, 141.1, 139.3, 139.2, 137.1, 135.5, 133.1, 132.6, 130.0, 129.5, 128.1, 126.9, 126.6, 125.6, 119.5, 110.6, 21.7, 20.7. HRMS (EI-TOF) m/z calcd. for C22H17NO2: 327.1259; found: 327.1260. (3-methyl-2-(5-methylbenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (6e) Light yellow oil. Yield: 51.0 mg, 52%.

1

H NMR (400 MHz, CDCl3): δ 7.66-7.70 (m, 2H),

7.50-7.54 (m, 2H), 7.44-7.49 (m, 1H), 7.40 (s, 1H), 7.33-7.38 (m, 1H), 7.22-7.29 (m, 3H), 7.06 (dd, J = 1.2, 8.4 Hz, 1H), 2.59 (s, 3H), 2.41 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 197.0,

ACS Paragon Plus Environment

19

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 28

161.3, 148.5, 141.6, 141.1, 139.3, 137.1, 134.1, 133.1, 132.7, 130.1, 129.5, 128.1, 126.9, 126.7, 126.2, 120.0, 109.8, 21.4, 20.7. HRMS (EI-TOF) m/z calcd. for C22H17NO2: 327.1259; found: 327.1259. (2-(5-chlorobenzo[d]oxazol-2-yl)-3,5-dimethylphenyl)(phenyl)methanone (6f) Light yellow oil. Yield: 53.1 mg, 49%.

1

H NMR (400 MHz, CDCl3): δ 7.65-7.70 (m, 2H),

7.58 (d, J = 2.0 Hz, 1H), 7.33-7.40 (m, 2H), 7.23-7.30 (m, 4H), 7.20 (dd, J = 2.0, 8.4 Hz, 1H), 2.56 (s, 3H), 2.45 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 197.1, 162.9, 148.8, 142.5, 141.2,

141.0, 139.2, 137.1, 134.0, 132.8, 129.7, 129.4, 128.1, 127.7, 126.1, 125.3, 123.1, 120.0, 111.2, 21.4, 20.7. HRMS (EI-TOF) m/z calcd. for C22H16ClNO2: 361.0870; found: 361.0869. (2-(5-(tert-butyl)benzo[d]oxazol-2-yl)-3-methylphenyl)(phenyl)methanone (6g) White solid, mp: 84-86 °C. Yield: 49.8 mg, 45%. 1H NMR (400 MHz, CDCl3): δ 7.68-7.74 (m, 2H), 7.65 (d, J = 1.2 Hz, 1H), 7.49-7.54 (m, 2H), 7.43-7.47 (m, 1H), 7.35-7.41 (m, 1H), 7.247.32 (m, 4H), 2.59 (s, 3H), 1.34 (s, 9H).

13

C NMR (100 MHz, CDCl3): δ 207.0, 197.0, 161.3,

148.4, 147.8, 141.3, 141.0, 139.4, 137.1, 133.1, 132.6, 129.9, 129.6, 128.1, 126.9, 126.8, 122.9, 116.6, 109.6, 34.9, 31.7, 30.9, 20.7. HRMS (EI-TOF) m/z calcd. for C25H23NO2: 369.1729; found: 369.1728. (2-(benzo[d]thiazol-2-yl)-3-methylphenyl)(phenyl)methanone (6h) Light yellow solid, mp: 82-84 °C. Yield: 57.3 mg, 58%. 1H NMR (400 MHz, CDCl3): δ 7.93 (d, J = 8.0 Hz, 1H), 7.78 (dd, J = 0.8, 8.0 Hz, 1H), 7.66-7.72 (m, 2H), 7.46-7.50 (m, 2H), 7.367.43 (m, 3H), 7.24-7.35 (m, 3H), 2.43 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 197.3, 165.2,

152.9, 140.7, 138.2, 137.4, 136.2, 132.8, 132.8, 129.9, 129.3, 128.0, 126.6, 126.0, 125.2, 123.4,

ACS Paragon Plus Environment

20

Page 21 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

121.3, 31.6, 22.7, 20.5, 14.1. HRMS (EI-TOF) m/z calcd. for C21H15NOS: 329.0874; found: 329.0874. (3-methyl-2-(4-methylthiazol-2-yl)phenyl)(phenyl)methanone (6i) Light brown solid, mp: 59-60 °C. Yield: 21.1 mg, 24%. 1H NMR (400 MHz, CDCl3): δ 7.617.67 (m, 2H), 7.40-7.47 (m, 3H), 7.35-7.40 (m, 1H), 7.27-7.34 (m, 2H), 6.77 (d, J = 0.8 Hz, 1H), 2.41 (s, 3H), 2.28 (d, J = 1.2 Hz, 3H).

