Chapter 20 Carbohydrates in Adhesives Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
Introduction and Historical Perspective Anthony H . Conner Forest Products Laboratory Forest Service U. S. Department of Agriculture One Gifford Pinchot Drive Madison, WI 53705
Carbohydrates, in the form of gums, polysaccharides, oligomers, and monomeric sugars, are readily available in large quanitities from renewable biomass resources. Each of these substances, either directly or in a chemically modified form, is a source of intermediates (derivatives) that have potential use in adhesive formulation. Carbohydrates have been utilized historically for and in adhesives and are likely to be used more and more in the future as petroleum-derived chemicals become scarce and prices increase. Appropriate research emphasis can effectively further their use as adhesive raw material. T h i s section of the b o o k deals w i t h the u t i l i z a t i o n of c a r b o h y d r a t e s i n adhesives. It includes a n u m b e r o f excellent chapters t h a t give a g o o d flavor for present research i n t o the use o f c a r b o h y d r a t e s i n adhesives. A s a n i n t r o d u c t i o n t o t h i s section, I w o u l d like t o give a b r i e f overview of the use o f c a r b o h y d r a t e s i n adhesives. T h i s overview is presented f r o m a p e r s o n a l perspective. I t w i l l p r o b a b l y s k i m over some very i m p o r t a n t areas a n d m a y miss others entirely. I hope, however, t o give y o u some i n d i c a t i o n o f the b r e a d t h o f p o s s i b i l i t i e s for u s i n g c a r b o h y d r a t e s i n adhesives a n d some i n d i c a t i o n s of possible areas where future research w o u l d be a p p r o p r i a t e . C a r b o h y d r a t e s , i n the f o r m o f g u m s , p o l y s a c c h a r i d e s , o l i g o m e r s , a n d m o n o m e r i c sugars, are r e a d i l y o b t a i n a b l e f r o m renewable b i o m a s s sources. E a c h of these has p o t e n t i a l use i n the f o r m u l a t i o n o f adhesives. T h i s has been true h i s t o r i c a l l y a n d w i l l b e i n c r e a s i n g l y true i n the f u t u r e as p e t r o l e u m - d e r i v e d chemicals become scarce a n d their prices rise. C a r b o h y d r a t e p o l y m e r s are available i n large q u a n t i t i e s f r o m b o t h p l a n t a n d a n i m a l sources. T h e s e i n c l u d e cellulose a n d hemicellulose f r o m w o o d y p l a n t s , This chapter not subject to U.S. copyright Published 1989 American Chemical Society
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
272
ADHESIVES F R O M RENEWABLE RESOURCES
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
s t a r c h a n d g u m s f r o m a n u m b e r of different p l a n t s a n d m i c r o o r g a n i s m s , a n d c h i t i n f r o m a n i m a l sources. O l i g o m e r s a n d m o n o m e r s c a n be o b t a i n e d d i r e c t l y f r o m b i o m a s s , b u t generally are o b t a i n e d b y selective h y d r o l y s i s o f p o l y m e r s . T h e types o f m o n o m e r i c sugars t h a t c a n be o b t a i n e d b y h y d r o l y s i s o f the p o l y mers i n c l u d e b o t h pentoses (e.g., xylose a n d arabinose) a n d hexoses (e.g., g l u cose, g l u c o s a m i n e , a n d mannose). T h e p o l y m e r s , oligomers, a n d m o n o m e r s can be converted to a v a r i e t y o f c h e m i c a l intermediates (derivatives or d e g r a d a t i o n p r o d u c t s ) by either c h e m i c a l or b i o l o g i c a l means. These also have p o t e n t i a l as sources o f adhesive m a t e r i a l s . T h i s chapter deals w i t h each o f these types o f c a r b o h y d r a t e s , how they have been used i n adhesives, a n d how they m i g h t be used i n the f u t u r e . I n m a n y cases, I w i l l o n l y a l l u d e t o possible uses because d e t a i l e d discussion o f specific uses o f c e r t a i n c a r b o h y d r a t e m a t e r i a l s is covered b y others i n chapters t h a t follow. Carbohydrate Polymers in Adhesives C a r b o h y d r a t e p o l y m e r s are a m a j o r constituent o f a l l p l a n t s , the exoskeletons of various m a r i n e a n i m a l s , a n d some m i c r o o r g a n i s m s . Because u p to three-quarters of the d r y weight o f plants consists o f polysaccharides, i t is not s u r p r i s i n g t h a t m a n y p o l y s a c c h a r i d e s are r e a d i l y available at low cost. P o l y s a c c h a r i d e s , espec i a l l y f r o m p l a n t sources, have served a v a r i e t y of uses i n m a n k i n d ' s h i s t o r y , r a n g i n g f r o m basic necessities, such as f o o d , c l o t h i n g , a n d f u e l , to p a p e r a n d adhesives. C a r b o h y d r a t e p o l y m e r s h i s t o r i c a l l y have been used for or i n adhesives. I n deed, m y first encounter w i t h adhesives, a n d p o s s i b l y y o u r first encounter, i n volved the use o f a c a r b o h y d r a t e p o l y m e r t o glue p a p e r . A s a c h i l d , I used a paste m a d e f r o m flour a n d water t o glue p a p e r - m a c h e i n t o some very i n t e r e s t i n g f o r m s . A n d as a p a r e n t , I used t h i s same technique t o b u i l d m a n y a t u n n e l a n d h i l l for m y son's m i n i a t u r e t r a i n l a y o u t , thus passing a l o n g ( i n disguised f o r m ) a b i t o f knowledge a b o u t the use o f c a r b o h y d r a t e p o l y m e r s as a n adhesive t h a t was surely first discovered before recorded h i s t o r y . A s I have a l r e a d y i n d i c a t e d , the p o l y m e r i c c a r b o h y d r a t e m a t e r i a l s a v a i l a b l e f r o m n a t u r a l sources i n c l u d e g u m s , s t a r c h a n d d e x t r i n s , cellulose, hemicellulose, c h i t i n , a n d b a c t e r i a l polysaccharides. G u m s . G u m s are h y d r o p h o b i c or h y d r o p h i l i c p o l y s a c c h a r i d e s d e r i v e d f r o m p l a n t s or m i c r o o r g a n i s m s t h a t u p o n d i s p e r s i n g i n either hot or c o l d water p r o duce viscous m i x t u r e s or s o l u t i o n s (i.e., gels ( i ) ) . A s used i n the m o d e r n sense, the t e r m g u m includes any water-soluble or water-swellable p o l y s a c c h a r i d e or i t s d e r i v a t i v e . T h i s includes s t a r c h a n d d e x t r i n s a n d various derivatives of cellulose. T h e l a t t e r , however, are considered separately. N a t u r a l g u m s i n c l u d e p l a n t exudates, seed g u m s , p l a n t e x t r a c t s , seaweed ext r a c t s , a n d the e x t r a c e l l u l a r m i c r o b i a l polysaccharides. P l a n t exudates i n c l u d e g u m a r a b i c , g u m g h a t t i , g u m k a r a y a , a n d g u m t r a g a c a n t h . Seed g u m s i n c l u d e
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20.
CONNER
273
Carbohydrates in Adhesives: Introduction
guar g u m , locust b e a n g u m , a n d t a m a r i n d . T h e a r a b i n o g a l a c t a n o b t a i n e d f r o m l a r c h is a n e x a m p l e o f a polysaccharide t h a t c a n be e x t r a c t e d f r o m p l a n t s . E x amples o f seaweed extracts are agar, a l g i n , a n d f u n o r a n . X a n t h a n g u m a n d d e x t r a n are m i c r o b i a l polysaccharides. T a b l e I indicates t h e d i s t r i b u t i o n o f g u m s for a n u m b e r o f i n d u s t r i a l purposes (2,3). T h e i r u t i l i z a t i o n i n adhesives is
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
a m a j o r e n d use. I n recent years, s y n t h e t i c p o l y m e r s a n d m i c r o b i a l l y p r o d u c e d g u m s i n c r e a s i n g l y have replaced p l a n t - d e r i v e d g u m s . H i s t o r i c a l l y , several adhesives have been derived f r o m n a t u r a l c a r b o h y d r a t e p o l y m e r s (1,4-6). I n a few cases, t h e y have been u t i l i z e d because o f t h e i r o w n p a r t i c u l a r adhesive q u a l i t y . However, n a t u r a l c a r b o h y d r a t e p o l y m e r s are u s u a l l y u t i l i z e d as modifiers for more costly s y n t h e t i c resins, especially as thickeners, c o l l o d i a l s t a b i l i z e r s , a n d flow controllers. T a b l e I I lists examples o f the use o f n a t u r a l g u m s i n adhesives (7-40).
