8 Adsorption of Selenite by Goethite F.J.
HINGTON
Division of Soils, C.S.I.R.O., W . Α., Laboratories, Wembley, Western Australia, 6014
Downloaded by UNIV OF BATH on October 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch008
A . M. P O S N E R and J . P.
QUIRK
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009
Specific
adsorption
of the
of selenite
suspension
surface.
and
Isotherms Γ=
where Γ = tion, selenite,
the
at
constant
selenite
adsorbed,
(Se)
equilibrium
=
Γo(pH)
and KL is a constant. of K
L
KL = K
D
=
pH
are
Γo(pH)
+
+
K'2/Kw,
+
The
entropy
=
maximum
adsorp
concentration
of
and KL vary with
pH.
by,
KD), for
selenious
where K'2 is an exchange
constant
constant
gain of the reaction
release of a water molecule ion is
by,
L
for OH- and SeO32- and Kw is the dissociation water.
pH oxide
K (Se)],
is represented
K2KDH /(H
the
on the
represented
solution
the second dissociation
acid and K2 =
increases
charge
• KL(Se)/[1 +
Γo(pH)
The pH dependence
where
on goethite negative
constant
is consistent
for with
from the surface when a selenite
adsorbed.
A d s o r p t i o n of anions at m i n e r a l surfaces is i m p o r t a n t i n soils because of the l i m i t this process imposes o n the a v a i l a b i l i t y of p l a n t n u t r i e n t s s u c h as P , S, a n d M o w h i c h o c c u r n a t u r a l l y as anions a n d are a d d e d i n a n i o n i c f o r m i n fertilizers.
A n i o n a d s o r p t i o n is also relevant i n geo
c h e m i s t r y , ore processing, a n d other fields w h e r e m i n e r a l s w i t h
high
surface areas are b r o u g h t i n t o contact w i t h aqueous solutions of anions. Selenite a n d goethite w e r e chosen for this s t u d y because
in Western
A u s t r a l i a a s e l e n i u m deficiency i n pastures has b e e n s h o w n to b e r e l a t e d to the i n c i d e n c e of w h i t e m u s c l e disease i n sheep ( 3 ) , a n d a c c o r d i n g to w o r k e r s q u o t e d b y R o s e n f e l d a n d B e a t h ( 9 ) s e l e n i u m i n soils of h i g h e r 82
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
8.
HINGSTON E T A L .
Adsorption
of
83
Selenite
r a i n f a l l areas is p r o b a b l y present m a i n l y as f e r r i c selenites.
Studies of
selenite w i l l s u p p l e m e n t those of other anions s u c h as p h o s p h a t e
and
sulfate a n d s h o u l d h e l p to m a k e it possible to f o r m u l a t e a g e n e r a l m e c h a n i s m for a d s o r p t i o n of anions b y s o i l colloids. Methods A m i c r o - c r y s t a l l i n e f o r m of synthetic goethite consisting of aggregates of n e e d l e - l i k e crystals w i t h a B . E . T . surface area of 32 m e t e r / g r a m w a s u s e d as a n adsorbent. T h e excess surface c h a r g e o n this goethite w a s m e a s u r e d as a f u n c t i o n of p H a n d i o n i c strength b y the p o t e n t i o m e t r i c m e t h o d d e s c r i b e d b y P a r k s a n d de B r u y n ( 8 ) except that N a C l w a s u s e d as the s u p p o r t i n g electrolyte i n p l a c e of K N 0 . T h e a m o u n t of a d s o r p t i o n of selenite was m e a s u r e d r a d i o m e t r i c a l l y b y c o u n t i n g t a g g e d a n d s t a n d a r d i z e d solutions. T h e effects of v a r y i n g p H , s u p p o r t i n g electrolyte c o n c e n t r a t i o n , r e a c t i o n t i m e a n d t e m p e r a t u r e w e r e d e t e r m i n e d a n d the r e v e r s i b i l i t y of the r e a c t i o n w a s e x a m i n e d b y isotopic exchange. 2
Downloaded by UNIV OF BATH on October 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch008
3
Results and
Discussion
Reversibility. T h e r e v e r s i b i l i t y of the a d s o r p t i o n r e a c t i o n was tested b y a d d i n g r a d i o a c t i v e selenite to a suspension after r e a c t i o n of the s o l i d a n d i n a c t i v e selenite. A d s o r p t i o n w a s c o m p l e t e i n one d a y , exchange
of
r a d i o a c t i v e selenite w i t h a d s o r b e d selenite took seven days to c o m e to equilibrium.
