Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
Chapter 28 Thermosetting Adhesive Resins from Whey and Whey Byproducts T i t o Viswanathan Department of Chemistry University of Arkansas at Little Rock Little Rock, A R 72204
The disposal of whey and whey byproducts derived from the cheese industry represents a serious economic and enviromental problem due to the high biological oxygen demand of lactose-the major con stituent of whey solids. Maillard and caramelization reactions asso ciated with the thermal degradation and polymerization of the milk sugar can be exploited to convert lactose in whey to a thermosetting resin that can serve as an adhesive for binding solid lignocellulosic materials. The resin synthesis may be accomplished in one step using a batch reaction (Phase I) or prepared more readily using a continuous plugflow reaction with a two-step synthesis (Phase II). Resins have been shown to perform well as adhesives for sawdust and/or rice hull reinforced boards. Preliminary thermal studies in dicate an exothermic polymerization occurring at around 200 ° C for the Phase I resin preparation. A waste d i s p o s a l p r o b l e m o f significant p r o p o r t i o n s exists because o f t h e 23 b i l l i o n p o u n d s o f excess whey p r o d u c e d i n t h e U n i t e d States each year as a b y p r o d u c t o f the cheese i n d u s t r y (1). T h e n u t r i t i o u s proteins present i n w h e y m a y b e separated b y u l t r a f i l t r a t i o n , r e s u l t i n g i n large v o l u m e s o f u l t r a f i l t r a t e or " p e r m e a t e , " consisting o f 5 % lactose a n d traces o f i n o r g a n i c s a l t s . T h i s per meate s t r e a m is essentially useless a n d exacerbates t h e d i s p o s a l p r o b l e m due t o i t s h i g h b i o l o g i c a l oxygen d e m a n d (25,000 m g / L ) m a i n l y o w i n g t o lactose. I n a d d i t i o n , salt whey ( r e s u l t i n g f r o m pressing cheese c u r d after s a l t i n g ) r e p resents a p a r t i c u l a r l y difficult d i s p o s a l p r o b l e m due t o t h e added presence o f s o d i u m chloride. T h e generation o f excess whey permeate i n t h e U n i t e d States is d e p i c t e d i n F i g u r e 1. T y p i c a l c o m p o s i t i o n o f wheys a n d permeates i s s h o w n i n T a b l e I . T a b l e I I shows t h e a m o u n t o f t o t a l whey solids available for use throughout the world. 0097-6156/89Λ)385-0395$06.00/0 ° 1989 American Chemical Society
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
396
ADHESIVES FROM RENEWABLE RESOURCES
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
Milk
Cheese
Whey: 46 billion lbs. in the U.S. (5% lactose, 1% proteins and traces of salts)
26 billion lbs. (56%) used as food additives, cattle feed, etc.
20 billion lbs. (44%) excess
Pollution Problem!
Ultrafiltration
19 billion lbs. (Whey Permeate)
220 million lbs. of protein (Sold as a 35% concentrate)
I drying process 1.1 billion lbs. of dry permeate F i g u r e 1. G e n e r a t i o n o f w h e y a n d w h e y p e r m e a t e f r o m t h e cheese i n d u s t r y i n the U n i t e d S t a t e s . Reprinted with permission from ref. 17. Copyright 1987 Technomic Publishing.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
28.
Adhesive Resins from Whey and Whey Byproducts
viSWANATHAN
397
T o a large e x t e n t , the u t i l i z a t i o n of w h e y a n d w h e y b y p r o d u c t s ( i n c l u d i n g salt w h e y a n d w h e y permeate) is a p r o b l e m of u t i l i z i n g the m i l k sugar, lactose. Since the excess lactose p r o d u c e d i n the U n i t e d States each year a m o u n t s to m o r e t h a n a b i l l i o n p o u n d s , one m u s t consider i t s use i n large v o l u m e p r o d u c t s . O n e s u c h p r o d u c t is lactose-based p o l y e t h e r - p o l y o l used i n the m a n u f a c t u r e of l o w - d e n s i t y r i g i d p o l y u r e t h a n e foams (2).
