7 Adhesion of High Polymers III. Mechanisms of Adhesion at the Rubber-Resin Interface in Hetrophase Systems
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
LIENG-HUANG
LEE
1
The Plastics Laboratory, The Dow Chemical Company, Midland, Mich. 48640
Rubber-resin
heterophase systems are classified as (1) resin
as the disperse phase, (2) rubber as the disperse phase, (3) grafted rubber latex particles as the disperse phase, and (4) filled graft rubber as the
disperse phase.
mechanisms related to these systems are discussed.
Adhesion Special
emphasis is made on the last two systems which involve grafting.
The graft rubber isolated from the fourth system
is characterized.
The graft rubber is shown to function as
a compatibilizer
and as an adhesive or a coupling agent for
the rubber-resin
interface.
" p a r t i c u l a t e o r g a n i c composite m a t e r i a l s c o n t a i n i n g b o t h a r u b b e r a n d -*· a r e s i n c a n b e so f a m i l i a r as to b e u n r e c o g n i z e d as such—e.g., elastom e r i c adhesives (63, 67),
pressure-sensitive tapes (63),
o r g a n i c coatings, or c o m m o n l y r e i n f o r c e d r u b b e r s (10)
recognized
composites
non-pigmented s u c h as r e s i n -
or r u b b e r - r e i n f o r c e d t h e r m o p l a s t i c s (2, 10,
55).
T h o u g h appearances a n d f u n c t i o n s of these m a t e r i a l s differ, the f u n d a m e n t a l p r i n c i p l e s u n d e r l y i n g t h e c h e m i s t r y at the interface a n d m e c h a nisms of r e i n f o r c e m e n t are s i m i l a r . D o b r y a n d B o y e r - K a w e n o k i (14)
concluded that for polymers, com
p a t i b i l i t y is the e x c e p t i o n a n d i n c o m p a t i b i l i t y is the r u l e . F o r a h e t e r o geneous system, i n c o m p a t i b i l i t y is a n a d v a n t a g e for r e i n f o r c e m e n t , p r o v i d e d t h a t the a d h e s i o n at the interface is s t r o n g e n o u g h to w i t h s t a n d the a p p l i e d stresses. interface—e.g.,
T h e n a t u r e of a d h e s i o n depends
o n the t y p e
of
l i q u i d - l i q u i d , l i q u i d - s o l i d , o r s o l i d - s o l i d . I n the case of
t w o p o l y m e r s at the l i q u i d - l i q u i d i n t e r f a c e , a r u b b e r y p o l y m e r - t o - r u b b e r y polymer adhesion ( R - R adhesion) 1
(35, 36)
is l i k e l y to d e t e r m i n e the
Present address: Xerox Research Laboratories, Webster, Ν. Y. 14580. 85 In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
86
INTERACTION
O F LIQUIDS A T SOLID
SUBSTRATES
process, w h i l e at the l i q u i d - s o l i d interface, a r u b b e r y p o l y m e r - t o - g l a s s y p o l y m e r a d h e s i o n ( R - G a d h e s i o n ) s h o u l d p r e d o m i n a t e . T h o u g h t h e latter is o u r m a j o r interest i n this s t u d y , w e also b r i e f l y discuss t h e a d h e s i o n at t h e l i q u i d - l i q u i d interface of t r a n s i t o r y r u b b e r - r e s i n systems. W e are specifically i n t e r e s t e d i n t h e system i n w h i c h a l i q u i d - s o l i d interface r e a c t i o n has t a k e n p l a c e . A n e x a m p l e o f this t y p e of r e a c t i o n is t h e c h e m i c a l g r a f t i n g of a r u b b e r w i t h a m o n o m e r at t h e interface. T h e f u n c t i o n of t h e g r a f t e d r u b b e r as a n a d h e s i v e has b e e n p o s t u l a t e d (11,29, 46, 64) b u t has never b e e n p r o v e d .
S i n c e t h e g r a f t e d r u b b e r is t h e k e y
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
to b r i d g i n g t w o i n c o m p a t i b l e p o l y m e r s together, w e d e v o t e d a m a j o r p o r t i o n of o u r e x p e r i m e n t a l w o r k to t h e c h a r a c t e r i z a t i o n of t h e g r a f t e d p o l y m e r as a n adhesive at t h e interface. C l a s s i f i c a t i o n o f R u b b e r - R e s i n Systems.
R u b b e r - r e s i n heterophase
systems c a n b e classified i n t o f o u r types a c c o r d i n g t o t h e m a i n constituent i n t h e disperse p h a s e : ( 1 ) R e s i n as t h e disperse phase ( 2 ) R u b b e r as t h e disperse phase ( 3 ) G r a f t e d r u b b e r latex p a r t i c l e s as t h e disperse phase ( 4 ) F i l l e d graft r u b b e r as t h e disperse phase RESIN AS T H E DISPERSE P H A S E .