A l t h o u g h exchange w a s slower t h a n a d s o r p t i o n the
same
e q u i l i b r i u m v a l u e was r e a c h e d , therefore the r e a c t i o n is r e v e r s i b l e u n d e r these c o n d i t i o n s . Adsorption Isotherms. T h e d e p e n d e n c e of the a m o u n t of selenite a d s o r b e d o n p H a n d s o l u t i o n c o n c e n t r a t i o n of selenite is i l l u s t r a t e d b y the curves i n F i g u r e s 1 a n d 2. T h e s e s h o w t h a t the a m o u n t of selenite t a k e n u p b y goethite reaches a m a x i m u m v a l u e , r
0 ( P
H ) , at constant p H
w h i c h cannot be e x c e e d e d b y i n c r e a s i n g the s o l u t i o n c o n c e n t r a t i o n a n d that this m a x i m u m v a l u e varies w i t h p H . I n the p H r e g i o n s t u d i e d i o n size is u n l i k e l y to b e the o n l y factor l i m i t i n g a d s o r p t i o n b e c a u s e e v e n at l o w p H , w h e r e the m a x i m u m is greatest, the area of surface a v a i l a b l e to the i o n is a l w a y s greater t h a n the area i t w o u l d b e e x p e c t e d to o c c u p y (^20
A. /ion). 2
Isotherms c a l c u l a t e d for constant p H a m o u n t of selenite a d s o r b e d d e p e n d s
( F i g u r e 2)
show
that the
o n the e q u i l i b r i u m s o l u t i o n c o n
c e n t r a t i o n as represented b y the e q u a t i o n of the L a n g m u i r f o r m , r = r
0 ( p H )
- K ( S e ) / [ l + K (Se)] L
(1)
L
w h e r e r p ) is the m a x i m u m a d s o r p t i o n at the p a r t i c u l a r p H , ( S e ) is the c o n c e n t r a t i o n of selenite ions i n s o l u t i o n , a n d K is the L a n g m u i r constant. 0 (
H
L
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
84
ADSORPTION F R O M A Q U E O U S
T h e relationship between K
L
SOLUTION
a n d p H is s h o w n i n the g r a p h of l o g K
L
against p H ( F i g u r e 3 ) , w h i c h is l i n e a r w i t h a slope a p p r o a c h i n g u n i t y at h i g h p H a n d zero b e l o w p H 8—i.e., K
b e c o m e s constant w i t h decreas
L
ing p H . Excess S u r f a c e C h a r g e .
T h e r e a c t i o n at the goethite surface p r o
d u c i n g c h a r g e d sites b y a d s o r p t i o n of H
a n d O H " as p o t e n t i a l deter
+
m i n i n g ions c a n b e r e p r e s e n t e d as f o l l o w s ,
Downloaded by UNIV OF BATH on October 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch008
I
OH,
c
OH-M/
Fe
?=?
OH;
Fe
/ | \ OH
H
P o t e n t i o m e t r i c t i t r a t i o n of a n aqueous suspension of oxides i n the p r e s ence of v a r y i n g concentrations o f indifferent electrolyte has b e e n
used
successfully to d e t e r m i n e the zero p o i n t of charge ( z . p . c . ) a n d t h e v a r i a t i o n i n excess surface c h a r g e w i t h p H (1, surface c h a r g e
8).
T h e v a r i a t i o n i n excess
( r + - r H - ) w i t h p H a n d N a C l c o n c e n t r a t i o n is s h o w n H
0
for goethite i n F i g u r e 4. T h e excess surface c h a r g e i n the presence of s p e c i f i c a l l y
adsorbed
ions w a s f o u n d b y m e a s u r i n g the a m o u n t of selenite a d s o r b e d a n d t h e a m o u n t of h y d r o x y l d i s p l a c e d i n t o the s o l u t i o n .
