Adsorption From Aqueous Solution - ACS Publications - American

of establishing the potential difference across the electric double layer. One type is fixed by the .... x1 r2 ( 1 ). It is calculable from a measured...
1 downloads 0 Views 1MB Size
12 Analysis of the Composite Isotherm for the Adsorption of a Strong Electrolyte from Downloaded via TUFTS UNIV on July 12, 2018 at 10:46:00 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Its Aqueous Solution onto a Solid KARMA

M.

VAN

DOLSEN

and M A R J O R I E

J.

VOLD

The University of Southern California, Los Angeles, Calif. 90007

The charge density, the diffuse

Volta

double

1:1 electrolyte

layer

from

potential, formed

aqueous

solution

The experimental

isotherm

isotherms

the common

without

for the electrolyte

reached

layer

toward

properties,

aqueous

electrolyte. stability

sodium

of kT/e =

potential

assumption.

That sur­

and equilibrium from

two

at

con­ "zero"

Unity is closely

In dispersions

β-naphthalene are useful

but

of Sterling

sulfonate

7 (170 mv.) is reached

The results

of the

individual

10 for spheres of 1000 A. radius

is still about 1.3 for plates. in

particles.

into

unity with rising potential.

near kT/e =

for strong

Guggenheim-Adam

The ratio: σ0/Г2N declines

centrations. potential

monolayer

relating

of a

onto solid

can be resolved

permits

face excess, double

etc., are calculated

by adsorption

a

maximum

at 4 X

in interpretation

FTG 10- M 3

of

the

dispersions.

T t has b e e n r e c o g n i z e d since the n i n e t e e n t h c e n t u r y t h a t s p a r i n g s o l u b l e particles o f l a r g e surface area h a v e b e e n k n o w n to b e m a i n t a i n e d for l o n g times i n s o l u t i o n of sufficiently l o w i o n i c strength. T h e m u t u a l r e p u l s i o n of the l i k e charge b o r n e b y the p a r t i c l e s counterbalances the v a n d e r W a a l s attraction. T w o classes of s o l i d / l i q u i d i n t e r f a c e h a v e b e e n extensively s t u d i e d : the c o m p l e t e l y p o l a r i z e d ( 3 ) r e v e r s i b l e i n t e r f a c e (9, 12, 13).

a n d the c o m p l e t e l y

T h e o r i g i n of the influence of electrolyte

is, as is w e l l k n o w n , p a r t i a l e x p u l s i o n ( n e g a t i v e a d s o r p t i o n ) of s i m i l i o n s near the surface a n d c o n c o m i t a n t increase i n c o n c e n t r a t i o n of c o u n t e r ­ ions.

T h e s i t u a t i o n w a s t r e a t e d as analogous to a condenser w i t h the

c h a r g e p e r u n i t area of the c o l l o i d a l surface a n d the e q u i v a l e n t net charge i n the s u r r o u n d i n g s o l u t i o n b e i n g d e s i g n a t e d " e l e c t r i c d o u b l e 145

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

146

ADSORPTION F R O M

AQUEOUS SOLUTION

l a y e r " as e a r l y as 1879 b y H e l m h o l z . S h o r t l y thereafter the d i s t r i b u t i o n of b o t h s i m i l i o n s a n d counterions i n the p o t e n t i a l field w a s t r e a t e d b y the statistical B o l t z m a n n expression b y G u o y a n d C h a p m a n ( 5 ) to a l l o w for the t h e r m a l m o t i o n of the ions. T h e c o n c e p t of c a p a c i t y of the e l e c t r i c d o u b l e l a y e r r e m a i n e d , apart f r o m the d e s i g n a t i o n "diffuse d o u b l e l a y e r . " F o r a r e v e r s i b l e interface, s u c h as A g l / a q u e o u s s o l u t i o n , the electro­ static p o t e n t i a l i n the s o l u t i o n just outside the surface r e f e r r e d to z e r o at regions of s o l u t i o n i n f i n i t e l y remote f r o m c o l l o i d a l particles, the V o l t a p o t e n t i a l , is c a l c u l a t e d f r o m the N e r n s t e q u a t i o n , the c o n c e n t r a t i o n of p o t e n t i a l d e t e r m i n i n g ions, a n d the zero-point-of-charge