T a b l e I . T y p i c a l C o m p o s i t i o n (%)
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
Component
Fluid Sweet W h e y
pH T o t a l solids Moisture Fat Total protein Lactose Ash Lactic acid S o d i u m choride SOURCE:
5.9-6.3 6.35 93.7 0.5 0.8 4.85 0.5 0.05
of W h e y s a n d P e r m e a t e Fluid
Acid Whey
Salt Whey
Whey Permeate
4.4-4.6 6.5 93.5 0.04
5.2 10.7 89.26 0.04
4.5-5.8 6.1 94.2
0.75 4.90 0.8 0.4
0.7 4.35 5.25
0.1
-
4.7
-
4.9 0.7 0.4
Reprinted from ref. 13. Copyright 1984 American Chemical Society.
Table II. A m o u n t of T o t a l W h e y Solids A v a i l a b l e for Use W o r l d w i d e i n 1981 [ T h o u s a n d T o n s (18)} Country EEC Other Western Europe Canada USA Australia Japan New Zealand Czechoslavakia Hungary Poland USSR O t h e r countries Total world
Whey Solids
1
Production
2141 322 104 1144 80 40 53 66 25 176 411 1499 6065
W h e y solids c a l c u l a t e d u s i n g 10 l b w h e y / l b of cheese m a d e t i m e s 6 % t o t a l solids. 1
SOURCE:
Reprinted with permission from ref. 18. Copyright 1984
Dairy Science Association.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
American
398
ADHESIVES F R O M RENEWABLE RESOURCES
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
A n o t h e r p r o b l e m o f a seemingly u n r e l a t e d n a t u r e is the f o r m a l d e h y d e e m i s s i o n f r o m b u i l d i n g b o a r d s t h a t are c u r r e n t l y m a n u f a c t u r e d u s i n g u r e a - f o r m a l d e hyde adhesive resins. F o r m a l d e h y d e has been i m p l i c a t e d as a carcinogen a n d c a n also cause severe u p p e r r e s p i r a t o r y p r o b l e m s a n d contact d e r m a t i t i s i n some i n d i v i d u a l s (3-5). T h e use o f formaldehyde-free adhesive resins f r o m w h e y a n d w h e y b y p r o d ucts for m a n u f a c t u r i n g c o n s t r u c t i o n - q u a l i t y b o a r d s c o u l d resolve these p r o b l e m s s i m u l t a n e o u s l y . T h e d e m a n d for formaldehyde-based t h e r m o s e t t i n g adhesive resins i n the U n i t e d States was e s t i m a t e d t o be 1.9 b i l l i o n p o u n d s i n 1983 (6). T h e a n t i c i p a t e d r e q u i r e m e n t for resins a n d the p o t e n t i a l a v a i l a b i l i t y of r a w m a terials f r o m w h e y are a f o r t u i t o u s c o m b i n a t i o n . R e s e a r c h b y others has established the f e a s i b i l i t y o f u s i n g sugars a n d starches for b i n d i n g w o o d . S u c h uses have been investigated b y S t o f k o ( 7 - 0 ) , U s m a n i a n d S a l y e r (10), G i b b o n s a n d C h i a n g (11), a n d G i b b o n s a n d W o n d o l o w s k i (12), a m o n g others. T h e w o r k o f G i b b o n s i n c o l l a b o r a t i o n w i t h C h i a n g (11) a n d W o n d o l o w s k i (12) has dealt w i t h the p a r t i a l replacement of f o r m a l d e h y d e i n resins by sugars or starches. Because of the fluid n a t u r e o