T h e q u a n t i t y of O H "
d i s p l a c e d ( A ) w a s e s t i m a t e d for constant p H ( a h y p o t h e t i c a l s i t u a t i o n ) f r o m the curves for t i t r a t i o n of goethite, goethite p l u s selenite, a n d selenite alone b y the e q u a t i o n . ( G + Se) - G S e = A where G = and GSe =
t i t r a t i o n v a l u e for goethite, Se =
(2)
t i t r a t i o n v a l u e for selenite,
t i t r a t i o n v a l u e for goethite p l u s selenite, a l l expressed i n
/ x e q u i v . / g r a m of goethite. T h e excess surface c h a r g e c a n t h e n b e e s t i m a t e d f r o m , 8Se = 8 w h e r e 8Se =
(Se-)
+ A
a d s
charge i n the presence of selenite, 8 =
of selenite, a n d (Se~) ds = a
(3) charge i n t h e a b s e n c e
n e g a t i v e c h a r g e a d d e d b y selenite ions a l l o w
i n g for the p r o p o r t i o n of S e 0 " a n d H S e 0 " i n s o l u t i o n . 8Se w a s p l o t t e d 3
2
3
against p H i n F i g u r e 4 to i l l u s t r a t e the decrease i n z.p.c. a n d the v a r i a t i o n i n charge w i t h i o n i c s t r e n g t h . C o m p a r i n g 8 w i t h 8
Se
i t c a n b e seen that
a d s o r p t i o n of selenite a l w a y s results i n a decrease i n the net i.e., a n increase i n the net n e g a t i v e charge.
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
charge—
HINGSTON
ET
AL.
Adsorption
of
85
Selenite
Downloaded by UNIV OF BATH on October 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch008
8.
A M o d e l f o r the M e c h a n i s m o f A d s o r p t i o n . LOPE.
T h e curve relating
r
0 ( P
H),
(1)
A D S O R P T I O N
E N V E
the v a l u e for m a x i m u m a d s o r p t i o n at a
p a r t i c u l a r p H , a n d p H is t e r m e d the " a d s o r p t i o n e n v e l o p e / ' Studies of specific a d s o r p t i o n of a series of anions to b e discussed i n d e t a i l elsewhere ( 5 ) , h a v e s h o w n that the m a x i m u m specific a d s o r p t i o n at a n y p H ,
r
0(1)H)
,
is r e l a t e d to the p K
o n the a d s o r b i n g species.
D
of the a n i o n a c i d a n d the c h a r g e
F r o m these studies essential r e q u i r e m e n t s for
specific a d s o r p t i o n of anions, or exchange of specifically a d s o r b e d ions, seem to b e as f o l l o w s : (a)
A p r o t o n s h o u l d b e a v a i l a b l e either f r o m a net excess o n the
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
86
ADSORPTION F R O M
AQUEOUS SOLUTION
surface o r f r o m a p r o t o n c o n t a i n i n g species i n e q u i l i b r i u m w i t h the a n i o n i n solution. (b)
A n i o n i c species w i t h a t e n d e n c y t o a c q u i r e a p r o t o n s h o u l d b e
present ( a n i o n s o f w e a k acids h a v e a t e n d e n c y to a c q u i r e a p r o t o n a t p H values near the p K
D
of the a c i d ) .
( c ) Specific a d s o r p t i o n o f anions c a n o n l y o c c u r w i t h a n increase i n the net n e g a t i v e charge o n the surface. A t t e m p t s to desorb selenite or a n y other specifically a d s o r b e d a n i o n (6,7)
b y w a s h i n g the s o l i d w i t h N a C l solutions of the same i o n i c s t r e n g t h
a n d p H are f r e q u e n t l y not successful. I t has b e e n f o u n d that l e a c h i n g at Downloaded by UNIV OF BATH on October 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch008
constant p H restores the surface charge of a n oxide t o the v a l u e i t h a d at that p H before specific a d s o r p t i o n o c c u r r e d .
I n t h e case o f selenite
a d s o r b e d o n goethite, this occurs t h r o u g h d e s o r p t i o n of O H " r a t h e r t h a n selenite. T h e selenite r e m a i n i n g w h e n the charge has b e e n restored c a n only be desorbed
b y i n c r e a s i n g t h e negative charge t h r o u g h
a d s o r p t i o n of another a n i o n .
1
2
3
4
5
6
7
SOLUTION CONCENTRATION ( M S e / l Figure 2.
Langmuir
8 x10 ) 4
isotherms
Experimental values shown by symbols and full lines calculated for best fit. pH values shown on curves
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
specific
Downloaded by UNIV OF BATH on October 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch008
8.