Table I. D i s t r i b u t i o n of Polysaccharide G u m s by C o m m e r c i a l Usage Product Type
Percent
Detergents a n d l a u n d r y p r o d u c t s
16
Textiles
14
Adhesives
12
Paper
10
Paint
9
Food
8
P h a r m a c e u t i c a l s a n d cosmetics Other
7 24
SOURCE: Reprinted from ref. 2. Copyright 1977 American Chemical Society. S t a r c h a n d D e x t r i n s . S t a r c h is a r e a d i l y available m i x t u r e o f p o l y s a c c h a rides.
S t a r c h y foods have been a n i m p o r t a n t component
o f t h e h u m a n diet
f r o m p r e h i s t o r i c times t o t h e present day. I t is n o t s u r p r i s i n g , therefore, t h a t very p r a c t i c a l uses for s t a r c h p r o d u c t s developed very early a n d have c o n t i n u e d t h r o u g h o u t h u m a n h i s t o r y . T o d a y , s t a r c h has a n u m b e r o f a p p l i c a t i o n s n o t o n l y i n t h e f o o d i n d u s t r y b u t i n other industries as w e l l . I n a d d i t i o n t o i t s use i n f o o d , s t a r c h is also a source o f chemicals (41) a n d sweeteners (42) a n d is used extensively i n t h e paper i n d u s t r y (43-45) as a s i z i n g agent a n d a n adhesive. T h e u t i l i z a t i o n o f s t a r c h as a n adhesive c a n be t r a c e d a t least t o 3,500-4,000 B . C . , w h e n i t was used b y the E g y p t i a n s t o b o n d p a p y r u s s t r i p s . T o d a y , s t a r c h a n d d e x t r i n s derived f r o m s t a r c h f i n d a v a r i e t y o f a p p l i c a t i o n s i n adhesives (46). D r . H . M . K e n n e d y o f G r a i n Processing C o r p o r a t i o n presents a detailed overview o f the use o f s t a r c h a n d d e x t r i n s i n C h a p t e r 2 3 . C e l l u l o s i c s . C e l l u l o s e is t h e m a j o r c h e m i c a l constituent o f p l a n t s . I t is a h o mogeneous p o l y s a c c h a r i d e f o r m e d f r o m /?-D-glucopyranose u n i t s l i n k e d together
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
ADHESIVES F R O M RENEWABLE RESOURCES
T a b l e I I . E x a m p l e s of the Use of N a t u r a l G u m s i n A d h e s i v e s Gum
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
Agar
Applications Pressure sensitive t a p e A d h e s i v e i n gloss finishing paper p r o d u c t s D e n t u r e adhesives C l e a r adhesive a p p l i c a t o r c r a y o n B i n d e r for s i l i c a gel T L C plates
Algin
Pharmaceutical tablet binder A d h e s i v e for miscellaneous paper products Adhesive i n combination w i t h a n i m a l glues W a t e r remoistenable adhesive (especially for postage s t a m p s )
Funoran
7 8 9 10 11
V i s c o s i t y s t a b i l i z e r for s t a r c h d e x t r i n a n d l a t e x - t y p e adhesives used for c o r r u g a t e d boards
G u m Arabic
References
12-14 15 4,16 17
A d h e s i v e for glassine p a p e r W a l l p a p e r paste
18 19 20
A d h e s i v e for regenerated cellulose
18
H o u s e h o l d adhesive
21-23
A d h e s i v e for w o o d a n d paper
24,25
Guar G u m
M e d i c i n a l adhesives
26-28
G u m Karaya
D e n t u r e adhesive M e d i c i n a l adhesives
28\ 31-35
Tamarind
P a p e r adhesives L a b e l pastes
36 36
L a b e l pastes E x t e n d e r for urea-formaldehyde
37
adhesives
G u m T r agaçant h
26-28
Pharmaceutical tablet binder
38 1
D e n t u r e adhesive L a b e l i n g adhesive
40
39
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20.
CONNER
275
Carbohydrates in Adhesives: Introduction
by (1—^4)-glycosidic b o n d s . I n a d d i t i o n t o cellulose use i n p a p e r a n d t e x t i l e s , a large n u m b e r o f cellulose derivatives are p r o d u c e d c o m m e r c i a l l y . T h e s e d e r i v a tives are f o r m e d by either esterification or etherification o f the a v a i l a b l e h y d r o x y l groups. A range o f p r o d u c t s w i t h a v a r i e t y of p h y s i c a l properties h a v i n g a n u m ber of i m p o r t a n t c o m m e r c i a l uses is o b t a i n e d
(47-51).
C e l l u l o s e forms the b a c k b o n e of m a n y i m p o r t a n t i n d u s t r i a l adhesives
(52).
Professor D a v i d H o n of C l e m s o n U n i v e r s i t y reviews the use of cellulosic adheDownloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
sives i n C h a p t e r 2 1 . H e m i c e l l u l o s e . Hemicelluloses are a n o n c r y s t a l l i n e g r o u p o f heterogeneous polysaccharides t h a t , next t o cellulose, c o n s t i t u t e the m o s t a b u n d a n t source of c a r b o h y d r a t e s i n p l a n t s . L i k e cellulose, the hemicelluloses are l o c a t e d i n the cell w a l l of p l a n t s a n d i n the bast fibers o f b a r k . O n h y d r o l y s i s , cellulose gives o n l y glucose. H y d r o l y s i s of hemicelluloses y i e l d a m i x t u r e o f D-glucose, D - m a n n o s e , D - x y l o s e , D-galactose, L-arabinose, a n d s m a l l a m o u n t s of D - g l u c u r o n i c a c i d , 4 - O - m e t h y l - D - g l u c u r o n i c a c i d , a n d D - g a l a c t u r o n i c a c i d . G . H . v a n der K l a s h o r s t of the N a t i o n a l T i m b e r Research I n s t i t u t e , P r e t o r i a , S o u t h A f r i c a , discusses the use of a s o d a bagasse hemicellulose i n a corrugated b o a r d adhesive i n C h a p t e r 22. Chitin.
C h i t i n refers t o the
fibrillar
acetamido-2-deoxy-D-glucopyranose
p o l y m e r f o r m e d f r o m /?(1—>4) l i n k e d 2-
u n i t s (53,54)-
is u s u a l l y i n c o m p l e t e . T h e t e r m chitosan
T h e N - a c e t y l a t i o n of c h i t i n
is generally used w h e n the n i t r o g e n
content is greater t h a n 7% b y weight; also, t h i s t e r m is generally used for a r t i f i c i a l l y deacetylated c h i t i n s . C h i t i n a n d chitosan are the o n l y n a t u r a l l y o c c u r r i n g polysaccharides t h a t are basic i n character. C h i t i n c a n be i s o l a t e d f r o m a large n u m b e r o f o r g a n i s m s , i n c l u d i n g insects, f u n g i , a n d crustaceans. C h i t i n is the m a j o r source of g l u c o s a m i n e , w h i c h is used i n significant q u a n tities by the p h a r m a c e u t i c a l i n d u s t r y . I n a d d i t i o n , c h i t i n a n d c h i t o s a n find a n u m b e r of other m e d i c a l uses i n c l u d i n g a r t i f i c i a l k i d n e y m e m b r a n e s , b i o d e g r a d able p h a r m a c e u t i c a l carriers, a n d b l o o d a n t i c o a g u l a n t s . I n d u s t r i a l l y , c h i t i n is used also as a c h e l a t i n g agent for t o x i c m e t a l s , as paper a n d t e x t i l e a d d i t i v e s , i n t e x t i l e finishes, i n p h o t o g r a p h i c p r o d u c t s a n d processes, a n d for d e w a t e r i n g m u n i c i p a l sludges. C h i t i n a n d i t s derivatives are k n o w n to occur i n n a t u r a l adhesive systems a n d have been suggested b y several researchers as adhesives for b o n d i n g v a r i o u s m a t e r i a l s together. B a r n a c l e s secrete a n adhesive to a t t a c h themselves to rocks, s h i p s , a n d other objects. T h i s adhesive hardens r a p i d l y , even i n seawater. T h i s adhesive, w h i c h is p r e d o m i n a t e l y c a l c i u m c a r b o n a t e i n a proteinaceous m a t r i x , c o n t a i n s c h i t i n (55).