S e v e r a l k i n d s o f resins ( J O ) h a v e b e e n
u s e d to r e i n f o r c e rubbers—e.g., p h e n o l i c o r c o u m a r o n e resins f o r n a t u r a l r u b b e r , s t y r e n e - b u t a d i e n e r e s i n f o r s t y r e n e - b u t a d i e n e r u b b e r , etc. O n e other i m p o r t a n t system, pressure-sensitive adhesive, also belongs t o this class.
T h e s e adhesives g e n e r a l l y c o n t a i n a l o w m o l e c u l a r w e i g h t r e s i n
f u n c t i o n i n g as a tackifier. I n 1957, W e t z e l (68) a n d H o c k (19)
found
that these adhesives w e r e a c t u a l l y t w o - p h a s e systems ( F i g u r e 1 ) . U n d e r
Figure 1. Electron-micrograph of twophase pressure-sensitive adhesive (Magnification, 11,000 X), dark phase = resin, 3.2 pentalyn H and natural rubber by Hock (17) t h e n o r m a l c o n d i t i o n , t h e d i s p e r s e d phase is t h e r e s i n p l u s l o w m o l e c u l a r w e i g h t r u b b e r a n d t h e c o n t i n u o u s phase is the r u b b e r s a t u r a t e d w i t h resin.
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
7.
LEE
Rubber-Resin Interface
87
T h e y also r e p o r t e d a phase i n v e r s i o n t a k i n g p l a c e at h i g h r e s i n c o n c e n trations ( F i g u r e 2 ) . A f t e r t h e phase i n v e r s i o n , t h e tack v a l u e of t h e
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
adhesive d r o p p e d t o zero.
Figure 2. Phase inversion of rubber-resin phases in pressure-sensitive adhesives discovered by Wetzel and Hock in 1957 P r i o r t o this d i s c o v e r y , i n 1 9 5 4 S i l b e r b e r g a n d K u h n ( 6 2 ) w e r e first to s t u d y t h e p o l y m e r - i n - p o l y m e r e m u l s i o n c o n t a i n i n g e t h y l c e l l u l o s e a n d polystyrene polymer
i n a nonaqueous
solvent,
benzene.
e m u l s i f i c a t i o n , d e m i x i n g , a n d phase
T h e mechanisms reversal were
of
studied.
W e t z e l a n d H o c k ' s d i s c o v e r y w o u l d t h e n equate t h e pressure-sensitive adhesive t o a p o l y m e r - p o l y m e r e m u l s i o n i n s t e a d of a p o l y m e r - p o l y m e r suspension.
S i n c e t h e interface is l i q u i d - l i q u i d , t h e a d h e s i o n t h e n b e -
comes one t y p e of R - R a d h e s i o n ( 3 5 , 3 6 ) . A c c o r d i n g to o u r p r e v i o u s d i s c u s s i o n , d i f f u s i o n is not o p e r a t i v e unless b o t h r e s i n a n d r u b b e r h a v e a n i d e n t i c a l s o l u b i l i t y parameter.
T h e m a j o r i n t e r f a c i a l i n t e r a c t i o n is
p h y s i c a l a d s o r p t i o n , w h i c h , i n t u r n , determines adhesion.
O u r previous
w o r k o n t h e w e t t a b i l i t y of elastomers ( 3 7 , 38) c a n h e l p p r e d i c t a d h e s i o n results. D e t a i l e d studies o n t h e f u n c t i o n of tackifiers h a v e b e e n m a d e b y W e t z e l a n d A l e x a n d e r ( 6 9 ) , a n d b y H o c k ( 2 0 , 21), a n d therefore t h e subject r e q u i r e s n o f u r t h e r e l a b o r a t i o n . RUBBER
AS T H E DISPERSE
PHASE.