w h i c h is not

u s u a l l y the s t o i c h i o m e t r i c e q u i v a l e n c e p o i n t . T h e characteristics of the diffuse electric d o u b l e l a y e r at a c o m p l e t e l y p o l a r i z e d interface, s u c h as at a m e r c u r y / a q u e o u s

electrolyte s o l u t i o n

interface are essentially i d e n t i c a l w i t h those f o u n d at the r e v e r s i b l e i n t e r ­ face. W i t h the p o l a r i z a b l e interface the p o t e n t i a l difference is a p p l i e d b y the experimenter, a n d , together w i t h the electrolyte, specifically a d s o r b e d as w e l l as l o c a t e d i n the diffuse d o u b l e layer, results i n a m e a s u r a b l e c h a n g e i n i n t e r f a c i a l tension a n d a m e a s u r a b l e c a p a c i t y . It c a n b e o b s e r v e d that the a b o v e t w o types of electric d o u b l e l a y e r , w h i c h h a v e b a s i c a l l y s i m i l a r properties, differ p r i n c i p a l l y i n the m a n n e r of e s t a b l i s h i n g the p o t e n t i a l difference across the electric d o u b l e layer. O n e t y p e is fixed b y the s o l u b i l i t y a n d other interactions of the s o l i d i n contact w i t h s o l u t i o n of electrolyte. I n the other t y p e , p o l a r i z a b l e i n t e r ­ face, the e x p e r i m e n t e r a p p l i e s a n y d e s i r e d p o t e n t i a l difference one l i q u i d surface a n d a reference electrode.

between

T h e resulting V o l t a poten­

t i a l is fixed b y the specific a d s o r b a b i l i t y of the electrolyte. A t h i r d t y p e of electric d o u b l e l a y e r , h i t h e r t o b u t s l i g h t l y i n v e s t i g a t e d i n m o d e r n times, derives its V o l t a p o t e n t i a l f r o m the specific

adsorba­

b i l i t y of a n i o n w h i c h is c h e m i c a l l y u n r e l a t e d to the s o l i d . T h i s t y p e , w h i c h is the subject of the present p a p e r ( u s i n g b e t a - n a p h t h a l e n e s u l ­ fonate i o n a n d a h o m o g e n e o u s n o n p o l a r g r a p h i t i z e d c a r b o n ) also has q u a l i t a t i v e s i m i l a r i t i e s to the t w o c l a s s i c a l ones. T h e results of this s t u d y are i n t e n d e d for use i n c o m p a n i o n studies of the e l e c t r o k i n e t i c properties a n d s t a b i l i t y factors of the same system.

Although graphitized carbon

b l a c k ( a n d also c a r b o n a c e o u s m a t e r i a l of v a r y i n g , sometimes composition)

has

been

( l a r g e l y as a result of

investigated its i m p o r t a n c e

as

sols

unknown

i n hydrocarbon

media

to the p e t r o l e u m a n d r e l a t e d

i n d u s t r i e s ) , a n d to a lesser extent as aqueous sols to s i m u l a t e " d i r t " i n studies of detergency,

precise d a t a a n d c a r e f u l i n t e r p r e t a t i o n of

them

are b o t h l a c k i n g . O n e of the most significant results is that negative a d s o r p t i o n of s i m i l i o n s ( t h e i r p a r t i a l e x p u l s i o n f r o m the surface r e g i o n ) , w h i c h has b e e n r e c o g n i z e d b u t not e m p h a s i z e d , e v e n i n the earliest days of G u o y -

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

V A N DOLSEN A N D VOLD

Composite

147

Isotherm

C h a p m a n theory, is i n fact a q u a n t i t y o f c o n s i d e r a b l e i m p o r t a n c e . A l r e a d y v a n d e n H u l a n d L y k l e m a (18) h a d r e a l i z e d this s i t u a t i o n . T h e y s h o w e d that t h e m e a s u r e d negative a d s o r p t i o n o f p h o s p h a t e ions a n d o f sulfate ions c o u l d b e u s e d to d e t e r m i n e t h e surface area o f t h e p a r t i c l e s i n n e g a t i v e sols o f A g l , i n reasonable agreement w i t h results o b t a i n e d f r o m c a p a c i t a n c e measurements. Poisson-Boltzmann