E g g s o f lice are attached to the bristles of hogs by a very h y d r o l y s i s -
resistant adhesive t h a t contains c h i t i n a n d p-benzoquinone
(56).
S o l u t i o n s of c h i t o s a n salts are well k n o w n for t h e i r adhesive properties
(53).
C h i t o s a n itself adheres well to n o n c o n d u c t i n g surfaces, such as p a p e r , r a y o n , cellophane, w o o d , leather, r u b b e r , a n d glass, b u t not to m e t a l surfaces
(57,58).
F o r s m o o t h surfaces, a stronger b o n d is f o r m e d by first a p p l y i n g a t h i n p r i m e r
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
ADHESIVES F R O M RENEWABLE RESOURCES
276
coat. T h e use of c h i t o s a n for the m a n u f a c t u r e o f safety glass, p l y w o o d , l a m i n a t e d p a p e r , a n d f u r n i t u r e was p a t e n t e d (59). T h e adhesive develops considerable water resistance w h e n t h o r o u g h l y d r i e d , heated at 100-150 ° C for a short t i m e , or c h e m i c a l l y t r e a t e d . C h e m i c a l t r e a t m e n t consists of either r e a c t i o n w i t h a m m o n i a or a l k a l i to f o r m a n i n s o l u b l e c h i t o s a n , w a s h i n g w i t h a n a c i d s o l u t i o n
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
t o f o r m the i n s o l u b l e c h i t o s a n s a l t , or i n c o r p o r a t i o n of f o r m a l d e h y d e i n t o the adhesive. C h i t o s a n has been r e p o r t e d to be a n excellent b i n d e r for p e l l e t i z e d fertilizers a n d feeds (60). X a n t h a t i o n of c h i t i n w i t h c a r b o n disulfide gives a viscous golden b r o w n s o l u t i o n t h a t some c l a i m to be useful as a n adhesive i n the p r o d u c t i o n of p l y w o o d a n d h a r d b o a r d (61). Bacterial Polysaccharides.
M a n y b a c t e r i a l species release
exopolysaccha-
rides i n t o t h e i r e n v i r o n m e n t . T h e synthesis of capsular a n d s l i m e p o l y s a c c h a rides or s i m i l a r s t i c k y surface m a t e r i a l s serves as a n adhesive to a t t a c h the b a c t e r i a t o s o l i d substrates, even i n a m a r i n e e n v i r o n m e n t . T h e s e polysaccharides range f r o m c o m p o s i t i o n a l l y s i m p l e h o m o p o l y m e r s to very c o m p l e x
heteropoly-
mers c o m p o s e d of several i n d i v i d u a l sugars l i n k e d i n a variety of ways. M o d i f i e d P o l y m e r s . F u t u r e a p p l i c a t i o n s of c a r b o h y d r a t e p o l y m e r s or o l i g o mers derived f r o m these p o l y m e r s as adhesives w i l l depend o n m o d i f y i n g the p o l y m e r p r o v i d e d b y n a t u r e to give a c o m p o n e n t t h a t c a n undergo f u r t h e r c r o s s l i n k i n g to f o r m adhesive m a t e r i a l s . C a r b o h y d r a t e p o l y m e r s t y p i c a l l y have one p r i m a r y a n d two secondary h y d r o x y l groups. P o l y m e r s like c h i t i n c o n t a i n a n a m i n e group i n a d d i t i o n t o the h y d r o x y l groups.
These groups offer positions at w h i c h reactive moieties c a n
be a t t a c h e d . If these moieties are sufficiently reactive, a n d the s u b s t i t u t i o n of the h y d r o x y l s is adequate, t h e n one c o u l d f o r m a t h r e e - d i m e n s i o n a l p o l y m e r i c network d u r i n g a c u r i n g stage t h a t w o u l d f u n c t i o n as a n adhesive. T h e c a r b o h y drate p o l y m e r is a l r e a d y formed a n d therefore the degree of s u b s t i t u t i o n for the reactive group does not have to be large. I n fact, the p h y s i c a l properties of such reactive p o l y m e r s m i g h t be t a i l o r e d for use i n a variety of adhesive a p p l i c a t i o n s . T h e t r i c k , of course, is to find a c h e m i c a l c o m p o u n d t h a t c a n be reacted r e a d i l y w i t h the c a r b o h y d r a t e p o l y m e r t o give the desired reactive moitiés a l o n g the b a c k b o n e of the c a r b o h y d r a t e p o l y m e r . Here, the adhesives chemist w i l l have to b o r r o w f r o m a n d e x t e n d the work t h a t has been a n d is now b e i n g done o n the f o r m a t i o n of m o d i f i e d starches (62),
cellulosics (48-51,63,64),
and textiles.
Professor N a r a y a n of P u r d u e U n i v e r s i t y i l l u s t r a t e s the p o t e n t i a l adhesive a p p l i cations of grafted cellulosic p o l y m e r s i n C h a p t e r 24. I n the case of adherends such as w o o d , the p o s s i b i l i t y exists t h a t the c a r b o h y d r a t e p o l y m e r s or l i g n i n , or b o t h , can be m o d i f i e d in situ t o give a c t i v a t e d surfaces (65,66)
or surfaces c o n t a i n i n g reactive groups. T h e n , the surfaces are
b o n d e d b y direct r e a c t i o n or by r e a c t i o n w i t h a reactive, g a p - f i l l i n g c o m p o u n d .
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20.
CONNER
Carbohydrates in Adhesives: Introduction
277
A n o t h e r interesting a p p r o a c h used to b o n d w o o d involves the s w e l l i n g (66) or d i s s o l u t i o n ( w i t h cellulose solvents) o f the c a r b o h y d r a t e m a t r i x (67) at the surface. B o n d i n g t h e n takes place w h e n t w o surfaces are b r o u g h t i n t o contact a n d the v o l a t i l e components e v a p o r a t e d b y h e a t i n g . C r o s s l i n k s f o r m t h r o u g h r e f o r m a t i o n o f Η-bonds or possible c o m p l e x f o r m a t i o n w i t h m e t a l ions, i n the case of cellulosic solvents.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
Monosaccharides, Disaccharides, a n d Oligosaccharides i n Adhesives M o n o s a c c h a r i d e s (e.g., glucose), disaccharides (e.g., sucrose), a n d oligosaccha rides c a n be o b t a i n e d r e a d i l y f r o m n a t u r a l sources, either d i r e c t l y or by h y d r o l y s i s of n a t u r a l c a r b o h y d r a t e p o l y m e r s . These can be used to either m o d i f y s y n t h e t i c adhesive resins or t o replace t h e m altogether. I n a d d i t i o n , reactive derivatives c o u l d be synthesized f r o m these c o m p o u n d s a n d used t o f o r m u l a t e adhesive p o l y m e r s . M o d i f i e d S y n t h e t i c A d h e s i v e s . P h e n o l - f o r m a l d e h y d e (68) a n d u r e a - f o r m a l dehyde (69) are i m p o r t a n t s y n t h e t i c adhesives. P h e n o l - f o r m a l d e h y d e adhesives ( P F ) f i n d a v a r i e t y o f a p p l i c a t i o n s i n c l u d i n g b o n d e d abrasives, f o u n d r y a p p l i c a t i o n s , fiber b o n d i n g , a n d w o o d b o n d i n g . U r e a - f o r m a l d e h y d e adhesive resins ( U F ) are used generally to b o n d w o o d p r o d u c t s . I w i l l i l l u s t r a t e the m o d i f i c a t i o n o f s y n t h e t i c adhesives w i t h c a r b o h y d r a t e s u s i n g b o t h these general types o f adhesives. F i g u r e 1 i l l u s t r a t e s the fact t h a t resins a n d adhesives f o r m e d by the possible c o m b i n a t i o n s o f a phenolic c o m p o u n d , a nitrogenous c o m p o u n d , a n aldehyde c o m p o u n d , a n d a c a r b o h y d r a t e have been r e p o r t e d i n the l i t e r a t u r e . T h e exact c o n d i t i o n s used to f o r m u l a t e the resins a n d adhesives represented i n F i g u r e 1 v a r y considerably. F o r e x a m p l e , a d d i t i o n a l circles representing a c i d i c , basic, a n d n e u t r a l r e a c t i o n c o n d i t i o n s c o u l d be a d d e d . I n m o s t instances, the exact c h e m i s t r y t h a t occurs d u r i n g the f o r m u l a t i o n of resins at each intersection is not k n o w n . Indeed, i n m a n y cases, the component a c t u a l l y r e a c t i n g i n t o the resin or adhesive s y s t e m m a y not be the o r i g i n a l c a r b o h y d r a t e a d d e d at the s t a r t . I n t h i s a n d other respects, these f o r m u l a t i o n s w i l l overlap w i t h those discussed i n the next section. T a b l e III lists a n u m b e r o f selected references t h a t describe the f o r m u l a t i o n of resins or adhesives at each intersection i n F i g u r e 1. P F , U F , U F m o d i f i e d w i t h phenolics, a n d P F m o d i f i e d w i t h nitrogenous c o m p o u n d s (e.g., urea) have n o t been i n c l u d e d , because they do not c o n t a i n c a r b o h y d r a t e s a n d because they are i n c o m m o n use. T h e resin a n d adhesive systems t h a t have been investigated m o s t recently are those f o r m e d by the c o m b i n a t i o n of c a r b o h y d r a t e s w i t h P F , b o t h w i t h a n d w i t h o u t the a d d i t i o n of a nitrogenous c o m p o u n d . O u r a t t e m p t s at the Forest P r o d u c t s L a b o r a t o r y to use c a r b o h y d r a t e m o d i f i e d P F to b o n d w o o d are discussed i n C h a p t e r 25. T h e i n c o r p o r a t i o n of a nitrogenous c o m p o u n d ( t y p i c a l l y u r e a or a m m o n i a ) modifies the o v e r a l l c h e m i s t r y d u r i n g adhesive f o r m u l a t i o n , a p p a r e n t l y i n a
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
278
ADHESIVES F R O M RENEWABLE RESOURCES
F i g u r e 1. R e s i n s c a n be classified as b e i n g f o r m e d f r o m c o m b i n a t i o n s of a phen o l i c c o m p o u n d ( P ; t y p i c a l l y p h e n o l ) , a n aldehyde ( A ; t y p i c a l l y f o r m a l d e h y d e ) , a nitrogenous c o m p o u n d ( N ; t y p i c a l l y urea), a n d a c a r b o h y d r a t e ( C ) .
