Chapter 4 Cross-linking Options for Lignins Downloaded by UNIV OF MISSOURI COLUMBIA on August 4, 2013 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch004
Wolfgang G. Glasser Department of Forest Products and Polymer Materials and Interfaces Laboratory Virginia Polytechnic Institute and State University Blacksburg, VA 24061
For isolated lignins to become the primary backbone component of a network polymer, a reaction with a bifunctional or multifunctional crosslinking agent must be performed that is sufficiently reactive as well as compatible with lignin in either solvent-free or highly concentrated form. Since the essential prerequisites of compatibility and miscibility often are not met by isolated lignins, improvements may require chemical modification prior to crosslinking. Opportunities exist for preparing lignins by chemical derivative formation for incorporation into polymer networks. Modification reactions include sulfonation, methylolation, phenolation, alkoxylation, acrylation, and many others. These prepare lignins for incorporation into phenolics, epoxies, urethanes, acrylics, and several other types of thermosetting materials. T h e macromolecular, multifunctional nature o f isolated lignins invites applications i n w h i c h l i g n i n serves as the p r i n c i p a l c o m p o n e n t o f t h e r m o s e t t i n g n e t w o r k p o l y m e r s ( i ) . M o s t p r o m i n e n t ( i n terms o f m a r k e t v o l u m e ) o f the thermosett i n g m a t e r i a l s are phenolics, a n d these are j o i n e d b y p o l y u r e t h a n e s , u n s a t u r a t e d polyesters, p o l y a m i n e s , a n d epoxies w i t h s m a l l e r m a r k e t v o l u m e s (2). A l t h o u g h most efforts t o i n c o r p o r a t e l i g n i n i n t o thermosets b y c r o s s l i n k i n g w i t h other resin c o m p o n e n t s have concentrated o n phenolics ( 5 ) , other o p t i o n s exist as w e l l . T h i s paper briefly reviews alternatives for c r o s s l i n k i n g l i g n i n s i n a v a r i e t y of t h e r m o s e t t i n g network p o l y m e r systems. Gillham's T T T Diagram T h e extent t o w h i c h l i g n i n becomes a c o m p o n e n t o f a p o l y m e r network m a y be constrained either b y r e a c t i v i t y o r b y s o l u b i l i t y . T h e c o n t r i b u t i o n o f l i g n i n s t o p h e n o l i c resins is k n o w n t o be l i m i t e d b y t h e n u m b e r o f available uncondensed 0097-6156/89/0385-0043$06.00/0 © 1989 American Chemical Society
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MISSOURI COLUMBIA on August 4, 2013 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch004
44
ADHESIVES F R O M RENEWABLE RESOURCES
p h e n o l i c g u a i a c y l u n i t s (i.e., r e a c t i v i t y ) , a n d t h i s m a y b e i m p r o v e d b y m o d i f i c a t i o n p r i o r t o c r o s s l i n k i n g (3,4). B y c o n t r a s t , p o o r s o l u b i l i t y i n a n d m i s c i b i l i t y w i t h t h e c o m p o n e n t s o f a l i q u i d network f o r m i n g resin were h e l d responsible for t h e c r e a t i o n o f inhomogeneous (i.e., phase separated) c u r e d p o l y u r e t h a n e s (5,6). T h e process o f g e l a t i o n is best i l l u s t r a t e d b y t h e t i m e - t e m p e r a t u r e t r a n s f o r m a t i o n ( T T T ) cure d i a g r a m o f G i l l h a m (7). T h i s is i l l u s t r a t e d i n F i g ure 1 i n s i m p l i f i e d f o r m . T h e d i a g r a m i l l u s t r a t e s t h e various t r a n s f o r m a t i o n s a resin undergoes d u r i n g i s o t h e r m a l cure i n r e l a t i o n t o t i m e . A t l o w t e m p e r a t u r e a n d short t i m e , t h e resin r e m a i n s a homogeneous (fluid) m i x t u r e t h a t expe riences d e m i x i n g (or phase separation) as a result o f r e a c t i o n advancement i f either t i m e o r t e m p e r a t u r e increases. G e l a t i o n , w h i c h a c c o r d i n g t o F l o r y (8), corresponds t o t h e f o r m a t i o n o f a molecule w i t h i n f i n i t e m o l e c u l a r weight, is seen t o o c c u r at a l a t e r p o i n t i n t i m e d u r i n g i s o t h e r m a l cure. T h e fact t h a t cure follows d e m i x i n g i m p l i e s t h a t a n inhomogeneous m a t e r i a l i s f o r m e d , since phase s e p a r a t i o n l i m i t s t h e a b i l i t y o f molecules t o undergo c r o s s l i n k i n g a n d n e t w o r k f o r m a t i o n . T h e process o f phase s e p a r a t i o n , i n t u r n , is governed b y t h e G i b b s free energy e q u a t i o n : AGmixing
=
AH mixing ~
TAS %xing m
P h a s e s e p a r a t i o n occurs w h e n A G rises above 0. T h i s m a y be t r i g g e r e d b y a rise i n e n t h a l p y (i.e., Δ Η ) o r a decline i n e n t r o p y (i.e., A S ) . T o allow for the f o r m a t i o n o f a u n i f o r m network p o l y m e r , phase s e p a r a t i o n m u s t be delayed u n t i l c r o s s l i n k i n g is w e l l enough advanced t o prevent i n d i v i d u a l molecules f r o m d e m i x i n g . T h i s delay is achieved b y either r e d u c i n g Δ Η o r b y r a i s i n g AS ( i n concert w i t h T ) . T h e e n t h a l p y f a c t o r ( Δ Η ) i s c o n t r o l l e d b y t h e difference i n H i l d e b r a n d ' s s o l u b i l i t y p a r a m e t e r (δ) between t h e v a r i o u s r e a c t i n g c o m p o n e n t s , since AH
= φ φ (δ 1
2
1
-
6) 2
2
where φ is v o l u m e f r a c t i o n ; a n d A S declines w i t h i n c r e a s i n g m o l e c u l a r weight a c c o r d i n g t o F l o r y a n d H u g g i n s (9). B o t h approaches have been e m p l o y e d w i t h l i g n i n - b a s e d network p o l y m e r s . T h e lower m o l e c u l a r weight fractions o f k r a f t l i g n i n have been used successfully for t h e f o r m u l a t i o n o f homogeneous s o l u t i o n cast p o l y u r e t h a n e films (10-12), a n d t h e s o l u b i l i t y o f l i g n i n has been increased by c h e m i c a l m o d i f i c a t i o n p r i o r t o c r o s s l i n k i n g . T h e f o l l o w i n g discussion i l l u s trates e x a m p l e s o f h o w c h e m i c a l m o d i f i c a t i o n m a d e c r o s s l i n k i n g possible b y l i m i t i n g phase s e p a r a t i o n . C h e m i c a l M o d i f i c a t i o n s . U n m o d i f i e d l i g n i n is w e l l k n o w n for i t s p o o r s o l u b i l i t y characteristics a n d i t s h i g h glass t r a n s i t i o n t e m p e r a t u r e . M e t h o d s for improving the solubility (and/or reactivity) of lignin prior to crosslinking i n specific network f o r m i n g systems are s u m m a r i z e d i n T a b l e I . S u c h systems m a y be based o n aqueous s o l u t i o n s a t p H below o r above n e u t r a l o r o n s o l u t i o n s i n p o l a r o r n o n p o l a r solvents. T y p i c a l m o d i f i c a t i o n s t h a t enhance the s o l u b i l i t y o f
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
4.
GLASSER
45
Cross-Linking Options for Lignins
l i g n i n i n aqueous solvent systems o f p H < 7 involve s u l f o n a t i o n , c a r b o x y l a t i o n (by o x i d a t i o n ) , a n d g r a f t i n g w i t h a s u b s t i t u e n t t h a t p r o d u c e s a w a t e r - s o l u b l e p o l y m e r c h a i n . S o l u b i l i t y i n aqueous s o l u t i o n s o f p H > 7 t y p i c a l l y concentrates o n t h e i n t r o d u c t i o n o f i o n i z a b l e f u n c t i o n a l groups.