HINGSTON
E T
A L .
Figure 3.
Adsorption
of
87
Selenite
Plot of log K against pH: O—0.1M A — 1 .OM NaCl
NaCl,
L
Curve for ideal model O.IM
NaCl
A t p H values h i g h e r t h a n the z.p.c. m a x i m u m a d s o r p t i o n is deter m i n e d b y the p r o p o r t i o n of the ions i n s o l u t i o n t h a t are a b l e to d o n a t e a n d a c c e p t protons.
T h e species S e 0 ~ c a n o n l y a c c e p t a p r o t o n t h e r e 3
2
fore i t cannot b e a d s o r b e d i n the absence of H S e 0 " . 3
F o r selenite i n
s o l u t i o n , the p r o p o r t i o n of S e 0 " species is a, w h e r e a is the degree of 3
2
d i s s o c i a t i o n of the species H S e 0 " , a n d the p r o p o r t i o n of
H S e 0 " is
3
( 1 — « ) . T h e p r o b a b i l i t y of selecting S e 0
3
2
3
' f r o m a m o n g the t o t a l sele
n i t e species is o a n d the p r o b a b i l i t y of finding H S e 0 " is ( 1 — « ) t h e r e 3
fore the p r o b a b i l i t y of finding S e 0 " a n d H S e 0 " together is a ( l — a ) . 3
2
3
S i n c e this event c a n result i n a d s o r p t i o n of b o t h ions the a m o u n t selenite a d s o r b e d s h o u l d be p r o p o r t i o n a l to V « ( l — ) « =
K /(H D
+
+
K ) , where K D
selenious a c i d , shows that r p 0 (
H )
D
is the s e c o n d d i s s o c i a t i o n constant for is p r o p o r t i o n a l to V K
D
H
T h e latter f u n c t i o n reaches a m a x i m u m v a l u e at p H = acid p H than p K
D
of
s u b s t i t u t i n g for
a
+
/ ( H
+
+
K ) . D
2
p K . A t more D
the m a x i m u m a d s o r p t i o n is n o l o n g e r d e p e n d e n t
on
the p r o p o r t i o n s
of the species because H S e 0 " c a n b o t h a c c e p t a n d
donate protons.
T h e m a x i m u m a d s o r p t i o n is t h e n o n l y l i m i t e d b y the
3
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
88
ADSORPTION F R O M
AQUEOUS
SOLUTION
1-0M NaCl
130'
X
NO (MMNaCl
%
9 |OqiMNaCI \ 0
70 \
Downloaded by UNIV OF BATH on October 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch008
50-
\
* \
K)M NaCl \
Figure 4. absent
\
\
v
Excess surface charge and pH, selenite , selenite present , NaCl concentration indicated on curves
c h a r g e i n d u c e d o n the surface b y a d s o r p t i o n . D e v i a t i o n f r o m t h i s m o d e l c o u l d b e e x p e c t e d to arise f r o m interactions b e t w e e n ions o n the surface a n d b e t w e e n ions a n d the surface. Interactions of this k i n d w o u l d p r o b a b l y b e electrostatic a n d w o u l d result i n regions of the e n v e l o p e ( F i g u r e 1) h a v i n g a T e m k i n f o r m a n d the s p r e a d of the i n i t i a l rise ( h i g h p H ) o v e r a greater range of p H t h a n p r e d i c t e d b y the s i m p l e m o d e l . T H E
E X C H A N G E
F o r a d s o r p t i o n at constant p H the a m o u n t
I S O T H E R M .
of selenite o n the surface is r e l a t e d to the s o l u t i o n c o n c e n t r a t i o n b y a n e q u a t i o n of the L a n g m u i r t y p e ( E q u a t i o n 1 ) . I f S e 0 " is the species d e t e r m i n i n g a d s o r p t i o n a n d the r e a c t i o n 3
2
m e c h a n i s m i n v o l v e s exchange w i t h h y d r o x y l ions i t c a n b e s h o w n that K where K
2
=
K' /K , 2
w
= K K H /(H
L
K'
2
2
=
D
+
+
+ K ) D
the exchange constant for selenite
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
(4) and
HINGSTON E T A L .