13

C NMR (100 MHz, CDCl3): δ 197.8, 163.4, 152.7,

140.9, 137.8, 137.5, 132.6, 132.5, 132.3, 129.7, 129.0, 128.0, 126.4, 115.2, 20.6, 16.8. HRMS (EI-TOF) m/z calcd. for C18H15NOS: 293.0874; found: 293.0878. (3-methyl-2-(6-nitrobenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (7a) Light yellow oil. Yield: 32.2 mg, 30%. 1H NMR (400 MHz, CDCl3): δ 8.31-8.35 (m, 1H), 8.24 (dd, J = 2.0, 8.8 Hz, 1H), 7.72-7.76 (m, 3H), 7.58-7.59 (m, 2H), 7.50-7.52 (m, 1H), 7.42-7.46 (m, 1H), 7.32-7.36 (m, 2H), 2.60 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 196.5, 166.2, 156.6,

149.5, 146.5, 145.2, 141.1, 139.8, 136.8, 133.5, 133.1, 130.9, 130.2, 129.7, 128.3, 127.5, 125.6, 120.5, 120.1, 107.2, 20.7. HRMS (EI-TOF) m/z calculated for C21H14N2O4: 358.0954, found: 358.0954. 6-nitro-2-(3-(o-tolyl)bicyclo[2.2.1]heptan-2-yl)benzo[d]oxazole (7a’) Light yellow solid, mp: 91-93 °C. Yield: 47.0 mg, 45%. 1H NMR (400 MHz, CDCl3): δ 8.07 (dd, J = 2.0, 8.8 Hz, 1H), 8.05 (d, J = 5.0 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 7.2 Hz, 1H), 6.74 (t, J = 7.6 Hz, 1H), 3.69 (dd, J = 1.2, 9.6 Hz, 1H), 3.48 (d, J = 9.6 Hz, 1H), 2.71-2.81 (m, 3H), 2.37 (s, 3H), 1.80-1.84 (m, 2H), 1.671.70 (m, 1H), 1.53 (dd, J = 2.0, 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ 172.4, 149.2, 146.0,

ACS Paragon Plus Environment

21

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 28

144.5, 139.2, 136.2, 129.7, 126.1, 125.9, 125.5, 120.0, 119.0, 106.3, 49.6, 49.1, 41.6, 41.2, 37.8, 31.2, 29.1, 20.3. HRMS (EI-TOF) m/z calculated for C21H20N2O3: 348.1474, found: 348.1477. (3,5-dimethyl-2-(6-nitrobenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (7b) Light yellow oil. Yield: 49.1 mg, 44%. 1H NMR (400 MHz, CDCl3): δ 8.28 (d, J = 2.0 Hz, 1H), 8.22 (dd, J = 1.6, 8.8 Hz, 1H), 7.72 (d, J = 8.0 Hz, 3H), 7.40-7.44 (m, 1H), 7.38 (s, 1H), 7.30-7.34 (m, 3 H), 2.59 (s, 3H), 2.47 (s, 3H).