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20.
CONNER
279
Carbohydrates in Adhesives: Introduction
beneficial m a n n e r . T h i s is especially t r u e w h e n the resins are f o r m u l a t e d under basic c o n d i t i o n s w i t h r e d u c i n g c a r b o h y d r a t e s t h a t are r e a d i l y degraded at basic p H s . D r . C h r i s t i a n s e n of the Forest P r o d u c t s L a b o r a t o r y a n d Professor K a r c h esy of O r e g o n S t a t e U n i v e r s i t y discuss t h e i r experiences w i t h c a r b o h y d r a t e p h e n o l - u r e a based adhesive resins i n C h a p t e r s 26 a n d 27.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
T a b l e I I I . Selected References t h a t D e s c r i b e the F o r m u l a t i o n o f Resins and Adhesives N a m e d i n Figure 1 System
1
Phenol-Carbohydrate ( P C ) Phenol-Aldehyde-Carbohydrate ( P A C ) Phenol-Nitrogenous compound-Carbohydrate ( P N C ) Nitrogenous compound-Carbohydrate ( N C ) Nitrogenous compound-Aldehyde-Carbohydrate ( N A C ) Phenol-Nitrogenous compoundAldehyde-Carbohydrate ( P N A C ) Carbohydrate-Aldehyde ( C A ) 1
References 70- 79 80-94 70,95-98 78,99-103 99,104-113 114-123 108,124-126
A c r o n y m s c o r r e s p o n d t o those used i n F i g u r e 1.
Professor V i s w a n a t h a n o f the U n i v e r s i t y of A r k a n s a s discusses his research i n t o the f o r m u l a t i o n of formaldehyde-free, t h e r m o s e t t i n g adhesives f r o m whey permeate w i t h u r e a a n d p h e n o l or b o t h i n C h a p t e r 28. P o l y m e r i c c a r b o h y d r a t e s o f a n u n d e t e r m i n e d degree o f p o l y m e r i z a t i o n have also been used to m o d i f y s y n t h e t i c adhesive resins. I n p a r t i c u l a r , cellulosic p a p e r m i l l sludges have been used to m o d i f y P F a n d U F resins (127). A carb o h y d r a t e p o l y m e r was r e p o r t e d to be a n excellent extender a n d m o d i f i e r for p o l y v i n y l a l c o h o l adhesives (128). A t h e r m o s e t t i n g / t h e r m o p l a s t i c adhesive has been r e p o r t e d t h a t is c o m p o s e d o f a p r o t e i n (i.e., a n i m a l glue) c o n t a i n i n g lignosulfonate a n d a c a r b o h y d r a t e or p o l y h y d r i c a l c o h o l (129). A l t h o u g h t h i s is not a n e x a m p l e o f the m o d i f i c a t i o n o f a s y n t h e t i c adhesive, i t does f u r t h e r i n d i c a t e the w i d e range o f adhesive types t h a t have been m o d i f i e d w i t h c a r b o h y d r a t e s . A l s o , i t is i n t e r e s t i n g to note the further connection between a nitrogenous c o m p o n e n t (protein) a n d a carbohydrate. R e p l a c e m e n t o f S y n t h e t i c A d h e s i v e s . T o t a l replacement of s y n t h e t i c a d hesives w i t h a n adhesive s y s t e m based e n t i r e l y o n c a r b o h y d r a t e s , except as i n d i c a t e d above (i.e., N C a n d C A ) , has not been r e p o r t e d . A n d , as discussed above, i t is not clear t h a t the c a r b o h y d r a t e i n fact is r e a c t i n g as the c a r b o h y d r a t e component t h a t was o r i g i n a l l y a d d e d . C a r b o h y d r a t e - b a s e d adhesives, i n w h i c h the f o r m u l a t i o n begins w i t h the c a r b o h y d r a t e , have been r e p o r t e d (130), b u t the a c i d s y s t e m used d u r i n g form u l a t i o n r e a d i l y degrades the o r i g i n a l c a r b o h y d r a t e to f u r a n i n t e r m e d i a t e s t h a t
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
280
ADHESIVES F R O M RENEWABLE RESOURCES
p o l y m e r i z e . T h e f o r m u l a t e d resins are subsequently m i x e d w i t h c r o s s l i n k i n g agents (formaldehyde o r t r i e t h y l e n e t e t r a m i n e ) p r i o r t o c u r i n g .