I n t h e present case, a first i n t e g r a t i o n o f t h e

e q u a t i o n gives

t h e charge

d e n s i t y a t t h e surface

c o r r e s p o n d i n g i n p o s i t i o n to that of t h e V o l t a p o t e n t i a l . B u t t h e a d s o r p ­ t i o n m e a s u r e d b y c h a n g e i n c o n c e n t r a t i o n of s o d i u m b e t a - n a p h t h a l e n e sulfonate refers t o t h e n u m b e r o f ions o n t h e surface m i n u s t h e n u m b e r of ions w h i c h are n e g a t i v e l y a d s o r b e d i n t h e diffuse d o u b l e layer. T h e t w o q u a n t i t i e s a r e n o t i d e n t i c a l a n d differ b y a factor o f t w o , i f t h e ( d u b i o u s l y justifiable) D e b y e - H i i c k e l a p p r o x i m a t i o n is u s e d . the r a t i o b e t w e e n n e g a t i v e a d s o r p t i o n a n d t o t a l surface c h a r g e

Happily, appears

Symbol Table a A C e k m rii N

2

b

8

0

N 1 L r T u u Vi V Xi Zi r

0

s

2

R a d i u s o f a sphere ( m e t e r s ) . A r e a o f t h e surface ( m e t e r s ) . M o l a r c o n c e n t r a t i o n o f electrolyte i n t h e b u l k s o l u t i o n . C h a r g e o f a n e l e c t r o n (e.s.u.). B o l t z m a n n constant. W e i g h t of adsorbent ( g r a m s ) . Moles of component i i n the surface-containing region. T o t a l moles o f a l l c o m p o n e n t s present i n t h e s o l u t i o n before d i s p e r s i n g t h e adsorbent. Avogadro's number. Distance (meters). L i n e a r extent of t h e s u r f a c e - c o n t a i n i n g r e g i o n m e a s u r e d p e r ­ pendicularly o u t w a r d from the interface (meters), D i s t a n c e f r o m t h e center o f a sphere ( m e t e r s ) . Absolute temperature, R e d u c e d p o t e n t i a l , x&^/kT. R e d u c e d surface p o t e n t i a l . P a r t i a l m o l e c u l a r v o l u m e of c o m p o n e n t i ( m i l H l i t e r s / m o l e c u l e ) . V o l u m e of the surface-containing region (meters ). M o l e f r a c t i o n of c o m p o n e n t i . V a l e n c e o f the i i o n t y p e . G u g g e n h e i m - A d a m " N c o n v e n t i o n " surface excess of c o m p o ­ nent i ( i = 1 for w a t e r , i = 2 f o r electrolyte, i n m o l e s / m e t e r ) , B u l k d i e l e c t r i c constant of w a t e r . C h a r g e d e n s i t y o n t h e surface ( m o l e s / m e t e r ) . Specific surface area of adsorbent ( m e t e r s / g r a m ) . Electrostatic potential (millivolts). C o n c e n t r a t i o n of ions ( i o n s / m l . i = c f o r c o u n t e r i o n s , 1 = s f o r s i m i l i o n s , i = b f o r b o t h i n t h e b u l k solution). 3

t h

( N )

2

c (T 2 \ff vi 0

2

2

American Chemical Society Library 1155 16th St, N.W.

Weber and Matijevi; Adsorption From Aqueous Solution WasMnfton, D.CWashington, 20038 DC, 1968. Advances in Chemistry; American Chemical Society:

148

ADSORPTION F R O M

AQUEOUS SOLUTION

DISTANCE

Figure 1. Schematic: Diffuse double layer formed as a result of anion adsorption, showing the effect of negative adsorption of similions on the bulk concentration. A. Initial electrolyte concentration. B. Final electrolyte concentration. C. Final concentration if there were no negative adsorption of similions (19)

to b e i n d e p e n d e n t of electrolyte c o n c e n t r a t i o n a n d depends o n l y o n

the V o l t a p o t e n t i a l .