13

C NMR (100 MHz, CDCl3): δ 196.8, 166.4,

156.6, 149.4, 146.6, 145.1, 141.7, 141.3, 139.6, 136.9, 134.2, 133.0, 129.5, 128.3, 128.0, 122.5, 120.5, 120.0, 107.1, 21.5, 20.7. HRMS (EI-TOF) m/z calculated for C22H16N2O4: 372.1110, found: 372.1108. 2-(3-(2,4-dimethylphenyl)bicyclo[2.2.1]heptan-2-yl)-6-nitrobenzo[d]oxazole (7b’) Light yellow oil. Yield: 53.2 mg, 49%. 1H NMR (400 MHz, CDCl3): δ 8.05-8.12 (m, 2H), 7.54 (d, J = 8.8 Hz,1H), 7.08 (d, J =8.0 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 6.64 (s, 1H), 3.67 (d, J = 9.6 Hz, 1H), 3.44 (d, J = 9.6 Hz, 1H), 2.64-2.83 (m, 3H), 2.32 (s, 3H), 2.00 (s, 3H), 1.75-1.86 (m, 2H), 1.67 (d, J = 10.0 Hz, 1H), 1.52 (dd, J = 2.0, 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ 172.6, 149.2, 146.1, 144.4, 136.1, 136.0, 135.4, 130.5, 126.1, 125.8, 119.9, 119.1, 106.3, 49.4, 49.2, 41.7, 41.1, 37.8, 31.2, 29.1, 20.6, 20.2. HRMS (EI-TOF) m/z calculated for C22H22N2O3: 362.1630, found: 362.1630. (3,5-difluoro-2-(6-nitrobenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (7c) Light yellow solid, mp: 152-154 °C. Yield: 61.6 mg, 54%. 1H NMR (400 MHz, CDCl3): δ 8.34 (d, J = 2.0 Hz, 1H), 8.24 (dd, J = 2.4, 8.8 Hz, 1H), 7.72-7.78 (m, 3H), 7.49-7.52 (m, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.18-7.25 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ 193.3, 164.5 (dd, J = 12.7,

ACS Paragon Plus Environment

22

Page 23 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

258.4 Hz), 161.7 (dd, J = 11.9, 261.4 Hz), 160.9 (d, J = 29.0 Hz), 149.6, 146.1, 145.5, 144.3 (d, J = 7.6 Hz), 135.8, 133.9, 129.5, 128.7, 120.8, 120.5, 113.1 (dd, J = 3.6, 23.1 Hz), 107.4, 107.0 (t, J = 25.2 Hz), 29.7. HRMS (EI-TOF) m/z calculated for C20H10F2N2O4: 380.0609, found: 380.0611. 2-(3-(2,4-difluorophenyl)bicyclo[2.2.1]heptan-2-yl)-6-nitrobenzo[d]oxazole (7c’) Colorless solid, mp: 148-149 °C. Yield: 44.4 mg, 40%. 1H NMR (400 MHz, CDCl3): δ 8.128.18 (m, 2H), 7.58 (dd, J = 1.2, 8.4 Hz, 1H), 7.11-7.21 (m, 1H), 6.45-6.59 (m, 2H), 3.68 (d, J = 9.6 Hz, 1H), 3.61 (d, J = 9.6 Hz, 1H), 2.86 (s, 1H), 2.64 (s, 1H), 2.60 (d, J = 10.4 Hz, 1H), 1.83 (dd, J = 2.8, 10.8 Hz, 2H), 1.68 (d, J = 10.4 Hz, 1H), 1.52-1.58 (m, 2H).

13

C NMR (100 MHz,

CDCl3): δ 172.1, 161.3 (dd, J = 12.0, 246.0 Hz,), 160.4 (dd, J = 11.7, 246.5 Hz), 149.2, 146.0, 144.7, 128.3 (d, J = 5.6 Hz ), 128.2 (d, J = 5.6 Hz ), 124.2 (dd, J = 3.8, 14.8 Hz), 120.2, 119.3, 110.6 (dd, J = 3.5, 20.7 Hz), 106.4, 102.9 (t, J = 25.8 Hz), 49.0, 44.9, 41.6, 40.6, 37.5, 30.7, 28.8. HRMS (EI-TOF) m/z calculated for C20H16F2N2O3: 370.1129, found: 370.1130. (3-isopropyl-2-(6-nitrobenzo[d]oxazol-2-yl)phenyl)(phenyl)methanone (7d) Light yellow oil. Yield: 34.8 mg, 30%. 1H NMR (400 MHz, CDCl3): δ 8.37 (d, J = 2.0 Hz, 1H), 8.26 (dd, J = 2.4, 8.8 Hz, 1H), 7.76 (d, J = 8.8 Hz, 1H), 7.69-7.74 (m, 3H), 7.66 (t, J = 7.6 Hz, 1H), 7.52 (dd, J = 1.2, 8.8Hz, 1H), 7.43-7.49 (m, 1H), 7.33-7.37 (m, 2H), 3.18-3.28 (m, 2H), 1.31 (d, J = 6.8 Hz, 6H).