f the a v a i l a b l e r a w m a t e r i a l a n d the desire t o prepare resin s o l u t i o n s w i t h h i g h solids content, a s l i g h t l y different a p p r o a c h is r e q u i r e d f r o m t h a t e m p l o y e d i n the use o f starches or cellulose as resin ingredients. I n the a u t h o r ' s research, a m m o n i u m n i t r a t e was used t o c a t a l y z e t r a n s f o r m a t i o n o f lactose t o p o l y m e r i c c o m p o u n d s . T h e a m o u n t of a m m o n i u m n i t r a t e was kept at 8 % ( w / w o f final s o l u t i o n ) because t h i s a m o u n t was sufficient t o p r o d u c e a final p H o f 2 t o 3 w h i l e y i e l d i n g a n i n s o l u b l e p o l y m e r (13). (Lower p H values w o u l d be d e t r i m e n t a l t o s t r e n g t h r e t e n t i o n over a p e r i o d o f t i m e ) . T a i l o r i n g o f the resin was possible b y a d d i n g condensing agents s u c h as u r e a a n d / o r p h e n o l to p r o d u c e c o n c e n t r a t e d s o l u t i o n s of v a r i a b l e v i s c o s i t y a n d p H . ( T h e a d d i t i o n o f these crosslinkers, however, resulted i n increased cure t i m e for resin p r e p a r a t i o n ) . M i n o r a m o u n t s of copper salts (e.g., C u C b or CUSO4) were a d d e d t o the r e a c t i o n m i x t u r e d u r i n g resin synthesis t o c a t a l y z e M a i l l a r d b r o w n i n g reactions, w h i c h are k n o w n t o result i n h i g h m o l e c u l a r weight heteroc y c l i c p o l y m e r s . F i g u r e 2 shows the proposed r e a c t i o n p a t h w a y s for synthesis o f w h e y - b a s e d resins. E v e n t h o u g h the s t r u c t u r a l aspects o f the p o l y m e r s have not been w o r k e d o u t due t o the m a n y possible r e a c t i o n p r o d u c t s , i t is safe t o propose a general l i n e a r s t r u c t u r e w i t h a large n u m b e r o f c a r b o n y l s due t o the o x i d a t i o n o f - C - O H groups i n a n o x i d i z i n g HNO3 e n v i r o n m e n t . Size e x c l u s i o n c h r o m a t o g r a p h y o f the m e t h a n o l - i n s o l u b l e b u t water-soluble w h e y - r e s i n f r a c t i o n i n d i c a t e s a m o l e c u l a r weight i n the range o f 10,000 t o 80,000 [in c o m p a r i s o n t o proteins o f k n o w n m o l e c u l a r weight used as s t a n d a r d s (14)]- T h i s m o l e c u l a r weight is consistent w i t h the c o n s t i t u e n t s i n cane sugar refiner's final molasses (15) t h a t are k n o w n t o result f r o m advanced M a i l l a r d b r o w n i n g reactions, a m o n g others. In a recent s t u d y , a two-step m e t h o d was used t o m a k e w h e y permeate resin (16,17). T h e process consisted o f i n j e c t i o n o f gaseous a m m o n i a i n t o a r e a c t i o n
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
viswANATHAN
Adhesive Resins from Whey and Whey Byproducts
399
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
28.