I n p o l y b l e n d systems, a r u b b e r is
masticated mechanically w i t h a polymer or dissolved i n a polymer solut i o n . A t t h e c o n c l u s i o n of b l e n d i n g , a r u b b e r is d i s p e r s e d i n a r e s i n as particles of s p h e r i c a l or i r r e g u l a r shape. W e c a n f u r t h e r s u b d i v i d e this system i n t o three classes a c c o r d i n g to t h e m a j o r i n t e r m o l e c u l a r forces g o v e r n i n g a d h e s i o n : ( a ) b y d i s p e r s i o n forces—e.g., t h e p o l y b l e n d of t w o i n c o m p a t i b l e p o l y m e r s , ( b ) b y d i p o l e interaction—e.g., t h e p o l y b l e n d of p o l y v i n y l chloride a n d a n acrylonitrile rubber ( 5 6 ) , a n d ( c ) b y covalent bond—e.g., a n e p o x y resin r e i n f o r c e d w i t h a n a c i d - c o n t a i n i n g elastomer r e p o r t e d b y M c G a r r y (43). I n general, r u b b e r particles i n a l l these classes are n o n - p o r o u s a n d c o m p a c t . A n e l e c t r o n m i c r o g r a p h of a p o l y s t y r e n e - r u b b e r b l e n d ( F i g u r e 3 ) c a n i l l u s t r a t e the g e n e r a l feature of t h e disperse phase. T h e a d h e s i o n
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
88
INTERACTION
OF
LIQUIDS A T
SOLID
SUBSTRATES
Figure 3. Electron-micrograph of polystyrene-rubber blend by the solvent-etch-double replica method (Magnification, 8670 X), dark phase = shape rubber particles
odd-
b e t w e e n these t w o i n c o m p a t i b l e phases c a n b e i n c r e a s e d b y so d e s i g n i n g t h e c o m p o n e n t s i n the r u b b e r c o p o l y m e r or b y the a d d i t i o n of a t h i r d c o m p o n e n t to act as a n a d h e s i v e or a c o m p a t i b i l i z e r . A recent r e v i e w i n this r e g a r d w r i t t e n b y B o h m ( 8 ) s h o u l d b e c o n s u l t e d for the m e c h a n i s m s of c o m p a t i b i l i z a t i o n . GRAFTED
RUBBER
LATEX
PARTICLES
AS
THE
DISPERSE
PHASE.
ABS
p o l y m e r s or a c r y l o n i t r i l e - b u t a d i e n e - s t y r e n e p o l y m e r s , c a n b e g e n e r a l l y m a d e b y p i g g y - b a c k g r a f t i n g of a p o l y b u t a d i e n e latex w i t h styrene a n d
Figure 4. Electron-micrograph of grafted latex ABS polymer by the osmium tetroxide technique (Magnification, 12,530 X), dark phase = grafted latex particles
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
7.
89
Rubber-Resin Interface
LEE
a c r y l o n i t r i l e m o n o m e r s (4,13).
G r a f t i n g p r e d o m i n a n t l y takes p l a c e o n the
surface of these latex p a r t i c l e s . U n d o u b t e d l y a c e r t a i n f r a c t i o n of m o n o mers c a n diffuse i n t o the latex p a r t i c l e s a n d w i l l p o l y m e r i z e a n d / o r graft onto r u b b e r w i t h i n the particles. A recent e l e c t r o n m i c r o g r a p h of a t y p i c a l A B S p o l y m e r ( F i g u r e 4 ) m a d e w i t h the o s m i u m tetroxide t e c h n i q u e
(27)
shows c o n v i n c i n g l y t h a t these p a r t i c l e s are u n i f o r m a n d r e l a t i v e l y n o n porous. I n F i g u r e 5* w e i l l u s t r a t e the c h a n g e of the p a r t i c l e surface p o l a r ity b y the p i g g y - b a c k g r a f t i n g . T h e s e o u t e r shells ( 17) w e r e a c t u a l l y t h e interface responsible for b o n d i n g b e t w e e n the t w o phases. A s a result of Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
g r a f t i n g , besides the surface p o l a r i t y , m o l e c u l a r c o n f i g u r a t i o n , i n t e r m o l e c u l a r forces a n d r h e o l o g i c a l properties c h a n g e a c c o r d i n g l y . O n the basis of these properties, i n 1955, H a y e s ( 18 ) p a t e n t e d the use of the graft c o p o l y m e r to c o m p a t i b i l i z e styrene c o p o l y m e r s a n d p o l y b u t a d i e n e . T h e c o n f i g u r a t i o n of the m e t h y l m e t h a c r y l a t e - n a t u r a l r u b b e r graft c o p o l y m e r s t u d i e d b y M e r r e t t (45).
was
H e i n t r o d u c e d the c o l l o i d c h e m i s t r y t e r m i n o l o g y
for the graft copolymer—e.g., m i c e l l e s a n d s t a b i l i z a t i o n w h i c h w e r e n o t c o m m o n l y u s e d i n the p o l y m e r l i t e r a t u r e at t h a t t i m e . H o w e v e r , i t w o u l d p r o b a b l y b e m o r e a p p r o p r i a t e to use the t e r m c o m p a t i b i l i z a t i o n for l i q u i d s o l i d a n d s o l i d - s o l i d interfaces. D e s p i t e the c o n f u s i o n i n t e r m i n o l o g y the graft c o p o l y m e r c a n b e also c o n s i d e r e d as a n adhesive
(Figure 6)
for
these interfaces i n a d d i t i o n to b e i n g a c o m p a t i b i l i z e r . FILLED
GRAFT
RUBBER
AS
THE
DISPERSE
PHASE.
Rubber-modified
p o l y s t y r e n e is g e n e r a l l y o b t a i n e d b y p o l y m e r i z a t i o n g r a f t i n g of a r u b b e r i n the presence of styrene m o n o m e r .