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
Stofko (131-133) has r e p o r t e d a n i n t e r e s t i n g adhesive s y s t e m for w o o d p r o d ucts i n w h i c h c a r b o h y d r a t e is p r e s u m a b l y converted t o f u r f u r a l a n d h y d r o x y m e t h y l f u r f u r a l in situ, r e a c t i n g w i t h b o t h t h e l i g n i n i n w o o d a n d h o m o p o l y m e r i z i n g i n t h e b o n d l i n e t o f o r m the adhesive j o i n t . R e a c t i v e D e r i v a t i v e s . A s w i t h t h e p o l y m e r i c c a r b o h y d r a t e s , one m e t h o d t h a t m i g h t l e a d t o f u t u r e u t i l i z a t i o n o f c a r b o h y d r a t e s as adhesives involves t h e f o r m a t i o n o f reactive derivatives attached a t t h e h y d r o x y Is. T h i s w o u l d give a c o m p o n e n t capable o f c r o s s l i n k i n g t o f o r m adhesive p o l y m e r s . Here a g a i n , t h e adhesives chemist w i l l have t o b o r r o w f r o m a n d e x t e n d t h e work t h a t has been a n d is n o w b e i n g done o n the f o r m a t i o n o f m o d i f i e d starches, cellulosics, a n d textiles. T w o interesting reactive groups t h a t m i g h t b e considered, at least for p u r poses o f i l l u s t r a t i o n , are the a l l y l (134) d v i n y l groups (135). T h e p r e p a r a t i o n of a l l y l ethers o f c a r b o h y d r a t e s a n d their p o l y m e r i z a t i o n have been described (136-138). T h e i r p o l y m e r i z a t i o n is slow even w i t h added c a t a l y s t s s u c h as peroxides. A l l y l s t a r c h was s t u d i e d a t the Forest P r o d u c t s L a b o r a t o r y i n t h e m i d - f o r t i e s as a n adhesive for w o o d , b u t w i t h o u t success. T h e p r e p a r a t i o n o f v i n y l cellulose (139) a n d v i n y l c a r b o h y d r a t e s (140) has been described. T h e p o l y m e r i z a t i o n o f 6- O - v i n y l - 1 , 2 : 3 , 4 - d i - O-isopropylidene-D-galactopyranose has been investigated (140). V e r y h i g h m o l e c u l a r weight p o l y m e r s were o b t a i n e d i n r e l a t i v e l y short r e a c t i o n times. C o m p o u n d s such as these o r t h e i r further react i o n p r o d u c t s (e.g., epoxides) m i g h t b e useful i n adhesives, especially i f m e t h o d s c o u l d be f o u n d for i n c r e a s i n g t h e r a p i d i t y w i t h w h i c h they p o l y m e r i z e . a
n
Carbohydrate Degradation Products i n Adhesives T h e r e a c t i o n o f c a r b o h y d r a t e s i n a c i d or a l k a l i n e s o l u t i o n results i n a n u m b e r o f p r o d u c t s , m a n y o f w h i c h have been identified over t h e past c e n t u r y (141)> W i t h the e x c e p t i o n o f anhydrosugars (e.g., l,6-anhydro-/?-D-glucopyranose) a n d oligosaccharides, w h i c h are concentration-dependent a n d e q u i l i b r i u m c o m p o nents (reversion p r o d u c t s ) f o r m e d i n a c i d s o l u t i o n , a l l o f these p r o d u c t s result f r o m reactions associated w i t h the L o b r y de B r y n - A l b e r d a V a n E k e n s t e i n t r a n s f o r m a t i o n o r intermediates f o r m e d f r o m t h i s t r a n s f o r m a t i o n . In a c i d s o l u t i o n , pentoses a n d hexoses f o r m fur an c o m p o u n d s . Pentoses give h i g h y i e l d s o f 2-furaldehyde ( f u r f u r a l ) . Hexoses give 5 - ( h y d r o x y m e t h y l ) - 2 furaldehyde ( h y d r o x y m e t h y l f u r f u r a l ) , w h i c h c a n further react t o give l e v u l i n i c acid and polymeric materials. It is interesting t o speculate t h a t these c o m p o u n d s , b o t h because o f t h e i r r e a c t i v i t y a n d t h e i r a b i l i t y t o f o r m p o l y m e r i c m a t e r i a l s , m i g h t be useful i n adhesives f o r m u l a t i o n s .
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20.
281
Carbohydrates in Adhesives: Introduction
CONNER
F u r a n s . T h e last statement is c e r t a i n l y true o f furans derived f r o m sugars (142,143), p a r t i c u l a r l y f u r f u r a l a n d f u r f u r y l a l c o h o l , w h i c h is r e a d i l y derived f r o m f u r f u r a l (144)- D r . M c K i l l i p o f Q O C h e m i c a l s discusses f u r a n resin c h e m i s t r y a n d f u r a n p o l y m e r s i n C h a p t e r 29. D r . S t a n f o r d a n d h i s colleagues at t h e U n i v e r s i t y o f M a n c h e s t e r I n s t i t u t e o f Science a n d T e c h n o l o g y discuss t h e use o f a d i i s o c y a n a t e d e r i v e d f r o m f u r f u r a l for p o l y u r e t h a n e p r o d u c t i o n i n C h a p t e r 30.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
L e v u l i n i c A c i d . L e v u l i n i c a c i d is f o r m e d b y t h e a c i d c a t a l y z e d d e g r a d a t i o n o f hexose sugars v i a t h e i n t e r m e d i a c y o f h y d r o x y m e t h y l f u r f u r a l (145). A l t h o u g h its f o r m a t i o n was r e p o r t e d as e a r l y as 1836 (145), the m e c h a n i s m o f i t s f o r m a t i o n has been s t u d i e d at least as recently as 1985 (147)L e v u l i n i c a c i d is a h i g h l y reactive keto a c i d t h a t is r e a d i l y a v a i l a b l e f r o m renewable m a t e r i a l s . It has been proposed as a renewable basic c h e m i c a l r a w m a t e r i a l (148-150) t h a t c a n be used for a v a r i e t y o f purposes. These uses i n c l u d e plasticizers, p h a r m a c e u t i c a l s , solvents, f o o d a d d i t i v e s ,
flavoring
compounds,
c h e m i c a l intermediates, a n d resins a n d p o l y m e r s . R e c e n t l y , a - a n g e l i c a l a c t o n e , w h i c h is f o r m e d o n d i s t i l l a t i o n o f l e v u l i n i c a c i d b y t h e loss o f a molecule o f water, h a s been p r o p o s e d as a l i q u i d fuel extender
(151).
D i p h e n o l i c a c i d , t h e condensation p r o d u c t o f l e v u l i n i c a c i d a n d p h e n o l , is useful i n the p r e p a r a t i o n o f modified p h e n o l - f o r m a l d e h y d e
resins, polyether
resins, o r as m o n o c a r b o x y l i c a c i d c h a i n stoppers i n a l k y d resins (152).
It can
be s u b s t i t u t e d for b i s p h e n o l - A , t h e p r i m a r y r a w m a t e r i a l i n the p r o d u c t i o n o f e p o x y resins
(153).
Several interesting resins a n d p o l y m e r s have been o b t a i n e d f r o m l e v u l i n i c acid.
These a n d s i m i l a r p o l y m e r s m i g h t have p o t e n t i a l a p p l i c a t i o n i n adhe-
sives.
A h e a t - s e t t i n g resin was p r o d u c e d f r o m a fusion o f l e v u l i n i c a c i d a n d
amines (154)-
T h e resins were described as h a r d a n d t o u g h w i t h g o o d adhesion
t o glass. L e v u l i n i c a c i d reacts r a p i d l y w i t h f o r m a l d e h y d e ; a h a r d , flexible, i n fusible resin is f o r m e d (155).
T h e preparation of polyamides from furfural and
l e v u l i n i c a c i d has been described (156).
Adhesive compositions having good
water resistance were prepared f r o m a t a c t i c p o l y p r o p y l e n e a n d l e v u l i n i c a c i d (157) . T h i s adhesive was used for b o n d i n g p o l y p r o p y l e n e t o itself or t o p l a s t i c s , wood, a n d paper. C o p o l y m e r i z a t i o n of butadiene w i t h dichloroallyl levulinate (158) or w i t h m e t h y l or e t h y l l e v u l i n a t e (159) gives c o p o l y m e r s w i t h r u b b e r l i k e properties. Levoglucosan.
Levoglucosan, l,6-anhydro-/?-D-glucopyranose,
is a t h e r m a l
d e g r a d a t i o n p r o d u c t o f m a t e r i a l s c o n t a i n i n g cellulose o r other polysaccharides f o r m e d f r o m D-glucose. U s u a l l y , i t is p r o d u c e d b y p y r o l y s i s in vacuo o f cellulose, s t a r c h , or w o o d . A m e t h o d for i s o l a t i n g levoglucosan f r o m lignocellulose p y r o l ysis has been p a t e n t e d (160).