13

C NMR (100 MHz, CDCl3): δ 196.5, 166.5, 150.4, 149.7, 146.6,

145.2, 140.6, 136.8, 133.1, 131.1, 129.8, 129.0, 128.3, 127.7, 125.3, 120.5, 120.2, 107.4, 30.6, 24.0. HRMS (EI-TOF) m/z calcd. for C23H18N2O4: 386.1267; found: 386.1271. 2-(3-(2-isopropylphenyl)bicyclo[2.2.1]heptan-2-yl)-6-nitrobenzo[d]oxazole (7d’)

ACS Paragon Plus Environment

23

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 24 of 28

Orange yellow oil. Yield: 73.3 mg, 65%. 1H NMR (400 MHz, CDCl3): δ 8.09 (dd, J = 2.4, 8.8 Hz, 1H), 8.02 (d, J = 2.0 Hz, 1H), 7.53 (d, J = 8.8 Hz, 1H), 7.21-7.23 (m, 1H), 6.92-6.95 (m, 1H), 6.84-6.87 (m, 2H), 3.71 (d, J = 9.2 Hz, 1H), 3.55 (d, J = 9.6 Hz, 1H), 3.28-3.25 (m, 1H), 2.77-2.82 (m, 2H), 2.71 (s, 1H), 1.81-1.84 (m, 2H), 1.70 (d, J = 10.4 Hz, 1H), 1.53-1.55 (m, 2H), 1.27 (d, J = 6.8 Hz, 3H), 1.16 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 172.3, 149.2, 146.5, 146.1, 144.5, 137.4, 126.5, 126.1, 125.2, 124.4, 120.0, 119.0, 106.2, 49.8, 48.5, 41.6, 41.4, 37.9, 31.2, 29.3, 29.1, 25.3, 22.2. HRMS (EI-TOF) m/z calculated for C23H24N2O3: 376.1787, found: 376.1792. (1-(6-nitrobenzo[d]oxazol-2-yl)naphthalen-2-yl)(phenyl)methanone (7e) Light yellow solid, mp: 173-174 °C. Yield: 68.6 mg, 58%. 1H NMR (400 MHz, CDCl3): δ 8.51-8.54 (m, 1H), 8.32 (d, J = 2.4 Hz, 1H), 8.27 (dd, J = 2.0, 8.8 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.03-8.06 (m, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.70-7.76 (m, 5H), 7.41 (t, J = 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H).

13

C NMR (100 MHz, CDCl3): δ 196.7, 165.4, 149.5, 146.5, 145.4,

139.8, 136.8, 134.3, 133.2, 132.3, 130.8, 129.5, 128.9, 128.7, 128.4, 128.2, 126.0, 125.3, 123.2, 120.7, 120.3, 107.3. HRMS (EI-TOF) m/z calcd. for C24H14N2O4: 394.0954; found: 394.0956. 2-(3-(naphthalen-1-yl)bicyclo[2.2.1]heptan-2-yl)-6-nitrobenzo[d]oxazole (7e’) Colorless solid, mp: 147-148 °C. Yield: 34.6 mg, 30%. 1H NMR (400 MHz, CDCl3): δ 8.16 (d, J = 8.4 Hz, 1H), 7.95 (dd, J = 2.4, 8.8 Hz, 1H), 7.72 (d, J = 2.0 Hz, 1H), 7.43-7.57 (m, 3H), 7.39 (d, J = 8.4 Hz, 1H), 7.30-7.36 (m, 2H), 7.20 (t, J = 7.6 Hz, 1H), 4.11 (d, J = 9.6 Hz, 1H), 3.90 (dd, J = 0.8, 9.6 Hz, 1H), 2.93 (s, 1H), 2.78-2.87 (m, 2H), 1.83-1.96 (m, 2H), 1.75 (d, J = 10.0 Hz, 1H), 1.66 (d, J = 7.2 Hz, 2H).