T h e p o l y m e r i z a t i o n is c a r r i e d out
t o t a l l y or p a r t i a l l y i n mass w i t h the a i d of s h e a r i n g a g i t a t i o n , as p a t e n t e d b y A m o s et al. (1).
T h e s t u d y o n the i n i t i a l stage of this t y p e of p o l y m e r i -
z a t i o n w a s first p u b l i s h e d b y B e n d e r ( 5 ) , a n d phase i n v e r s i o n s i m i l a r to that d i s c o v e r e d for the t w o - p h a s e pressure-sensitive adhesives w a s served. T h e m e c h a n i s m of p a r t i c l e f o r m a t i o n has also b e e n r e v i e w e d NON-POLAR SURFACE
POLAR
SURFACE
GRAFTED WITH STYRENE S ACRYLONITRILE
Figure 5. Polybutadiene latex particles are grafted with relatively polar monomers predominantly on the surface In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
ob(47).
90
INTERACTION
O F LIQUIDS
A T SOLID SUBSTRATES
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
GRAFT RUBBER
Figure 6. Adhesion at the rubber-resin interface in the rubber-reinforced thermoplastics, type III (assuming that most of the grafting takes place on the surface of ht ex particles) H o w e v e r , n o reports of surface energetics at t h e interface h a v e y e t b e e n published. T h e r u b b e r particles w e r e e x a m i n e d w i t h a n e l e c t r o n
microscope
after t h e s a m p l e w a s t r e a t e d w i t h o s m i u m tetroxide (27). T h e m i c r o g r a p h ( F i g u r e 7 ) c l e a r l y indicates t h e porous n a t u r e of t h e r u b b e r phase a n d the o c c l u s i o n of p o l y s t y r e n e .
W e therefore classify this t y p e of r u b b e r
phase as filled graft r u b b e r . S i n c e g r a f t i n g takes' p l a c e before a n d after the r u b b e r c h a i n is c o i l e d , therefore, f o r this case, t h e m o n o m e r is g r a f t e d o n t o t h e r u b b e r b o t h w i t h i n a n d w i t h o u t t h e r u b b e r phase.
Polybutadiene
is thus m a d e m o r e c o m p a t i b l e to t h e p o l y m e r m a t r i x s u r r o u n d i n g t h e r u b b e r phase a n d t h e p o l y m e r filling t h e r u b b e r phase. H e r e w e h a v e a n
Figure 7. Electron-micrograph of rubberreinforced polystyrene by graft polymerization The sample was prepared by osmium tetroxide technique (magnification, 8670 X), dark phase = rubber particles, white spots in the particles are occluded polystyrene
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
7.
LEE
91
Rubber-Resin Interface
interface o r t w o interfaces of r e s i n - r u b b e r - r e s i n , a n d t h e graft r u b b e r acts as a n adhesive f o r t h e s o l i d - s o l i d interface ( F i g u r e 8 ).
IN THE MATRIX Α
θ
Α θ
Α
I
I
I
I
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
θ
Α
θ
I
Α
θ
β
I
A
RUBBER a GRAFT RUBBER WITHIN THE RUBBER PHASE
Figure 8. Adhesion at the resin-rubber-resin interface in the rubber-reinforced thermoplastics type IV, A and Β are comonomers S i n c e these r u b b e r particles a r e h i g h l y filled w i t h a h o m o p o l y m e r o r a c o p o l y m e r , t h e r u b b e r is a l r e a d y r e i n f o r c e d w i t h a r e s i n to give a h i g h e r m o d u l u s p a r t i c l e t h a n t h e g r a f t e d r u b b e r latex. O n t h e basis of the uniqueness of these r u b b e r p a r t i c l e s , this process is also m o r e a p p r o priate i n manufacturing high-strength medium-impact A B S polymer or r u b b e r - r e i n f o r c e d s t y r e n e - m e t h y l m e t h a c r y l a t e c o p o l y m e r
(31),
(32). T h e
Figure 9. Electron-micrograph of an ABS polymer by graft polymerization The sample was prepared by osmium tetroxide technique (magnification, 4130 X) p h y s i c a l features of t h e r u b b e r phase i n a n A B S p o l y m e r p r e p a r e d b y a p o l y m e r i z a t i o n g r a f t i n g process a r e s h o w n i n a n electron
micrograph
( F i g u r e 9 ) p r e p a r e d b y t h e o s m i u m tetroxide t e c h n i q u e . In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
92
INTERACTION
Mechanisms of Reinforcement.