F i g u r e 2. P r o p o s e d r e a c t i o n p a t h w a y s for t h e synthesis o f w h e y - b a s e d resins. A m m o n i a gas m a y be used i n a two-step r e a c t i o n scheme. S t r u c t u r e s o f p o l y m e r s s h o w n here are h y p o t h e t i c a l . Reprinted from ref. 13. Copyright 1984 American Chemical Society.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
400
ADHESIVES F R O M R E N E W A B L ERESOURCES
m i x t u r e c o n t a i n i n g d e g r a d a t i o n p r o d u c t s of w h e y solids p r o d u c e d b y s u l f u r i c a c i d at h i g h t e m p e r a t u r e a n d pressure i n a n enclosed P a r r reactor. T h e first step consists of a c i d - c a t a l y z e d h y d r o l y s i s a n d d e h y d r a t i o n of sugars at p H 0.5 a n d h i g h t e m p e r a t u r e s . F i g u r e 3 shows the f o r m a t i o n of the m e t h a n o l - i n s o l u b l e p r o d u c t ( M I P ) as the r e a c t i o n progresses. T h e M I P p o r t i o n of the r e a c t i o n was d e t e r m i n e d b y w i t h d r a w i n g a l i q u o t s of the r e a c t i o n m i x t u r e (1.25 g), m i x i n g w i t h 100 m L of m e t h a n o l , filtering, a n d d r y i n g . T h e value of a p p r o x i m a t e l y 5 0 % M I P o b t a i n e d for t i m e zero is p r o b a b l y due t o i m m e d i a t e h y d r o l y s i s of lactose t o galactose a n d glucose o n a d d i t i o n of a c i d . O v e r t i m e , d e h y d r a t i o n of the monosaccharides s h o u l d t a k e place, p r o d u c i n g m e t h a n o l - s o l u b l e p r o d u c t s such as h y d r o x y m e t h y l f u r f u r a l d e h y d e . T h i s i n t u r n w o u l d l e a d to a decrease i n m e t h a n o l - i n s o l u b l e f r a c t i o n . If the r e a c t i o n is c o n t i n u e d , the M I P f a l l s to a m i n i m u m value a n d is t h e n followed b y a n increase i n the value, i n d i c a t i n g form a t i o n of higher m o l e c u l a r weight p r o d u c t s t h a t t e n d t o be generally i n s o l u b l e in methanol. A t the p o i n t where the M I P is at a m i n i m u m , i n j e c t i o n of a m m o n i a gas results i n a steep increase i n the a m o u n t of h i g h - m o l e c u l a r - w e i g h t m a t e r i a l s w i t h a c o n c u r r e n t rise i n p H value. B o t h these processes are h i g h l y desirable. A m m o n i a is a d d e d u n t i l the desired p H value is o b t a i n e d ( « 3.5 t o 4.0). A t t h i s p o i n t , the resin p r e p a r a t i o n is a viscous e m u l s i o n of d a r k b r o w n color. T h e advantage of t h i s m e t h o d of resin p r e p a r a t i o n is its a d a p t a b i l i t y t o continuous plug-flow r e a c t i o n , u n l i k e the P h a s e I r e s i n , w h i c h is m o r e s u i t e d t o b a t c h r e a c t i o n . T a b l e I I I shows the properties of p a r t i c l e b o a r d s p r e p a r e d w i t h P h a s e I w h e y permeate-based r e s i n . T a b l e I V shows the properties of r i c e - h u l l - r e i n f o r c e d b u i l d i n g b o a r d s u s i n g P h a s e II r e s i n . L o w - q u a l i t y b o a r d s are p r e p a r e d w i t h rice h u l l s , b u t t h e i r q u a l i t i e s m a y be i m p r o v e d b y u s i n g g r o u n d h u l l s or a d d i n g sawdust t o the f o r m u l a t i o n . A l t h o u g h whey-based resins have been f o u n d to be excellent adhesives for b i n d i n g s o l i d lignocellulosic m a t e r i a l s , these resins t e n d t o require higher cure t e m p e r a t u r e s a n d longer cure t i m e s as c o m p a r e d to f o r m a l d e h y d e - b a s e d resins. T h i s chapter describes p r e l i m i n a r y i n v e s t i g a t i o n i n t o the t h e r m o s e t t i n g p r o cess o f one w h e y - b a s e d resin p r e p a r a t i o n u s i n g differential s c a n n i n g c a l o r i m e t r y (DSC). Experimental
Methodology
A M e t t l e r T A 3000 s y s t e m c o n s i s t i n g o f a T C 1 0 A T A processor a n d a D S C 20 m e a s u r i n g cell was used t o investigate the c u r i n g r e a c t i o n of the whey-based resin p r e p a r e d as follows. A m i x t u r e of 171-g w h e y permeate, 73.2-g NH4NO3, 2.85-g C u C b , a n d 2 0 0 - m L H2O was placed i n t o a P a r r pressure reactor a n d heated w i t h s t i r r i n g at 125 ° C for 90 m i n . T h e p H of the final p r e p a r a t i o n was 3.6. A p p r o x i m a t e l y 7- t o 10-mg samples of t h i s resin were weighed i n sealed-glass, high-pressure crucibles. Pressure cells were used t o c o n t a i n any v o l a t i l e , reactive
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
28.