13

C NMR (100 MHz, CDCl3): δ 172.3, 148.7, 145.8, 144.3,

136.9, 133.2, 131.5, 128.4, 126.8, 125.4, 125.3, 124.9, 124.0, 123.6, 119.8, 118.8, 106.0, 50.0,

ACS Paragon Plus Environment

24

Page 25 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

48.9, 42.4, 41.1, 37.6, 30.9, 29.4. HRMS (EI-TOF) m/z calculated for C24H20N2O3: 384.1474, found: 384.1473. 2-(3-(benzo[d]oxazol-2-yl)bicyclo[2.2.1]heptan-2-yl)phenylbenzoate (7f) Light yellow oil. Yield: 79.8 mg, 65%.

1

H NMR (400 MHz, CDCl3): δ 8.42 (d, J = 7.2 Hz,

2H), 7.67-7.72 (m, 1H), 7.61 (t, J = 7.6 Hz, 2H), 7.50-7.53 (m, 1H), 7.37 (dd, J = 2.0, 7.6 Hz, 1H), 7.20-7.24 (m, 1H), 7.10-7.15 (m, 2H), 6.93-7.02 (m, 2H), 6.88 (dd, J = 1.6, 7.6 Hz, 1H), 3.60 (d, J = 9.6 Hz, 1H), 3.43 (d, J = 9.2 Hz, 1H), 2.76 (br. s, 1H), 2.72 (br. s, 1H), 2.68 (d, J = 10.4 Hz, 1H), 1.75 (d, J = 8.0 Hz, 2H), 1.61 (d, J = 10.0 Hz, 1H), 1.43 (dd, J = 2.0, 8.0 Hz, 2H). 13

C NMR (100 MHz, CDCl3): δ 167.3, 164.8, 150.2, 148.7, 140.9, 133.7, 133.4, 130.4, 129.9,

128.8, 127.4, 127.0, 125.4, 124.1, 123.6, 121.6, 119.3, 109.9, 49.2, 46.7, 42.1, 40.5, 37.2, 30.6, 29.2. HRMS (EI-TOF) m/z calculated for C27H23NO3: 409.1678, found: 409.1688. 2-(3-(o-tolyl)bicyclo[2.2.1]heptan-2-yl)benzo[d]oxazole (7g) Colorless solid, mp: 67-69 °C. Yield: 41.8 mg, 46%. 1H NMR (400 MHz, CDCl3): δ 7.44-7.50 (m, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.05-7.16 (m, 3H), 6.88 (t, J = 7.2 Hz, 1H), 6.81 (d, J = 7.2 Hz, 1H), 6.75 (t, J = 7.6 Hz, 1H), 3.66 (d, J = 8.8 Hz, 1H), 3.43 (d, J = 9.6 Hz, 1H), 2.75-2.82 (m, 2H), 2.69 (s, 1H), 2.37 (s, 3H), 1.75-1.85 (m, 2H), 1.65 (d, J = 10.4 Hz, 1H), 1.52 (dd, J = 1.6, 7.2 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ 167.3, 150.2, 140.6, 139.8, 136.3, 129.5, 126.0, 125.8, 125.3, 123.9, 123.5, 119.2, 109.6, 49.4, 49.0, 41.8, 41.2, 37.7, 31.2, 29.2, 20.4. HRMS (EI-TOF) m/z calculated for C21H21NO: 303.1623, found: 303.1626. Supporting Information

ACS Paragon Plus Environment

25

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 28

The Supporting Information is available free of charge on the ACS Publications website at DOI: Crystallographic data for 7c’ (CIF) and 1H NMR and 13C NMR spectra for new products (PDF). AUTHOR INFORMATION Corresponding Author *E-mail: [email protected]. Notes The authors declare no competing financial interest. ACKNOWLEDGMENT The National Natural Science Foundation of China (21572203 and 21472140) and Zhejiang Provincial Natural Science Foundation (LZ16B020001) are acknowledged for the financial support. REFERENCES (1) Kumar, D.; Jacob, M. R.; Reynolds, M. B.; Kerwin, S. M. Bioorg. Med. Chem. 2002, 10, 3997. (2) Malamas, M. S.; Manas, E. S.; McDevitt, R. E.; Gunawan, I.; Xu, Z.; Collini, M. D.; Miller, C. P.; Dinh, T.; Henderson, R. A.; Keith, J. J. C.; Harris H. J. Med. Chem. 2004, 47, 5021. (3) Tipparaju, S. K.; Joyasawal, S.; Pieroni, M.; Kaiser, M.; Brun, R.; Kozikowski, A. P. J. Med. Chem. 2008, 51, 7344.