T h e synthesis o f levoglucosan has been reviewed
{161). V a r i o u s reports i n t h e l i t e r a t u r e i n d i c a t e t h a t levoglucosan m i g h t b e o f i n terest i n r e l a t i o n t o adhesives. T h e i n d i c a t i o n s are t h a t levoglucosan a n d i t s derivatives c a n undergo r i n g - o p e n i n g p o l y m e r i z a t i o n , t h a t reactive derivatives
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
282
ADHESIVES F R O M RENEWABLE RESOURCES
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
of levoglucosan c a n be p r o d u c e d a n d used to f o r m p o l y m e r s , a n d t h a t p h e n o l , a m a j o r adhesive c o m p o n e n t now p r o d u c e d f r o m p e t r o l e u m , c a n be synthesized f r o m levoglucosan. L e v o g l u c o s a n has been p o l y m e r i z e d either t h e r m a l l y or i n the presence of a c i d c a t a l y s t s , such as z i n c chloride a n d m o n o c h l o r o a c e t i c a c i d , t o give o l i g o - a n d polysaccharides (161,162). T h e m o l e c u l a r weight a n d y i e l d s of the final p o l y mers are s t r o n g l y dependent o n the e x p e r i m e n t a l c o n d i t i o n s . C o p o l y m e r i z a t i o n w i t h alcohols a n d ethers has been r e p o r t e d . A l t h o u g h the exact structures of the r e s u l t i n g p o l y m e r i c systems are not k n o w n , they appear t o offer p r o m i s e for the p r e p a r a t i o n of adhesives a n d lacquers (162), a l t h o u g h no specific references to the use of these p o l y m e r s as adhesives were f o u n d . R i n g - o p e n i n g p o l y m e r i z a t i o n of the 2 , 3 , 4 - t r i - O - s u b s t i t u t e d levoglucosan, esp e c i a l l y the b e n z y l ether, has generally proven m o r e successful t h a n p o l y m e r i z a t i o n o f the u n s u b s t i t u t e d levoglucosan a n d y i e l d s polysaccharides of h i g h m o l e c u l a r weight (161,162). I n either case, the p o l y m e r i z a t i o n c o n d i t i o n s rep o r t e d i n the l i t e r a t u r e , especially i n terms of t i m e , t e m p e r a t u r e , a n d c a t a l y s t s , p r o b a b l y w o u l d preclude p o l y m e r i z a t i o n w i t h i n the b o n d l i n e . However, the p o s s i b i l i t y o f r i n g - o p e n i n g p o l y m e r i z a t i o n afforded by t h i s c o m p o u n d a n d s i m i l a r anhydrosugars w o u l d suggest t h a t further research m i g h t be w a r r a n t e d . T w o i n t e r e s t i n g p o l y m e r i c systems have been f o r m e d f r o m reactive l e v oglucosan derivatives a n d w i l l serve to i n d i c a t e the p o s s i b i l i t i e s of t h i s a p p r o a c h . T h e s e two systems are l , 6 - a n h y d r o - 2 , 3 , 4 - t r i - 0 - m e t h a c r y l - / ? - D - g l u c o p y ranose a n d the c o r r e s p o n d i n g t r i - O - a c r y l derivative (163). T h e y were p o l y m e r ized w i t h b e n z o y l peroxide as r a d i c a l i n i t i a t o r to give a t h r e e - d i m e n s i o n a l s t r u c ture w i t h a t h e r m a l d e g r a d a t i o n t e m p e r a t u r e of 300 ° C . T h e second p o l y m e r i c s y s t e m c a n be f o r m e d f r o m l , 6 - a n h y d r o - 2 , 3 , 4 - t r i - i ) - g l y c i d y l - / ? - D - g l u c o p y r a n o s e u s i n g a n a m i n e c a t a l y s t (164)· T h i s c o m p o u n d is f o r m e d b y e p o x i d a t i o n of the t r i - O - a l l y l d e r i v a t i v e of levoglucosan. P h e n o l a n d s u b s t i t u t e d phenols c a n be o b t a i n e d f r o m l i g n i n by p y r o l y s i s , a l k a l i f u s i o n , a n d hydrogenolysis (165-167). T h i s m e t h o d o l o g y c o u l d be used t o prepare a n adhesive s t a r t i n g m a t e r i a l , presently o b t a i n e d f r o m p e t r o l e u m sources, f r o m a renewable source, a l t h o u g h t e c h n i c a l difficulties require s o l u t i o n t h r o u g h f u r t h e r research. T h e conversion of levoglucosan derivatives to p h e n o l i n reasonable y i e l d s has been r e p o r t e d (168-175). T h i s affords the p o s s i b i l i t y of also o b t a i n i n g p h e n o l f r o m the cellulose p o r t i o n of renewable resources. T h e r e a c t i o n is c a r r i e d out i n l i q u i d a m m o n i a w i t h s o d i u m m e t a l a n d thus p r o b a b l y is i m p r a c t i c a l o n a c o m m e r c i a l scale. B u t further research m i g h t lead to s i m p l e r , less costly, a n d m o r e efficient m e t h o d s for t h i s conversion. Conclusions C a r b o h y d r a t e s are r e a d i l y available f r o m renewable biomass sources. I n t h i s i n t r o d u c t i o n , I have given a b r o a d overview of how c a r b o h y d r a t e p o l y m e r s ,
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20.
CONNER
Carbohydrates in Adhesives: Introduction
283
o l i g o m e r s , m o n o m e r s , a n d d e g r a d a t i o n p r o d u c t s h i s t o r i c a l l y have been u t i l i z e d i n a n d for adhesives. I n a d d i t i o n , I have p o i n t e d o u t some e x a m p l e s o f where research m i g h t f u r t h e r t h e use o f c a r b o h y d r a t e s as adhesive r a w m a t e r i a l s . The
replacement o f p e t r o l e u m - d e r i v e d (nonrenewable) sources o f adhesive
raw m a t e r i a l s w i t h renewable sources w i l l follow three basic strategies: 1) r e newable m a t e r i a l s w i l l be used t o replace p a r t o f the r e q u i r e d p e t r o l e u m - d e r i v e d adhesive systems, 2) n e w p o l y m e r i c adhesives w i l l b e synthesized f r o m renew Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
able m a t e r i a l s a n d t o t a l l y replace p e t r o l e u m - d e r i v e d adhesive systems, or 3) the adhesives systems n o w based o n p e t r o l e u m - d e r i v e d m a t e r i a l s w i l l continue t o be used, b u t t h e adhesive r a w m a t e r i a l s w i l l be derived f r o m renewable sources i n stead o f f r o m nonrenewable ones. C a r b o h y d r a t e s are very versatile chemicals t h a t c a n be u t i l i z e d i n a l l three strategies as d e m o n s t r a t e d b y t h e preceding discussion.
Literature Cited 1. Whistler, R. L., Ed. Industrial Gums: Polysaccharides and Their Derivatives; Aca demic Press: New York, 1973. 2. Wells, J. In Extracellular Microbial Polysaccharides; Sandford, P. Α.; Las kin, Α., Eds.; ACS Symposium Series No. 45; American Chemical Society: Wash ington, DC, 1977. 3. Sandford, P. Α.; Baird, J. In The Polysaccharides; Aspinall, G. O., Ed.; Academic Press: New York, 1983; Vol. 2. 4. Delmonte, J. The Technology of Adhesives; Reinhold: New York, 1947. 5. Houwink, R.; Salomon, G. Adhesion and Adhesives; Elsevier: New York, 1965. 6. Davidson, R. L., Ed. Handbook of Water-Soluble Gums and Resins; McGraw-Hill: New York, 1980. 7. Utahashi, K. Japanese Patent 1 238, 1951. 8. 9. 10. 11.
Rice, J. C. U.S. Patent 3 028 258, 1962. Beachner, C. E. U.S. Patent 3 410 704, 1968. Columbus, P. S. U.S. Patent 3 929 694, 1975. Gocan, S.; Nascu, H.; Marutoiu,C.;Ursu, E.; Liteanu, C. Romanian Patent 62 715, 1977. 12. Vallandigham, V. V.; Magnuson, A. L.; Miller, A. Paper Ind. 1951, 33, 788; 1952, 33, 1176. 13. Barlett, H. W.; Magnuson, A. L. Tappi 1956, 39, 214. 14. 15. 16. 17. 18. 19.
O'Grady, M. H. U.S. Patent 3 620 801, 1971. Wershaw, I. B. U.S. Patent 2 371 862, 1945. Wolfe, H. F. U.S. Patent 1 983 650, 1934. Ciocchi, G. C. Ind. carta c arti grafiche 1930, 33, 265. Bennett, H. The Chemical Formulary; Chemical Publishing Co.: New York, 1939. Badar-Ud-Din. Pakistan J. Sci. Research 1950, 2, 28.