viswANATHAN
Adhesive Resins from Whey and Whey Byproducts
401
F i g u r e 3. Percentage o f m e t h a n o l - i n s o l u b l e p r o d u c t o b t a i n e d d u r i n g t h e r e a c t i o n of 233.4 g o f d r y w h e y permeate a n d 90.3 m L o f s u l f u r i c a c i d i n a n enclosed reactor at 145 ° C . A m m o n i a was injected after a r e a c t i o n t i m e o f 21 m i n u t e s to increase the p H t o 4.0.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
402
ADHESIVES F R O M R E N E W A B L E RESOURCES
species a n d t o s i m u l a t e the pressure c o n d i t i o n s at w h i c h the resin m i g h t be cured i n p r a c t i c e . A n e m p t y sealed-glass c r u c i b l e was used as a n i n e r t reference. T h e D S C sensor used was a five-part A u / N i t h e r m o c o u p l e h a v i n g a s e n s i t i v i t y of a p p r o x i m a t e l y 20 m i c r o v o l t s per K . T e m p e r a t u r e scan rates of 5 t o 10 K / m i n were generally used t o scan the t e m p e r a t u r e range f r o m 30 t o 250 ° C .
T a b l e I I I . P r o p e r t i e s of P a r t i c l e b o a r d s P r e p a r e d w i t h the W h e y P e r m e a t e R e s i n
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
1
Resin ( D r y Basis)
Temperaturepressed
Density
IB
(% ) 7
(»c) 165
(lb/ft ) 55.7
(psi)
10
185 165 185
53.7 53.9 61.6
Thickness Swell 24 h r 2hr
2
3
(% ) 50
81 125 92 132
11 19 7.4
(%) 20 25 18
Dried Strength (psi) 4
-
21
-
30
S i n g l e - l a y e r b o a r d s of l o c a l p i n e s a w d u s t , 3 / 8 i n t h i c k . V a l u e s represent the average of d u p l i c a t e tests. T h e p a r t i c l e b o a r d m a t ( m o i s t u r e content 6%) was pressed at 500 p s i for 7 min. P o u n d s per square i n c h . T h e i n t e r n a l b o n d s t r e n g t h recovery was d e t e r m i n e d after the specimens (24 h r w a t e r i m m e r s e d ) were d r i e d i n a n oven at 103 ± 2 ° C u n t i l a p p r o x i m a t e l y constant weight was o b t a i n e d . 2
3
4
SOURCE:
Reprinted from ref. 13. Copyright 1984 American Chemical Society.
Results a n d Discussion T h e D S C t h e r m o g r a m of the whey-based resin prepared above i n d i c a t e d a n e x o t h e r m i c p e a k o c c u r r i n g at a p p r o x i m a t e l y 185 t o 190 ° C . T h e s o l i d mass o b t a i n e d p r i o r t o the e x o t h e r m is r u b b e r y , b u t becomes b r i t t l e after t h i s t r a n s i t i o n . T h e change i n e n t h a l p y d u r i n g the course of p o l y m e r i z a t i o n , w h i c h corresponds t o the a m o u n t of heat l i b e r a t e d d u r i n g the e x o t h e r m i c process, m a y be determ i n e d b y the area u n d e r the D S C curve. A c o m p u t e r p r o g r a m w r i t t e n as p a r t of the T A processor's k i n e t i c m e t h o d i n d i c a t e d E = 633.44 k J / m o l . A s s u m i n g t h a t the heat change is p r o p o r t i o n a l t o the extent of r e a c t i o n , the area under the curve m a y serve as a n a n a l y t i c a l p a r a m e t e r , a n d the r e a c t i o n k i n e t i c s m a y be d e r i v e d i n a s t r a i g h t f o r w a r d m a n n e r . I n the case of w h e y - b a s e d resins, h o w ever, the sequence of reactions o c c u r r i n g d u r i n g the p o l y m e r i z a t i o n process is sufficiently c o m p l e x t h a t o n l y q u a l i t a t i v e aspects of the D S C t h e r m o g r a m m a y be considered. a
T h e c o m p l e x i t y of the whey-based resin t h e r m o s e t t i n g process c a n be i l l u s t r a t e d b y c o n s i d e r i n g several i s o t h e r m a l i n v e s t i g a t i o n s . S a m p l e s of the resin
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
28.