8.
hydroxyl, and K pK
D
w
=
89
Adsorption of Selenite
the dissociation constant for water. A curve using
= 9.2 and the above relationship (Equation 4) is in good agreement
with experiment (Figure 4). Although p K — 9.2 is somewhat higher than p K
for selenious acid in 0.1M NaCl—i.e., p K =
2
8.2—it could be
2
correct for the p K in the vicinity of the surface where an excess negative charge must be taken into account. Substituting into Equation 1 gives,
•^/[> 5£S>>]
+
APPROXIMATE
Downloaded by UNIV OF BATH on October 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch008
(3)
THERMODYNAMIC
QUANTITIES.
5
Thermodynamic
quantities, not taking into account activity coefficients, can be calculated from the experimental data at constant p H for the exchange reaction, ( O H " ) . + SeO 2- ^± ( S e 0 " ) + O H " a
3
The enthalpy of exchange AH
1/2 r
(6)
g
referred to a standard state where
1/2
the surface concentration r =
2
0 ( p H
) was found using the van't Hoff
equation on results from isotherms obtained at 5 ° and 2 0 ° C . ments on isotherms for p H 9 to p H 10.5 gave A H mole.
J / 2
Measure-
of 4.5 ± 0.5 K c a l . /
Values for the partial molar free energy of exchange,
AG*i
/ 2
(referred to standard state where r = 1/2 r p ) and a hypothetical ideal 0 (
H
molar solution of selenite and hydroxyl, less a configurational entropy term) can be calcuated from the value of K ' obtained from Equation 4. 2
Since K ' — 1.1 ± 0.5 and A G * 2
1 / 2
_ = - R T In K ' ,
AG*
2
1 / 2
— 0.0 ± 0.2 5
7
Kcal./mole. A n integral entropy ( A S i ) of 16 ± 1 e./n. was then obtained / 2
using the relationships, AS* and A S 1 / 2 =
AS*I
/
2
1 / 2
= AH
1
/
2
-
AG*
1 / 2
/T
+ 2 R In 2 (4). If the reaction involves a change
in the amount of water bound at the surface the equation giving entropy changes for the reactions is as follows, S ( S e 0 2 - ) + S(OH-) + (x - y ) S ( H 0 ) = S(Se0 ") + S ( O H ) + A S 3
s
2
B
3
2
8
where S ( i ) = entropy of species " i " in solution and S ( i ) = g
species *i on the surface. Substituting values, S ( O H " ) = S(Se0 ") = 3
2
1 / 2
entropy of
—10 e./x. and
—8 e.u. given by Cobble (2) and the experimental value
of A S 2 — 16 ± 1 e.u. it follows that, V
S ( S e O " ) . - S ( O H - ) . + (x - y ) S ( H 0 ) = 18 ± 1 e.u. s
2
2
Further, if the difference in entropy between selenite and hydroxyl is the same on the surface as it is in solution, the value for the entropy of water (16.7 e.u.) indicates that (x — y ) =
1—i.e., a molecule of water
is displaced from the surface during exchange of S e 0 " for O H " . T h e 3
2
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
90
ADSORPTION
v a l u e for K'
2
(1.1
±
0.5)
F R O M
AQUEOUS
SOLUTION
suggests that there is l i t t l e difference i n
s e l e c t i v i t y coefficients for selenite a n d h y d r o x y l o n the goethite surface. Literature (1) (2) (3) (4) (5)
Downloaded by UNIV OF BATH on October 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch008
(6) (7) (8) (9)
Cited
Atkinson, R. J., Posner, A. M., Quirk, J . P . , J. Phys. Chem. 71, 550 (1967). Cobble, J . W., J. Chem. Phys. 2 1 , 1443 (1953). Gardiner, M. R., J. Dept. Agr. Western Australia, 4th series, 4, 632 (1963). Heath, N. S., Culver, R. V., Trans. Faraday Soc. 51, 1575 (1955). Hingston, F. J., Atkinson, R. J., Posner, A . M., Quirk, J . P . , Nature 215, 1459 (1967). Kafkafi, U., Posner, A . M., Quirk, J. P., Soil Sci. Soc. Amer. Proc. 3 1 , 348 (1967). M u l j a d i , D . , Posner, A. M., Quirk, J . P . , J. Soil Sci. 17, 212 (1966). Parks, C . A., de B r u y n , P. L., J. Phys. Chem. 66, 967 (1962). Rosenfeld, I., Beath, O. A . , "Selenium," Academic Press, N e w York, 1964.
RECEIVED
October 26, 1967.
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.