20. Dumas, J. Ann. Chim. Anal. 1943, 25, 214.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
284
ADHESIVES F R O M RENEWABLE RESOURCES
21. Humm, H. J. In Marine Products of Commerce; Tressler, D. K.; Lemon, J. M., Eds.; Reinhold: New York, 1951. 22. Chapman, V. J. Seaweeds and Their Uses; Methuen and Co.: London, UK, 1950. 23. Nakamura, J. Japanese Patent 6 742, 1952. 24. Tseng, C. K. In Colloid Chemistry; Alexander, J., Ed.; Reinhold: New York, 1946. 25. Kuji, T. Japanese Patent 1 135, 1951.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
26. Coloplast International A/S. French Patent 2 392 076, 1978. 27. Chen, J. L.; Cilento, R. D.; Hill, J. Α.; LaVia, A. L. South African Patent 78 02 545, 1978. 28. E . R. Squibb and Sons, Inc. Japanese Patent 79 03 847, 1979. 29. Breuer, M.; Philipp, B. German Patent DE 3330907A1,1985. 30. Dhabhar, D. J.; Schmidt, N. F. European Patent Application EP 113079 A2, 1984. 31. Woldt, S.; Karmann, W. German Patent DE 2951319,1981. 32. Piel, F.; Schulte, D.; Sinnen, M. German Patent DE 2557566, 1977. 33. Potaczek, J. J. British Patent Application 79/9 956, 1979. 34. Potaczek, J. J. British Patent Application 79/9 957, 1979. 35. Tokyo Eizai Laboratory Co., Ltd. Japanese Patent 81 03 060, 1981. 36. Narayanamurti, D.; Rao, P. R. Res. Ind. 1961, 6, 127. 37. Rao, P. S.; Misra, A. K. Indian Forest 1963, 89, 686. 38. Maity, P. Indian Wood Panels 1969, 2, 30. 39. Ellis, B.; Al-Nakash, S.; Lamb, D. J. J. Dent. 1980, 8, 109. 40. Columbus, P. S.; Mason, R. T. U.S. Patent 3 376 148, 1968. 41. Otey, F. H.; Doane, W. M . In Starch: Chemistry and Technology; Whistler, R. L.; BeMiller, J. N.; Paschall, E . F., Eds.; Academic Press: New York, 1984; 2nd Ed. 42. Lloyd, Ν. E . ; Nelson, W. J. In Starch: Chemistry and Technology; Whistler, R. L.; BeMiller, J. N.; Paschall, E . F., Eds.; Academic Press: New York, 1984; 2nd Ed. 43. Mentzer, M. J. In Starch: Chemistry and Technology; Whistler, R. L.; BeMiller, J. N.; Paschall, E . F., Eds.; Academic Press: New York, 1984; 2nd Ed. 44. Frost, F. H. et al. Starch and Starch Products in Paper Coating; Tappi Monograph Series No. 17; Technical Association of the Pulp and Paper Industry: New York, 1957. 45. Ducey, M . J. Pulp and Paper 1985, 83, Dec. 46. Kennedy, H. M.; Fischer, A. C., Jr. In Starch: Chemistry and Technology; Whistler, R. L.; BeMiller, J. N.; Paschall, E. F., Eds.; Academic Press: New York, 1984; 2nd Ed. 47. Arthur, J. C., Jr., Ed. Cellulose Chemistry and Technology; ACS Symposium Series No. 48; American Chemical Society: Washington, DC, 1977. 48. Rowell, R. M.; Young, R. Α., Eds. Modified Cellulosics; Academic Press: New York, 1978. 49. Kennedy, J. F.; Phillips, G. O.; Wedlock, D. J.; Williams, P. Α., Eds. Cellulose and Its Derivatives: Chemistry, Biochemistry and Applications; Ellis Horwood: New York, 1985. 50. Nevell, T. P.; Zeronian, S. H., Eds. Cellulose Chemistry and Its Applications; Ellis Horwood: New York, 1985.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20.
CONNER
Carbohydrates in Adhesives: Introduction
285
51. Young, R. Α.; Rowell, R. M., Eds. Cellulose: Structure, Modification, and Hydrolysis; John Wiley and Sons: New York, 1986. 52. Paist, W. D. In Handbook of Adhesives; Skeist, I., Ed.; Van Nostrand Reinhold Co.: New York, 1977; 2nd Ed. 53. Muzzarelli, R.A.A. Chitin; Pergamon Press: New York, 1977. 54. Muzzarelli, R.A.A. In The Polysaccharides; Aspinall, G. O., Ed.; Academic Press: New York, 1985, Vol. 3.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
55. Otness, J. S.; Medcalf, D. G. Comp. Biochem. Physiol. 1972, Β 43, 443. 56. Barat, S. K.; Scaria, Κ. Y. Bull. Centr. Leather Res. Inst. 1962, 73. 57. Rigby, G. W. U.S. Patent 2 047 226, 1936. 58. Rigby, G. W. U.S. Patent 2 072 771, 1936. 59. Du Pont de Nemours and Co. British Patent 458 818, 1936. 60. Yoshida, T.; Yamashita, H. Japanese Patent 136 287, 1975. 61. Rajulu, G. S.; Gowri, N. MIT Sea Grant Rep. MITSG 1978, MITSG 78-7, Proc. 1st Int. Conf. Chitin/Chitosan, 1977; PB 285 640, p. 430. 62. Rutenberg, M . W.; Solarek, D. In Starch: Chemistry and Technology, Whistler, R. L.; BeMiller, J. N.; Paschall, E. F., Eds.; Academic Press: New York, 1984; 2nd Ed. 63. Hebeish, Α.; Guthrie, J. T. The Chemistry and Technology of Cellulosic Copolymers; Springer-Verlag: New York, 1981. 64. Hon, D. N.-S. Graft Copolymerization of Lignocellulosic Fibers; ACS Symposium Series No. 187; American Chemical Society: Washington, DC, 1982. 65. Johns, W. E.; Jahan-Latibari, A. In Adhesives for Wood: Research, Applications, and Needs; Gillespie, R. H., Ed.; Noyes Publications: Park Ridge, NJ, 1984. 66. Young, R. Α.; Krzysik, Α.; Fujita, M.; Kelley, S. S.; Rammon, R. M.; River, Β. H. In Wood Adhesives in 1985:Status and Needs; Christiansen, A. W.; Gillespie, R. H.; Myers, G. E.; River, Β. H., Eds.; Forest Products Research Society: Madison, WI, 1986. 67. Conner, A. H.; River, B. H.; Lorenz, L. F. J. Wood Chem. Technol. 1984, 4, 533-40. 68. Knop, Α.; Pilato, L. A. Phenolic Resins: Chemistry, Applications and Performance; Springer-Verlag: New York, 1985. 69. Meyer, B. Urea-Formaldehyde Resins; Addison-Wesley Publishing Co.: Reading, MA, 1979. 70. Meigs, J. V. U.S. Patent 1 593 342, 1926. 71. Redman, L. V.; Turkington, V. H. U.S. Patent 1 716 665, 1929. 72. Novotny, E . E.; Romieux, C. J. U.S. Patent 1 815 930, 1931. 73. Meigs, J. V. U.S. Patent 1 845 314, 1932. 74. Meigs, J. V. U.S. Patent 2 001 430, 1935. 75. Champer, L. E.; Christensen, L. M . U.S. Patent 2 109 466, 1938. 76. Champer, L. E.; Christensen, L. M . U.S. Patent 2 189 132, 1940. 77. Champer, L. E.; Christensen, L. M . U.S. Patent 2 189 133, 1940. 78. Viswanathan, T.; Richardson, T. U.S. Patent 4 524 164, 1983. 79. Gibbons, J. P.; Wondolowski, L. U.S. Patent 4 048 126, 1977. 80. Peter, A. H. U.S. Patent 1 147 264, 1915.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
286
ADHESIVES F R O M RENEWABLE RESOURCES
81. Albrecht, J. U.S. Patent 1 205 957, 1916. 82. Stokes, J. S. British Patent 208 193, 1923. 83. Bau, A. British Patent 218 054, 1924. 84. Knapp, P. U.S. Patent 1 884 747, 1932. 85. Ostersetzer, Α.; Riesenfeld, F. U.S. Patent 1 892 848, 1933. 86. Loetscher, E. C. U.S. Patent 1 959 433, 1934.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
87. van de Ven, J. U.S. Patent 1 998 211, 1935. 88. Fuhrmann, L. J. U.S. Patent 2 095 093, 1937. 89. Sphar, R. J.; Lieb, D. J. U.S. Patent 2 490 927, 1949. 90. Chang, C. D.; Kononenko, Ο. K. Adhesives Age 1962, 5(7), 36. 91. Smith, Η. Α.; Kobel, Ε. H. U.S. Patent 3 661 814, 1972. 92. Gibbons, J. P.; Mudde, J. P. Canadian Patent 1 073 140, 1980. 93. Hsu, O.H.H.; Tassler, M. C. U.S. Patent 4 433 126, 1984. 94. Conner, A. H.; River, B. H.; Lorenz, L. F. J. Wood Chem. Technol. 1986, 6(4), 591. 95. Meigs, J. V. U.S. Patents 1 801 052 and 1 801 053, 1931. 96. McIntosh, J. U.S. Patent 1 820 816, 1931. 97. Meigs, J. V. U.S. Patents 1 868 215; 1 868 216; and 1 877 417, 1932. 98. Gibbons, J. P.; Wondolowski, L. U.S. Patent 4 048 127, 1977. 99. Ford, A. S. U.S. Patent 1 949 831, 1934. 100. Farber, E. German Patent 605 016, 1934. 101. Sass, O.; Lemire, E. A. U.S. Patent 2 414 274, 1947. 102. Rapp, J. U.S. Patent 2 624 681, 1953. 103. Lang, L.; Baird, R. J. U.S. Patent 2 666 713, 1954. 104. Cherry, O. A. U.S. Patent 1 801 052, 1931. 105. Manesse, G.C.A.; Sechehaye, J. British Patent 352 288, 1931. 106. Bowen, A. H.; Dike, T. W. U.S. Patent 2 150 148, 1939. 107. Widmer, G.; Fisch, W. U.S. Patent 2 197 357, 1940. 108. Zerweck, W.; Keller, K. U.S. Patents 2 211 709 and 2 211 710, 1940. 109. Bauer, J. V.; Hawley, D. M. U.S. Patent 2 212 314, 1940. 110. Olix, D. J. U.S. Patent 2 736 678, 1956. 111. Petrov, G. S.; Pesin, L. M.; Derkovskaya, I. L.; Garbar, M. I.; Adaskin, Ε. M.; Ignatyuk, A. G. USSR Patent 105 729, 1957. 112. Greber, G.; Andres, H.; Pichler, W. Austrian Patent 359 287,1980. 113. Schollhoern, W. D. European Patent Application EP 66 233, 1981. 114. Novotny, Ε. E.; Romieux, C. J. U.S. Patent 1 886 353, 1932. 115. Rouzet, L. U.S. Patent 2 555 058, 1951. 116. Christ, R. E. U.S. Patent 3 076 772, 1963. 117. Fargo, Η. E. U.S. Patent 4 014 726, 1977. 118. Gibbons, J. P.; Chiang, M. T. U.S. Patent 4 085 075, 1978. 119. Gibbons, J. P.; Wondolowski, L. U.S. Patent 4 085 076, 1978.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20.