ACS Paragon Plus Environment

26

Page 27 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

(4) (a) Yeh, V. S. C. Tetrahedron 2004, 60, 11995. (b) Zificsak, C. A.; Hlasta, D. J. Tetrahedron 2004, 60, 8991. (c) Turchi, I. J.; Dewar, M. J. S. Chem. Rev. 1975, 75, 389. (5) Fortenberry, C.; Nammalwar, B.; Richard, A. B. Organic Preparations and Procedures International 2013, 45, 57. (6) (a) Shibahara, F.; Yamaguchi, E.; Murai, T. Chem. Commun. 2010, 46, 2471. (b) Yamamoto, T.; Muto, K.; Komiyama, M.; Canivet, J.; Yamaguchi, J. I.; Itami, K. I. Chem. Eur. J. 2011, 17, 10113. (c) Huang, J.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674. (7) Wang, L.; Ren, X.; Yu, J.; Jiang, Y.; Cheng, J. J. Org. Chem. 2013, 78, 12076. (8) Zhu, F.; Tao, J.; Wang, Z. Org. Lett. 2015, 17, 4926. (9) (a) Yang, F.; Xu, Z.; Wang, Z.; Yu, Z.; Wang, R. Chem. Eur. J. 2011, 17, 6321. (b) Ranjit, S.; Liu, X. Chem. Eur. J. 2011, 17, 1105. (10) (a) Han, W.; Mayer, P.; Ofial, A. R. Chem. Eur. J. 2011, 17, 6904. (b) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2010, 49, 2202. (11) Yu, D.; Lu, L.; Shen, Q. Org. Lett. 2013, 15, 940. (12) (a) Della Ca’, N.; Fontana, M.; Motti, E.; Catellani, M. Acc. Chem. Res. 2016, 49, 1389. (b) Ye, J.; Lautens, M. Nat. Chem. 2015, 7, 863. (13) (a) Li, R; Dong, G. Angew. Chem. Int. Ed. 2018, 57, 1697. (b) Whyte, A., Olson, M., Lautens, M. Org. Lett. 2018, 20, 345 and references cited therein.

ACS Paragon Plus Environment

27

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 28

(14) Maestri, G.; Motti, E.; Ca’, N. D.; Malacria, M.; Derat, E.; Catellani, M. J. Am. Chem. Soc. 2011, 133, 8574. (15) (a) Gao, W.; Li, W.; Zeng, C.; Tian, H.; Hu, L.; Little, R. D. J. Org. Chem. 2014, 79, 9613. (b) Lei, C.; Jin, X.; Zhou, J. Angew. Chem. Int. Ed. 2015, 54, 13397. (c) Pal, P.; Giri, A. K.; Singh, H.; Ghosh, S. C.; Panda, A. B. Chem. Eur. J. 2014, 9, 2393. (16) Bressy, C.; Alberico, D.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 13148. (17) Martins, A.; Alberico, D.; Lautens, M. Org. Lett. 2006, 8, 4827. (18) (a) Pan, S.; Wu, F.; Yu, R.; Chen, W. J. Org. Chem. 2016, 81, 1558. (b) Pan, S.; Ma, X.; Zhong, D.; Chen, W.; Liu, M.; Wu, H. Adv. Synth. Catal. 2015, 357, 3052. (19) Phakhodee, W.; Duangkamol, C.; Wangngae, S.; Pattarawarapan, M. Tetrahedron Lett. 2016, 57, 325. (20) Fortenberry, C.; Nammalwar, B.; Bunce. R. A. Org. Prep. Proc. Int. 2013, 45, 57.

ACS Paragon Plus Environment

28