O F LIQUIDS
A T SOLID
SUBSTRATES
B o t h rubber reinforced with a
filler
(49, 50) a n d t h e r m o p l a s t i c s r e i n f o r c e d w i t h a r u b b e r ( 2 9 , 5 5 ) h a v e b e e n r e v i e w e d e s p e c i a l l y w i t h respect to the m e c h a n i s m of A c c o r d i n g to N i e l s e n ( 5 0 ) , K e r n e r ' s e q u a t i o n (28)
reinforcement.
is a p p r o p r i a t e to
d e s c r i b e t h e m o d u l i o f b o t h of these systems p r o v i d e d perfect a d h e s i o n exists a t t h e i n t e r f a c e s : Ε (filled)
_
G (filled)
_
Ε (unfiled) ~~ G (unfilled) ~~ G V / [ ( 7 - 5 y ) G + (8-10y)G ] + V /[15(1 Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
F
F
p
F
G V /[(7-5v)G + (8-10v)G ] P
F
p
Where G and G p
F
F
p
,)]
+V /[15(l-v)] p
are t h e shear m o d u l i of t h e p l a s t i c m a t r i x a n d t h e filler
r e s p e c t i v e l y , ν is Poisson's r a t i o of t h e m a t r i x , a n d V is t h e v o l u m e f r a c t i o n . E's are Y o u n g s m o d u l i . R e c e n t l y this r e l a t i o n w a s v e r i f i e d f o r the r u b b e r - r e i n f o r c e d t h e r m o p l a s t i c s (29).
T h e effect of a d h e s i o n at t h e
r u b b e r - r e s i n ( o r r u b b e r - f i l l e r ) interface has b e e n s t u d i e d ( 4 9 , 5 7 , 58) w i t h mathematical models. T h e o r i e s r e g a r d i n g f u n c t i o n s of r u b b e r i n t h e r u b b e r - r e i n f o r c e d t h e r m o p l a s t i c s are also d e r i v e d o n t h e basis of t h e same p r e m i s e of a perfect adhesion.
I n 1965, N e w m a n a n d S t r e l l a (48) p o i n t e d o u t that
both the original micro-crack theory proposed b y M e r z , Claver, a n d Baer (46) a n d t h e m y r i a d - c r a c k hypothesis suggested b y S c h m i t t a n d K e s k kula
(59)
f a i l e d to e x p l a i n t h e r e i n f o r c e m e n t m e c h a n i s m .
T h e y sug
gested, i n t u r n , t h a t t h e c o l d - d r a w of t h e glassy m a t r i x is t h e k e y to the a c h i e v e m e n t of h i g h e l o n g a t i o n . A most significant a d v a n c e i n recent years w a s m a d e b y B u c k n a l l and Smith ( 9 ) w h o established the reinforcement mechanism o n the c r a z e t h e o r y ( 2 5 , 26). A c c o r d i n g to t h e i r theory, t h e differences b e t w e e n r e i n f o r c e d a n d u n - r e i n f o r c e d p o l y s t y r e n e s i m p l y l i e i n t h e m a x i m u m size a n d c o n c e n t r a t i o n of t h e c r a z e - b a n d s . T h e r u b b e r d i s p e r s e d i n t h e m a t r i x serves t o increase t h e n u m b e r s of c r a z e - b a n d s .
W i t h o u t good adhesion
a c h i e v e d b y g r a f t i n g , t h e r u b b e r fails to sustain tensile stresses at some stage i n t h e c r a z i n g process.
A f t e r t h e b r e a k d o w n at t h e r u b b e r - r e s i n
interface, l a r g e v o i d s a r e generated to w e a k e n t h e composite.
W e dem
onstrate this t y p e o f b r e a k w i t h t h e m o d e l s h o w n i n F i g u r e 10. B u c k n a l l a n d Smith's t h e o r y has b e e n f u r t h e r c o n f i r m e d b y recent work.
Matsuo
(42)
published electron micrographs
of
stress-crazed
r u b b e r - r e i n f o r c e d p o l y m e r s a n d f o u n d his results to b e i n g o o d agreement w i t h those of B u c k n a l l a n d S m i t h . R e c e n t l y , A r e n d s (3) r e l a t e d t h e c o l d flow of t h e r m o p l a s t i c s to E y r i n g ' s t h e o r y of viscous flow a n d e n l a r g e d t h e scope o f t h e i r theory. Grafting and Adhesion. F r o m t h e discussion i n t h e p r e c e d i n g p a r a g r a p h , i t c a n b e c o n c l u d e d that t h e r e i n f o r c e m e n t i n r u b b e r - r e s i n systems
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
7.
LEE
93
Rubber-Resin Interface
UNSTRETCHED MODEL
ι— STRETCHED MODEL
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
(No
I
^
adhesion)
STRETCHED MODEL
^CAVITY
*j I
(Perfect adhesion)
Figure 10. Adhesion and rubber-resin in terface in rubber-reinforced thermoplastics φ Rubber phase c a n o n l y b e a c h i e v e d w h e r e a g o o d a d h e s i o n is o b t a i n e d at the interface. T h e a d h e s i o n m e c h a n i s m (24, 51, 52, 53, 54 66) r e l a t e d to the first t w o systems d e s c r i b e d earlier are better u n d e r s t o o d a n d n e e d not b e d i s cussed f u r t h e r . H o w e v e r , the a d h e s i o n m e c h a n i s m s r e l a t e d to the last t w o systems, w h i c h i n v o l v e g r a f t i n g , deserve a d e t a i l e d study. 70).