Sulfonation, phenolation,
a n d c a r b o x y l a t i o n (by r e a c t i o n w i t h a n h y d r i d e s or chloroacetic to this group.
acid)
belong
O r g a n i c solvent s o l u b i l i t y m a y be enhanced b y r e d u c i n g the
h y d r o g e n - b o n d i n g c a p a c i t y of l i g n i n t h r o u g h e t h e r i f i c a t i o n a n d / o r t h r o u g h t h e
Downloaded by UNIV OF MISSOURI COLUMBIA on August 4, 2013 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch004
i n t r o d u c t i o n o f s u b s t i t u e n t s w i t h low p o l a r i t y . T h e list i n T a b l e I p r o v i d e s evidence for the o b s e r v a t i o n t h a t i s o l a t e d ( p o l y m e r i c ) l i g n i n , i n the m a j o r i t y of cases, needs t o be c h e m i c a l l y m o d i f i e d p r i o r t o n e t w o r k f o r m a t i o n .
(As men-
t i o n e d above, phase s e p a r a t i o n p r i o r t o g e l a t i o n m a y , however, also be c o n t r o l l e d a n d delayed b y the use o f low m o l e c u l a r weight l i g n i n f r a c t i o n s . ) C r o s s l i n k i n g R e a c t i o n s i n W a t e r at p H 7. p r a c t i c e for p h e n o l i c s (44)-
R e s i n cure i n aqueous a l k a l i is c o m m o n
A l t h o u g h most i s o l a t e d l i g n i n s have s a t i s f a c t o r y
s o l u b i l i t y i n aqueous a l k a l i , p h e n o l a t i o n has been f o u n d t o enhance the tolerance o f p h e n o l i c resins t o the a d d i t i o n o f m a c r o m o l e c u l a r f r a c t i o n s o f l i g n i n (4,4$-47). I m p r o v e d m i s c i b i l i t y a n d r e a c t i v i t y b o t h account for t h i s p h e n o m e n o n . T h e c r o s s l i n k i n g o f l i g n i n derivatives i n aqueous a l k a l i n e m e d i u m has been achieved w i t h several a d d i t i o n a l c r o s s l i n k i n g agents. N i m z et a l . e m p l o y e d b i f u n c t i o n a l b i s - d i a z o n i u m salts i n a n effort t o p r o d u c e a n o v e l t y p e o f azo resin f r o m l i g n i n sulfonates (24) et a l . (25)
( F i g u r e 3). T h i s technique was a d o p t e d b y P s o t t a
who found that, although sulfonated wattle extracts crosslinked well
a n d f o r m e d useful n e t w o r k p o l y m e r s , s u l f o n a t e d l i g n i n derivatives posed p r o b lems a t t r i b u t e d t o f r o t h i n g (due t o reagent d e c o m p o s i t i o n ) a n d loss o f c o n t r o l over cure r a t e . B i f u n c t i o n a l a c i d chlorides were useful i n c r o s s l i n k i n g s u l f o n a t e d l i g n i n m o d e l c o m p o u n d s i n aqueous a l k a l i ( F i g u r e 4), b u t t h e y b e h a v e d p o o r l y d u r i n g i n t e r molecular crosslinking of polymeric lignins
(26).
C y a n u r i c c h l o r i d e was d e s c r i b e d as a potent t r i f u n c t i o n a l c r o s s l i n k i n g agent for b o t h m o d e l c o m p o u n d s a n d s u l f o n a t e d l i g n i n s (27)
( F i g u r e 5).
A healthy
i n c o r p o r a t i o n o f t r i a z i n e f u n c t i o n a l i t y p r o d u c e d homogeneous n e t w o r k gels. I n t r o d u c t i o n o f c a r b o x y l i c a c i d groups enhances surface active (17)
o f l i g n i n s as w e l l as t h e i r r e a c t i v i t y w i t h p r o p y l e n e o x i d e (39).
properties (A
more
h i g h l y p r o p o x y l a t e d l i g n i n has s u p e r i o r s o l u b i l i t y a n d r e a c t i v i t y w i t h d i i s o cyanates.)
C a r b o x y l a t e d l i g n i n s have, however, n o t been the target o f n e t w o r k -
f o r m i n g reactions. C r o s s l i n k i n g i n O r g a n i c Solvents. T h e solubility of most isolated lignins i n ( p o l a r ) o r g a n i c solvents is p o o r . It needs to be i m p r o v e d before u n i f o r m netw o r k p o l y m e r s c a n be p r o d u c e d b y c r o s s l i n k i n g . T h i s m a y be achieved t h r o u g h
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
46
ADHESIVES F R O M RENEWABLE RESOURCES
230 r
x
End of phase separation
phase separation Vitrification
Downloaded by UNIV OF MISSOURI COLUMBIA on August 4, 2013 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch004
Gelation
0
1
2
3
4
L o g time (min) F i g u r e 1. T i m e - t e m p e r a t u r e - t r a n s f o r m a t i o n cure d i a g r a m b y G i l l h a m [adapted from (7)].