Theory T h e presence of a n a d s o r b e d l a y e r at the s o l i d / s o l u t i o n interface is i n f e r r e d f r o m a n o b s e r v e d c o n c e n t r a t i o n c h a n g e w h e n c o l l o i d a l s o l i d is p l a c e d i n contact w i t h s o l u t i o n . I f one of the ions adsorbs p r e f e r e n t i a l l y , the interface becomes c h a r g e d , a n d a diffuse d o u b l e

l a y e r is

spontaneously e x t e n d i n g o u t w a r d f r o m the c h a r g e d surface.

formed

Since c o u n ­

terions are a t t r a c t e d to the c h a r g e d interface, t h e i r c o n c e n t r a t i o n i n the diffuse d o u b l e l a y e r is greater t h a n i n the b u l k s o l u t i o n a n d t h e y are s a i d to b e p o s i t i v e l y a d s o r b e d . S i m i l i o n s are r e p e l l e d f r o m the surface a n d are s a i d to b e n e g a t i v e l y a d s o r b e d .

T h e n e u t r a l i z a t i o n of the surface charge

is a c c o m p l i s h e d b y the c o m b i n a t i o n of the p o s i t i v e a d s o r p t i o n of c o u n t e r ­ ions a n d the negative a d s o r p t i o n of s i m i l i o n s . S i n c e p o s i t i v e a d s o r p t i o n is i n f e r r e d f r o m a decrease i n c o n c e n t r a t i o n of the b u l k s o l u t i o n , a n d negative a d s o r p t i o n is i n f e r r e d f r o m a n increase i n c o n c e n t r a t i o n , the net change w i l l b e s m a l l e r i n m a g n i t u d e t h a n the larger of the t w o effects. T h e s i t u a t i o n is s c h e m a t i z e d i n F i g u r e 1. This measured concentration

change

is u s u a l l y c o n v e r t e d

into a

surface excess q u a n t i t y , analogous to that u s u a l l y c a l c u l a b l e f r o m surface tension d a t a for a d s o r p t i o n at the l i q u i d / v a p o r interface. I n the case of

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

12.

V A N DOLSEN

A N D

Composite

VOLD

149

Isotherm

the s o l i d / l i q u i d interface i n w h i c h the s o l i d is i m p e n e t r a b l e to solvent a n d solute a l i k e , the surface of contact b e t w e e n the s o l i d a n d s o l u t i o n is a l o g i c a l c h o i c e f o r the d i v i d i n g surface. A n a r b i t r a r y surface m u s t b e chosen to separate the b u l k s o l u t i o n f r o m the s u r f a c e - c o n t a i n i n g r e g i o n . A H extensive q u a n t i t i e s of the i n t e r f a c i a l r e g i o n w i l l b e d e p e n d e n t

on

the p o s i t i o n of this second surface. A n y c o n v e n t i o n chosen s h o u l d satisfy the f o l l o w i n g c r i t e r i a : ( 1 )

give a v a l u e of the surface excess w h i c h is

i n d e p e n d e n t of the c h o i c e of p o s i t i o n of the second

d i v i d i n g surface;

( 2 ) c l e a r l y s h o w the r e l a t i v e presence of b o t h solvent a n d solute i n t h e i n t e r f a c i a l r e g i o n ; a n d ( 3 ) a l l o w a c o n c e p t of this r e g i o n w h i c h facilitates a p p l i c a t i o n of diffuse d o u b l e l a y e r theory. T h e G i b b s surface excess,

r

(1)

2

,

is c o n c e p t u a l l y difficult, a n d has the

f u r t h e r d i s a d v a n t a g e that the extent of the surface r e g i o n m u s t change as the c o m p o s i t i o n of the surface r e g i o n changes A d a m " N " c o n v e n t i o n surface excess, r , 2

N

(4).