G r a f t i n g of m o n o m e r s onto r u b b e r has b e e n r e v i e w e d , (2, 13,
30,
A recent p a p e r r e p o r t e d the c a t i o n i c g r a f t i n g of r u b b e r ( 6 5 ) .
We
d o not i n t e n d to elaborate f u r t h e r o n this subject. T h e g e n e r a l agreement is t h a t g r a f t i n g takes p l a c e r i g h t after i n i t i a t i o n .
D u r i n g o u r s t u d y of
the r u b b e r - r e i n f o r c e d p o l y s t y r e n e w e f o u n d that g r a f t i n g took t h r o u g h o u t the process.
place
D i f f i c u l t i e s arose w h e n c r o s s l i n k i n g i n t e r v e n e d ,
r e n d e r i n g the graft r u b b e r i n s o l u b l e . I n the c o m i n g sections, w e d e s c r i b e the s e p a r a t i o n , the c h a r a c t e r i z a t i o n a n d the d e t e r m i n a t i o n of Zisman's c r i t i c a l surface t e n s i o n (71, 72)
of the graft r u b b e r phase before i t is
h e a v i l y c r o s s l i n k e d . M e c h a n i s m s of a d h e s i o n are discussed o n the basis of these
findings.
Experimental Preparation of G r a f t Copolymer. T h e graft c o p o l y m e r s u s e d for this s t u d y w e r e p r e p a r e d w i t h a g i t a t i o n i n a 2-liter r e s i n flask e q u i p p e d w i t h a stainless steel stir-tube. T h e f e e d m i x t u r e for t h e p o l y b u t a d i e n e g r a f t e d w i t h styrene c o n t a i n e d 200 grams of " D i e n e " r u b b e r ( F i r e s t o n e ) a n d 1,800 grams of styrene m o n o m e r , w h i l e the one for the p o l y b u t a d i e n e g r a f t e d w i t h b o t h styrene a n d a c r y l o n i t r i l e c o n t a i n e d 200 grams o f " D i e n e " r u b b e r , 500 grams of a c r y l o n i t r i l e a n d 1,300 grams of styrene. T h e p r e p o l y m e r i z a t i o n w a s c a r r i e d out i n the absence of a catalyst at 105 ° C . f o r the f o r m e r a n d at 100 ° C . for the latter, to a s o l i d content In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
94
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
b e t w e e n 3 5 - 4 0 % b e f o r e t h e r u b b e r phase b e c a m e h i g h l y c r o s s - l i n k e d a n d i n s o l u b l e . T h e resultant p r e p o l y m e r c o n t a i n e d t h e h o m o p o l y m e r o r t h e copolymer, the ungrafted a n d grafted polybutadiene. Separation of Polybutadiene. T h e u n g r a f t e d a n d g r a f t e d p o l y b u t a d i e n e w e r e separated f r o m t h e h o m o p o l y m e r o r t h e c o p o l y m e r b y t h e following precipitation technique: P r e p o l y m e r ( 4 0 g r a m s ) w a s d i s p e r s e d i n m e t h y l e t h y l ketone (1,000 m l . ). T h e d i s p e r s i o n w a s d i v i d e d i n t o several c e n t r i f u g e tubes a n d c e n t r i f u g e a at 9,500 r . p . m . T h e supernate c o n t a i n i n g t h e m o n o m e r a n d t h e soluble polymer was decanted, the precipitate containing the rubber phase w a s r e - w a s h e d w i t h m e t h y l e t h y l ketone. W e u s e d a set of t h e singly-precipitated polybutadiene for the study a n d f o u n d that they c o n t a i n e d a g o o d p o r t i o n of o c c l u d e d p o l y s t y r e n e . W e t h e n u s e d a d o u b l e precipitation technique to remove the occluded polystyrene ( o r p o l y ( s t y r e n e - c o - a c r y l o n i t r i l e ) ). T h e first p r e c i p i t a t e w a s r e d i s s o l v e d i n b e n z e n e a n d a n e q u i v a l e n t of 0 . 