CONNER
Carbohydrates in Adhesives: Introduction
287
120. Gibbons, J. P.; Wondolowski, L. Canadian Patent 1 090 026, 1980. 121. MacPherson, E . J.; Frenette, D. A. U.S. Patent 4 339 361, 1982. 122. Christiansen, A. W.; Gillespie, R. H. Forest Prod. J. 1986, 36 (7/8), 20. 123. Clark, R. J. Masters Thesis, Oregon State University, 1986. 124. Ford, A. S. U.S. Patents 1 949 832 and 1 974 064, 1934. 125. Feigley, D. Α., Jr.; Parker, J. A. U.S. Patent 2 914 494, 1959.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
126. Krueger, R. K.; Carter, D. W.; Alexander, R. J. German Patent 2 911 062, 1978. 127. Lambuth, A. L.; Hearon, W. M . U.S. Patent 3 909 470, 1975. 128. Iwinski, D. J.; Janke, R. A. Adhesives Age 1971, 14(9), 42. 129. Werle, Ε. E.; Mitchell, T. F. U.S. Patent 3 619 222, 1971. 130. Turner, H. D.; Lynn, H. D.; Toler, D. E . German Patent 1 905 054, 1968. 131. Stofko, J.; Jansky, J. U.S. Patent 4 107 379, 1978. 132. Stofko, J.; Jansky, J. U.S. Patent 4 183 997, 1980. 133. Stofko, J. I. In Adhesives for Wood: Research, Applications, and Needs; Gillespie, R. H., Ed.; Noyes Publications: Park Ridge, NJ, 1984. 134. Schildknecht, C. E . Allyl Compounds and Their Polymers (Including Polyolefins); Wiley-Interscience: New York, 1973. 135. Tsuruta, T.; O'Driscoll, K. F . Structure and Mechanism in Vinyl Polymerization; Marcel Dekker: New York, 1969. 136. Nichols, P. L., Jr.; Yanovsky, E . J. Amer. Chem. Soc. 1944, 66, 625. 137. Nichols, P. L., Jr.; Yanovsky, E . J. Amer. Chem. Soc. 1945, 67, 46. 138. Wrigley, A. N.; Yanovsky, E . J. Amer. Chem. Soc. 1948, 70 2194. 139. Traskman, B.; Tammela, V. J. Appl. Polym. Sci. 1986, 31, 2043. 140. Klein, J.; Blumenberg, K. Makromol. Chem., Rapid Commun. 1986, 7, 621. 141. Feather, M. S.; Harris, J. F. Adv. Carbohydr. Chem. Biochem.1973,28,161. 142. Siegfried, K. J. Encyclopedia of Polym. Sci. Technol. 1967, 7, 432. 143. Gandini, A. Adv. Polym. Sci. 1977, 25, 47. 144. Dunlop, A. P.; Peters, F. N. The Furans; Reinhold Publishing Corp.: New York, 1953. 145. McKibbins, , S. W.; Harris, J. F.; Saeman, J. F.; Neill, W. K. Forest Prod. J. 1962, 17, Jan. 146. A. E . Staley Manufacturing Co. Levulinic Acid: A Literature Reference; A. E. Staley Mfg. Co.: Decatur, IL, 1948. 147. Horvat, J.; Klaic, B.; Metelko, B.; Sunjic, V. Tetrahedron Letters 1985, 26(17), 2111. 148. Leonard, R. H. Ind. Eng. Chem. 1956, 48(8), 1331. 149. Shilling, W. L. Tappi 1965, 48(10), 105A. 150. Kitano, M.; Tanimoto, F.; Okabayashi, M. Chem. Econ. Eng. Review 1975, 7(7), 25. 151. Thomas, J. J.; Barile, R. G.; Klass, D. L. Ann. Symp. on Energy from Biomass and Wastes; Lake Buena Vista, FL; Vol. 8, January 30, 1984. 152. Bader, A. R. U.S. Patent 2 933 520, 1960. 153. Greenlee, S. O.. U.S. Patents 2 907 745, 1959, and 2 933 471,1960. 154. Hovey, A. G.; Hodgins, T. S. U.S. Patent 2 195 570, 1940. 155. Shokal, E .C.;Devlin, P. A. U.S. Patent 2 488 883, 1949.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
288
ADHESIVES F R O M RENEWABLE RESOURCES
156. Hachihama, Y.; Hayashi, I. Makromol. Chem. 1954, 13, 201. 157. Hikotaro, Y. Japanese Patent 73 43 178, 1973. 158. Clifford, A. M.. U.S. Patent 2 448 703, 1945. 159. Wingfoot Corp. British Patent 569 407, 1945. 160. Esterer, A. K. U.S. Patent 3 309 356, 1967. 161. Schuerch, C. Adv. Carbohydr. Chem. Biochem. 1981, 39, 157.
Downloaded by NANYANG TECHNOLOGICAL UNIV on June 8, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch020
162. Cerny, M.; Stanek, J., Jr. Adv. Carbohydr. Chem. Biochem. 1977. 163. Pernikis, R.; Apsite, B.; Berlin, Α. Α.; Kefeli, T. Y.; Shashkova, V. T.; Pundure, N.; Surna, J. Vysokomol. Soedin., Ser. B, 1977, 19, 847. 164. Carlberg, L. G.; Shafizadeh, F. U.S. Patent 3 414 560, 1968. 165. Goldstein, I. S. Appl. Polym. Symp. 1975, 28, 259. 166. Herrick, F. W.; Hergert, H. L. Recent Adv. Phytochem. 1977, 11, 443. 167. Glasser, W. G. Forest Prod. J. 1981, 31, 24. 168. Shorygin, P. P.; Makarova-Zemlyanskaya, N. N. Compt. Rend. Acad. Sci. USSR 1939, 23, 915. 169. Shorygina, N. N.; Perfilova, G. V. Dokl. Akad. Nauk SSSR 1957, 114, 1040. 170. Shorygina, N. N.; Davydova, G. V. Dokl. Akad. Nauk SSSR 1961, 140, 617. 171. Shorygina, Ν. N.; Davydova, G. V. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1961, 728. 172. Shorygina, Ν. N.; Davydova, G. V. Izv. Akad. Nauk SSSR,Otd. Khim. Nauk 1962, 2058. 173. Davydova, G. V.; Dobryhinskaya, M . S.; Shorygina, Ν. N. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 883. 174. Davydova, G. V.; Shorygina, Ν. N. Dokl. Akad. Nauk SSSR 1964, 154, 140. 175. Davydova, G. V.; Shorygina, N. N.; Loganova, Α. V. Izv. Akad. Nauk SSSR, Ser. Khim. 1965, 1870. 176. Davydova, G. V.; Loganova, Α. V.; Shorygina, Ν. N. Khim. Biokim. Mater. Vses. Konf., 4th, 1967, 81. RECEIVED September 6, 1988
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Uglevodov.