The Guggenheim-

is a l o g i c a l c h o i c e i n a s m u c h

as i t satisfies the a b o v e c r i t e r i a a n d also a l l o w s r e s o l u t i o n of the composite i s o t h e r m i n t o i n d i v i d u a l isotherms ( 8 ) .

T h e G u g g e n h e i m - A d a m surface

excess is defined as the n u m b e r of moles of electrolyte i n a v o l u m e of s o l u t i o n c o n t a i n i n g one square meter of surface a n d N t o t a l moles of a l l species, i n excess of the c o r r e s p o n d i n g q u a n t i t y i n a v o l u m e of b u l k s o l u ­ t i o n c o n t a i n i n g the same t o t a l n u m b e r of moles ( 4 ) .

T h i s surface excess

q u a n t i t y is s y m m e t r i c a l w i t h respect to solvent a n d solute.

r

2

N

= -i\

N

I t is d i r e c t l y r e l a t e d to the G i b b s surface excess.

r

2

N

= x r 1

2

( 1 )

It is c a l c u l a b l e f r o m a m e a s u r e d c o n c e n t r a t i o n change r

2

= -N Ax /m2

N

0

(la)

2

i f the specific area is k n o w n , a n d the s o l i d has a w e l l c h a r a c t e r i z e d surface. Its d e f i n i t i o n gives the r e l a t i o n s h i p b e t w e e n

the composite,

T

2

N

,

and

i n d i v i d u a l isotherms, n i a n d n . R

T

2

N

2

s

= ( 1 / m S ) ( n - - x ( i V + n *)) a

2

2

(lb)

T h e extent of the s u r f a c e - c o n t a i n i n g r e g i o n is not specified b y t h e d e f i n i t i o n of the surface excess.

T h i s r e g i o n m u s t c o n t a i n a l l of

the

s o l u t i o n w h o s e c o n c e n t r a t i o n differs f r o m that of the b u l k l i q u i d a n d m a y c o n t a i n a n y a m o u n t of b u l k s o l u t i o n . T h e b u l k s o l u t i o n makes no c o n t r i ­ b u t i o n to the v a l u e of the surface excess. N o a s s u m p t i o n is i n v o l v e d i n the d e f i n i t i o n of surface excess as to w h e t h e r either c o m p o n e n t forms a m o n o l a y e r o n t h e surface.

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

150

ADSORPTION F R O M

AQUEOUS

SOLUTION

T h e a b o v e d e f i n i t i o n o f t h e s y m m e t r i c surface excess a n d t h e c l a s s i c a l G u o y - C h a p m a n m o d e l of t h e diffuse d o u b l e l a y e r a r e c o m b i n e d to s h o w that t h e surface excess c a n n o t b e c o n s i d e r e d a surface c o n c e n t r a t i o n i n t h e presence of a n i o n i z e d m o n o l a y e r o n a n i m p e n e t r a b l e s o l i d / l i q u i d interface. It is p o s t u l a t e d t h a t o n e o f t h e ions of t h e a d s o r b e d 1:1 e l e c t r o l y t e is surface a c t i v e a n d t h a t i t f o r m s a n i o n i z e d m o n o l a y e r at t h e s o l i d / l i q u i d interface. A l l counterions a r e a s s u m e d l o c a t e d i n t h e diffuse d o u b l e l a y e r ( n o specific a d s o r p t i o n ) . S i m i l i o n s a r e n e g a t i v e l y a d s o r b e d i n t h e diffuse double layer.

Since the surface-containing region must be electrically

n e u t r a l , t h e t o t a l moles of electrolyte a d s o r b e d , n

2

a

, equals t h e t o t a l moles

of c o u n t e r i o n s i n t h e diffuse d o u b l e l a y e r w h i c h m u s t b e e q u a l t o t h e s u m of t h e moles of s i m i l i o n s i n t h e diffuse d o u b l e l a y e r a n d t h e c h a r g e d surface, Ao- . T h e s e c o n d i t i o n s a r e expressed i n E q u a t i o n s 2a,b. 0

n «=(l/N)

Jj*

n «=(l/N)

J * dv

2

y

2

(2a)

dv

Vc

+

Vs

(2b)

A