1 % of I o n o l w a s a d d e d to t h e b e n z e n e s o l u t i o n ( 1 0 6 m l . ) . ( N o t e : I o n o l is 2 , 6 - d i - t e r t - b u t y l - p - c r e s o l . ) T o t h e clear s o l u t i o n , m e t h y l e t h y l ketone ( 9 0 0 m l . ) w a s g r a d u a l l y a d d e d . T h e doubly-precipitated polybutadiene contained both the grafted a n d the u n g r a f t e d portions a n d u n d o u b t e d l y a r e m a i n i n g t r a c e of p o l y s t y r e n e . W e f o u n d t h a t t h e d o u b l e p r e c i p i t a t i o n w a s necessary b u t t h e r u b b e r w a s v e r y sensitive to o x i d a t i o n a t r o o m t e m p e r a t u r e , e v e n after a n a d d i t i o n of I o n o l p r i o r to t h e p r e c i p i t a t i o n . Determination of the Degree of Grafting. F o r a d e t a i l e d q u a n t i t a t i v e s t u d y , w e g e n e r a l l y separated t h e g r a f t e d a n d t h e u n g r a f t e d p o l y b u t a d i e n e . H o w e v e r , f o r this s t u d y , w e w e r e o n l y interested i n t h e extent of g r a f t i n g i n t h e p o l y b u t a d i e n e d u r i n g t h e i n i t i a l p o l y m e r i z a t i o n . T h e r e fore, t h e t w o portions of p o l y b u t a d i e n e w e r e n o t separated, a n d t h e degree of g r a f t i n g w a s d e t e r m i n e d b y i n f r a r e d o n t h e basis of b o t h t r a n s - p o l y ( l , 3 - b u t a d i e n e ) ( ~ 9 6 4 cm." ) a n d poly (1,2-butadiene) (909 c m . " ) . T h e a m o u n t of styrene g r a f t e d w a s d e t e r m i n e d o n t h e basis of p h e n y l - r i n g m o d e at 1493 c m . " ( F i g u r e 11) w h i l e t h e c y a n o g r o u p a b s o r p t i o n w a s m e a s u r e d at 2245 c m . " . T h e a m o u n t of I o n o l w a s n o t e n o u g h to affect t h e p h e n y l - r i n g m o d e . Determination of Critical Surface Tension. T h e m e t h o d f o r t h e d e t e r m i n a t i o n of contact angles w a s d e s c r i b e d i n p r e v i o u s papers ( 3 7 , 3 8 ) . F o r this s t u d y , w e u s e d o n l y o n e goniometer m a n u f a c t u r e d b y Râme-Hart, I n c . T h e t e m p e r a t u r e w a s c o n t r o l l e d at 20 ° C . w i t h a n e n v i r o n m e n t a l c h a m b e r . T h e p r e c i s i o n w a s z±2° f o r t h e contact a n g l e m e a s u r e m e n t . T h e l i q u i d s u s e d w e r e alcohols, P o l y g l y c o l s P-1200, 15-200, a n d E - 2 0 0 , ethylene glycol, formamide, glycerol, a n d water. T h e s t y r e n e - a c r y l o n i t r i l e c o p o l y m e r s w e r e p r e p a r e d i n t h e f o r m of a t h i n film. T h e graft p o l y b u t a d i e n e s o l u t i o n w a s c o a t e d o n a glass slide. B u t , f o r t h e graft p o l y m e r c o n t a i n i n g a c r y l o n i t r i l e , i t w a s u n d e s i r a b l e to use t h e glass slide b e c a u s e of t h e i n d u c e d o r i e n t a t i o n , therefore, w e u s e d a M y l a r film t o s u p p o r t a t h i c k s m o o t h film of t h e graft r u b b e r . Preparation of Electron-micrographs. T h e p o l y s t y r e n e - r u b b e r p o l y b l e n d s a m p l e w a s e t c h e d b y solvent a c c o r d i n g to t h e t e c h n i q u e d e v e l o p e d b y T r a y l o r . A d o u b l e r e p l i c a t e c h n i q u e w a s u s e d t o p r e p a r e t h e sample. T h e first r e p l i c a w a s m e t h y l c e l l u l o s e , t h e s e c o n d p l a t i n u m a n d c a r b o n , 800 A . t h i c k . 1
1
1
1
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
7.
LEE
Rubber-Resin Interface
95
WAVE LENGTH, MICRON 6.0
6.5
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
~τ
1
1700
1600
7.0
1—ι
7.5
1 ι
1500
1400
8.0
8.5
1—ι—ι—π
1300
1200
9.0 Π—
9.5
1100
WAVE NUMBER. CM*
Figure 11.
10
II
12
\
Π
1000
900
1
1
13
—Γ
1
800
14
15 16
Π— — 1
Γ
700
1
Infrared spectra of polybutadiene before and after moderately grafting with styrene, doubly precipitated
O t h e r e l e c t r o n - m i c r o g r a p h s w e r e p r e p a r e d a c c o r d i n g to K a t o ' s t e c h n i q u e (27). O s m i u m tetroxide m a d e the r u b b e r particles d a r k a n d d i s tinct. T h e thickness of the u l t r a t h i n s p e c i m e n w a s 1000 A . Results and
Discussion
Wettability
of
Elastomers
and Copolymers.
The
w e t t a b i l i t y of
elastomers (37, 38) i n terms of c r i t i c a l surface tension w a s r e p o r t e d p r e v i ously.