VISWANATHAN
Adhesive Resins from Whey and Whey Byproducts
403
were heated i s o t h e r m a l l y at various t e m p e r a t u r e s r a n g i n g f r o m 140 t o 185 ° C , a n d the r e a c t i o n was m o n i t o r e d w i t h respect t o t i m e . W h e n the resin s a m ple was heated i s o t h e r m a l l y at 140 ° C for 15 m i n , no e x o t h e r m was observed. T h e s a m p l e was allowed to c o o l slowly to r o o m t e m p e r a t u r e a n d t h e n heated i s o t h e r m a l l y at 185 ° C for 15 m i n . A g a i n , no e x o t h e r m was observed.
T a b l e I V . P r o p e r t i e s of P a r t i c l e b o a r d s P r e p a r e d w i t h P h a s e I I R e s i n [ W h e y P e r m e a t e / H S 0 / N H 3 (17) ]
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
2
Resin ( D r y Basis)
4
Thickness
(%)
Press Cycle (min)
Rice
10
8
(lb/ft ) 57.0
75% Ground rice & 2 5 % dust
7
7
Dust
7
50% Ground rice h 5 0 % dust G r o u n d rice
Composition
IB (psi)
MOR (psi)
Swell
12.9
864
125.9
53.2
49.8
984
37.8
7
55.9
144.4
2047
27.0
7
7
56.9
79.8
838
49.4
7
7
54.3
29.4
Density 3
(%)
38.8
^ i n a l p H = 3. T h e b o a r d s are a single layer of p i n e dust a n d / o r rice h u l l s ( g r o u n d a n d u n g r o u n d ) . V a l u e s given represent average o f d u p l i c a t e r u n s . F i n a l thickness o f the b o a r d s was 1/4 i n c h . 2
Reprinted with permission from ref. 17. Copyright 1987
S O U R C E :
Technomic
Publishing. However, w h e n a fresh s a m p l e of the resin was heated i s o t h e r m a l l y at 185 ° C , there was a n e x o t h e r m i c process evident t h a t peaked w i t h i n the first m i n u t e a n d reached c o m p l e t i o n w i t h i n a p p r o x i m a t e l y 4 t o 5 m i n . T h u s , i t is e v i d e n t t h a t the cure m e c h a n i s m m a y change w i t h change i n r e a c t i o n c o n d i t i o n s , r e v e a l i n g the c o m p l e x i t y of the whey-based resin t h e r m o s e t t i n g process. Since a d y n a m i c r u n described earlier revealed a n e x o t h e r m i c p o l y m e r i z a t i o n at a r o u n d 185 t o 190 ° C , crosslinkers were a d d e d i n a n a t t e m p t to lower the t e m p e r a t u r e for p o l y m e r i z a t i o n . T h e c r o s s l i n k i n g agents ( 1 0 % w / v of resin p r e p a r a t i o n ) used were p h t h a l i c a n h y d r i d e , m a l e i c a n h y d r i d e , t a l l o w d i a m i n e , a n d p-toluenesulfonic a c i d . W e were u n a b l e t o lower the t e m p e r a t u r e of i n i t i a t i o n o f p o l y m e r i z a t i o n b y the a d d i t i o n of the first three reagents, b u t d i d observe a shift t o a lower t e m p e r a t u r e ( « 165 ° C ) i n the presence of ])-toluenesulfonic a c i d . T h e ρ H of the m i x t u r e p r i o r to h e a t i n g was a r o u n d 2.0, whereas, the Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
404
ADHESIVES F R O M R E N E W A B L E RESOURCES
CURVE A"=PRESS TEMR = l65 C.,PRESS =500?5l, MAT MOISTURE » CURVE"B-PRESS TEMP-IftS't./PRESS.-SOOPSl,MAT MOISTUKEg g>7* e
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
1
0
1
ε
3
4-
5
7
T I M E
F i g u r e 4. T h e influence o f press t e m p e r a t u r e , pressure, a n d t i m e o n core t e m p e r a t u r e rise d u r i n g hot pressing. A m o u n t o f resin used was 7 % (by d r y weight) i n the b o a r d . T h e resin a p p l i e d h a d 6 5 % solids content. M a t m o i s t u r e content was 6 % p r i o r t o pressing.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
28.