OCH,
H C0 3
OH
OH
F i g u r e 2. C o n d e n s a t i o n r e a c t i o n o f lignosulfonates at p H < 7 [adapted f r o m ( 3 ) ] .
S0 Na 3
OH
pH 8... 14
U N©
III Ν
S0 Na 3
OL .
QH
N
Ν> ^γΌ0Η
υ τ
3
Να S0£
F i g u r e 3. R e a c t i o n o f l i g n o s u l p h o n a t e s w i t h b i s - d i a z o n i u m salts [adapted f r o m {24,25)}.
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
GLASSER
Cross-Linking Options for Lignins
Table I. A Non-comprehensive List of Crosslinking Reactions a n d P r e t r e a t m e n t M e t h o d s for I m p r o v i n g S o l u b i l i t y a n d / o r R e a c t i v i t y Principal Solvent Water
Downloaded by UNIV OF MISSOURI COLUMBIA on August 4, 2013 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch004
( P H < 7)
Water ( p H > 7)
Organic solvents
Method S S M MO G
1
Principal Crosslinking Agent
2
Network Type 3
H+ ( C ) H 0 (OC) PF NA NA
PR PR PR ΝΑ ΝΑ
S,M,P
PF
PR
S S s CM MAC MCR
BD AAC ce NA NA NA
AZR ΡΕ Resins ΝΑ ΝΑ ΝΑ
E A M+EP MA
NEH DI NEH MEA
ER PU ER AR
2
2
Reference 13,14
15 16 η 18 4,19*,2Ρ,
21 - 23 24,25
26 27 28 29 17,30 31,32 33-40 41,42 43
S = s u l f o n a t i o n , M = m e t h y l o l a t i o n , M O = miscellaneous o x i d a t i o n , G = grafting, Ρ = phenolation, C M = carboxymethylation, M A C = m a l e i c a n h y d r i d e c o p o l y m e r i z a t i o n , M C R = miscellaneous c a r b o x y l a t i o n reactions, Ε = e p i c h l o r o h y d r i n (also i n c o n j u n c t i o n w i t h p h e n o l a t e d l i g n i n ) , A = a l k o x y l a t i o n (i.e., ethylene, propylene, a n d butylène oxides), M + E P = m o d i f i c a t i o n w i t h c o m p o u n d s c o n t a i n i n g u n s a t u r a t e d e n d groups ("divalent h y d r o c a r b o n s " ) followed b y e p o x i d a t i o n w i t h peroxide, M A = m e t h a c r y l i c a c i d . X
C = condensation, O C = o x i d a t i v e c o u p l i n g , P F = p h e n o l f o r m a l d e h y d e , N A = c r o s s l i n k i n g n o t p e r f o r m e d - m o d i f i c a t i o n was a i m e d at network f o r m a t i o n , B D = b i s - d i a z o n i u m salts, A A C = a r y l a c i d chlorides, C C = c y a n u r i c chloride, N E H = n o r m a l e p o x y hardeners, M E A = methacrylate. P R = phenolic resin, A Z R = azo resin, P E = polyester, E R = e p o x y resin, P U = p o l y u r e t h a n e s , A R = a c r y l i c resin. B a s e d o n h i g h - m o l e c u l a r - w e i g h t f r a c t i o n o f u l t r a - f i l t e r e d spent sulfite or k r a f t l i q u o r . B a s e d o n a l k a l i - s o l u b l e m e t h y l o l a t e d k r a f t l i g n i n w h i c h was p r e c i p i t a t e d b y a c i d i f i c a t i o n a n d blended w i t h a n a c i d - c u r i n g phenolic resin. 2
3
4
5
American
Chemical
Library
Society
1155 16th St., N.W.
In Adhesives from Renewable Resources; Hemingway, R., et al.; Washington, O.C. 20036 ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
ADHESIVES F R O M RENEWABLE RESOURCES
Downloaded by UNIV OF MISSOURI COLUMBIA on August 4, 2013 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch004
48
'S0 No
S0 No
3
H3CO-
. Q
+
OH
3
CIOC-(Q>-COCI
pH 10.5 H3CO )
OC—^^-co
0
ο
^OCH,
NaS0