T h e elastomers c o m m o n l y u s e d for the r e i n f o r c e m e n t of b r i t t l e
p o l y m e r s are p o l y b u t a d i e n e , s t y r e n e - b u t a d i e n e r a n d o m a n d b l o c k polymers, and butadiene-acrylonitrile rubber.
co
C r i t i c a l surface tensions
for several t y p i c a l elastomers are 31 d y n e / c m . for " D i e n e " r u b b e r , 33 d y n e / c m . for b o t h G R - S 1 0 0 6 r u b b e r a n d s t y r e n e - b u t a d i e n e b l o c k polymer
co
( 2 5 : 7 5 ) a n d 37 d y n e / c m . for b u t a d i e n e - a c r y l o n i t r i l e r u b b e r ,
( " P a r a c r i l " B J L T n i t r i l e r u b b e r ) . T h e c o p o l y m e r i z a t i o n of b u t a d i e n e w i t h a r e l a t i v e l y p o l a r monomer—e.g., styrene or a c r y l o n i t r i l e — g e n e r a l l y r e sults i n a n increase i n c r i t i c a l surface tension. T h e increase i n p o l a r i t y is also reflected i n the increase i n the s o l u b i l i t y p a r a m e t e r (34, 39, 40) a n d i n the increase of glass t e m p e r a t u r e (40).
W e also n o t e d a s i m i l a r increase
i n c r i t i c a l surface tensions of s t y r e n e - a c r y l o n i t r i l e c o p o l y m e r s w i t h the
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
96
INTERACTION
O F LIQUIDS
AT
SOLID
SUBSTRATES
increase i n a c r y l o n i t r i l e content ( F i g u r e 12 ). T h e c r i t i c a l surface t e n s i o n of p o l y s t y r e n e d e t e r m i n e d b y o u r m e t h o d is 36 d y n e / c m . , a n d values f o r these c o p o l y m e r s v a r y b e t w e e n 37 a n d 43 d y n e / c m .
P a r a l l e l increases
i n b o t h t h e s o l u b i l i t y p a r a m e t e r a n d glass t e m p e r a t u r e h a v e also b e e n
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
noted for the copolymers.
-0.1
I
20
1 1 1 I I 25 30 35 40 45 SURFACE TENSION
Figure 12.
Δ A Ο •
I 50
I 55
I I 1 60 65 70 Dynes/cm.
1 75
Wettability of styrene copolymers
( Dynes/cm. ) Acrylonitrile 32% 43 Acrylonitrile 25% 42 Acrylonitrile (exptl) 16% 40 Acrylonitrile (exptl.) 6% 37
C o m p a t i b i l i t y of p o l y m e r s i m p l i e s a s e m i - q u a n t i t a t i v e m e a s u r e c a n b e u s e d to p r e d i c t w h e t h e r t w o o r m o r e p o l y m e r s are c o m p a t i b l e . T h e use of one of t h e s e m i - q u a n t i t a t i v e approaches, s o l u b i l i t y p a r a m e t e r , w a s d e m o n s t r a t e d b y H u g h e s a n d B r i t t (22).
I t w a s c o n c l u d e d (8) t h a t one
p a r a m e t e r w a s insufficient to p r e d i c t t h e c o m p a t i b i l i t y . I n this p a p e r , w e n o w i n t r o d u c e c r i t i c a l surface t e n s i o n w h i c h is d e t e r m i n e d f r o m t h e surface properties of a p o l y m e r . T h o u g h b o t h of these parameters h a v e b e e n r e l a t e d b y G a r d o n ( 1 5 ) , w e are i n c l i n e d to use t h e latter because w e c a n further describe the wettability between t w o polymers.
For in
stance, b y t h e use of y , w e c a n p r e d i c t e q u a l l y w e l l that c o m p a t i b i l i t y c
b e t w e e n p o l y s t y r e n e a n d p o l y b u t a d i e n e c a n b e i m p r o v e d i f b u t a d i e n e is
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
7.
LEE
97
Rubber-Resin Interface
1
30 X •
25
20
1
1
BASED ON
1
1
P0LY(I,2-BUTADIENE)
1
BASED ON TRANS-POLY ( 1,3-BUTADIENE ) (DETERMINED ANALYSIS)
BY INFRARED
-
/
X
X
X
1 DEGREE OF GRAFTING, % |
y/*
/
•-
/
Downloaded by COLUMBIA UNIV on March 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch007
15
-
10
-
5
0
/y /
χ
x
I 5
0
Figure 13.
/
—
χ
-
χ
I I I ! 10 15 20 25 CONVERSION OF MONOMER , %
I 30
35
Degree of grafting of polybutadiene vs. conversion of styrene monomer, singly precipitated 1
4 5
χ/
-
1
1
1
l
1
C R I T I C A L S U R F A C E T E N S I O N OF GRAFTED POLYBUTADIENE
-
40 Te AT 2 0
e
C„
DYNES/CM.
•
35
|
^
_ _ _ _ _ — « - — · " "
# *"
30