viswANATHAN
405
Adhesive Resins from Whey and Whey Byproducts
ΙςυκνεΆ": PRESS ΤΕΜ& - ;*o c ASSURE SOOPSL'MAT MOISTURE^ e
200
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
"A"
4 ο ο
U: Σ tu
/
UJ
ο ο
>
TIME
F i g u r e 5. T h e influence of press t e m p e r a t u r e , pressure, a n d t i m e o n core t e m p e r a t u r e rise d u r i n g h o t pressing. T h e a m o u n t of resin used was 7% (by d r y weight) i n t h e b o a r d . T h e resin a p p l i e d h a d a 6 5 % s o l i d content w i t h 1 0 % w / v of p h t h a l i c a n h y d r i d e . M a t m o i s t u r e content was 6 % p r i o r t o pressing.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
406
ADHESIVES F R O M RENEWABLE RESOURCES
others h a d a p H a r o u n d 3.0 t o 3.5. W h e n t h e p H o f t h e m i x t u r e c o n t a i n i n g p-toluenesulfonic a c i d w a s r a i s e d t o 3.5, t h e advantage i n t e r m s o f lower t e m p e r a t u r e for t h e i n i t i a t i o n o f p o l y m e r i z a t i o n was lost.
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
S i n c e we (19) have r e p o r t e d t h a t there is a n i m p r o v e m e n t i n i n t e r n a l b o n d s t r e n g t h o f h i g h - d e n s i t y p a r t i c l e b o a r d s o n a d d i t i o n o f p h t h a l i c a n h y d r i d e , we decided t o investigate t h e influence o f press t e m p e r a t u r e , pressure, a n d t i m e o n core t e m p e r a t u r e rise d u r i n g h o t pressing. F i g u r e s 4 a n d 5 i n d i c a t e t h e results o b t a i n e d under t h e c o n d i t i o n s s t a t e d . T h e a m o u n t o f p h t h a l i c a n h y d r i d e i n F i g u r e 5 w a s 1 0 % w / v o f a 6 5 % resin s o l u t i o n . T h e m a t thickness w a s threeeighths o f a n i n c h , a n d t h e b o a r d w a s p r e p a r e d b y pressing u n d e r continuous pressure w i t h o u t stops. It is clear f r o m t h e results o b t a i n e d t h a t t h e core t e m p e r a t u r e rises above the p l a t e n t e m p e r a t u r e i n the presence o f p h t h a l i c a n h y d r i d e . Since n o u n u s u a l differences i n t h e D S C t h e r m o g r a m o f w h e y - b a s e d resin i n t h e presence a n d i n the absence o f p h t h a l i c a n h y d r i d e were seen, t h e e x o t h e r m i c p h e n o m e n o n b e i n g observed u n d e r c o n d i t i o n s o f b o a r d p r e p a r a t i o n deserves f u r t h e r i n v e s t i g a t i o n . Conclusion W o r k done w i t h w h e y - b a s e d resins so f a r h a s d e m o n s t r a t e d t h e f e a s i b i l i t y o f u s i n g t h e t h e r m a l d e g r a d a t i o n / p o l y m e r i z a t i o n p r o d u c t s o f lactose as a n adhesive for b i n d i n g l i g n o c e l l u l o s i c m a t e r i a l s . T h i s offers a n e x c i t i n g s o l u t i o n t o t h e w h e y d i s p o s a l p r o b l e m , w h i c h takes o n n o t o n l y n a t i o n a l b u t i n t e r n a t i o n a l s i g nificance. T h e m a j o r d r a w b a c k i n b o a r d m a n u f a c t u r e u s i n g w h e y - b a s e d resins is the p r o l o n g e d cure t i m e a n d d a r k e r color. T h e m a j o r advantages are t h e lower cost a n d t h e lower f o r m a l d e h y d e emissions. B o t h s h o u l d encourage t h e forest p r o d u c t s i n d u s t r y t o consider t h i s v i a b l e a l t e r n a t i v e . G o v e r n m e n t a l decisions r e g a r d i n g f o r m a l d e h y d e t o x i c i t y w i l l have a n enormous b e a r i n g o n the f u t u r e o f research o n adhesives f r o m renewable resources. Acknowledgments T h e a u t h o r t h a n k s the A r k a n s a s Science a n d T e c h n o l o g y A u t h o r i t y for f u n d i n g a n d t h e Office o f R e s e a r c h i n Science a n d Technology, U n i v e r s i t y o f A r k a n s a s at L i t t l e R o c k for assisstance i n t h e p r e p a r a t i o n o f t h i s m a n u s c r i p t . Literature
Cited
1. United States Department of Agriculture, Dairy Products Annual Summary 1982. Statistical Reporting Service, Washington, DC, 1983; pp. 17, 33. 2. Viswanathan, T.; Burrington, D.; Richardson, T. J. Chem. Tech.Biotechnol.,1984, 34B, 52. 3. Fisher, A. Contact Dermatitis, 3rd ed., Lea and Fibiger, Pa, 1986; p. 36. 4. Cronin, E . Contact Dermatitis, Churchill Livingstone, London, 1986; p. 622.
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
28.
viswANATHAN
Adhesive Resins from Whey and Whey Byproducts
407
5. Adam, R. M., Occupational Skin Disease, Grune and Stratton, Inc., New York, 19B3; p. 250. 6. White, J. T. Paper presented at Wood Adhesives Research, Application and Needs Symposium held in Madison, WI, Sept. 23-25, 1980. 7. Stofko, J. L. U.S. Patent 4 107 379, 1978. 8. Stofko, J. L. U.S. Patent 4 183 997, 1980.
Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch028
9. Stofko, J. L. "Carbohydrate Transformation Bonding of Lignocellulosic Materials," paper presented at the Wood Adhesive-Research, Application and Needs Symposium, Madison, WI, 1980. 10. Usmani, A. M.; Salyer, I. O. "Resin Bonded Bagasse Composite," In Polymer Applications of Renewable-Resource Materials, Carraher C. E . , Sperling L. A. Eds., Plenum Press: New York 1983. 11. Gibbons, J. P.; Chiang, M. T. U.S. Patent 4 085 075, 1978. 12. Gibbons, J. P.; Wondolowski, L. U.S. Patent 4 085 076, 1978. 13. Viswanathan, T.; Richardson, T. Ind. Eng. Chem. Product Res. Dev., 1984, 23, 644-647. 14. Viswanathan, T. Ind. Eng. Chem. Product Res. Dev., 1985, 24, 176-177. 15. Tsuchida, H.; Komoto, M . Proc. Res. Soc. Japan Sugar Refin. Technol., 1970, 22, 66-76. 16. Viswanathan, T. Phase II Final Report on the development of thermosetting resins from whey and whey byproducts 121 pages. Submitted to the EPA for contract No. 68-02-4098 (1985). 17. Viswanathan, T.; Smith, M.; Palmer, H. J. Elastomers & Plastics, 1987, 19, 99-108. 18. Zall, R. J. Dairy Sci., 1984, 67, 2621-2629. 19. Viswanathan, T.; Gilton, T. Ind. Eng. Chem. Product Res. Dev., 1986, 25, 313-315. RECEIVED June2,1988
Hemingway et al.; Adhesives from Renewable Resources ACS Symposium Series; American Chemical Society: Washington, DC, 1989.