6 The Adsorption of Aqueous Co(II) at the
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 13, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch006
Silica-Water Interface T. W .
HEALY
R. O. J A M E S , and R. C O O P E R
Department of Physical Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia
The
adsorption
been studied Co(II)
of Co(II)
concentration.
electrophoretic
The
mobility
the free aquo Co(II) participation
of surface
at the quartz
evidence
of mutual
tated cobalt
silica-water
interface
of pH, ionic strength, adsorption
data,
and coagulation
ion is not specifically
Co(OH)
2
at the
as a function
hydroxyls. surface
coagulation
has
and
total
together
with
data suggest adsorbed
Evidence
for
is presented
polymeric
together
of the quartz
that
without
and
with precipi-
hydroxide.
' T ' h e a d s o r p t i o n of m e t a l ions f r o m aqueous solutions is a p h e n o m e n o n of i m m e d i a t e interest to w o r k e r s i n m a n y diverse d i s c i p l i n e s .
The
i n c o r p o r a t i o n of metals i n t o g e o l o g i c a l sediments, r e m o v a l of m e t a l ions f r o m i n d u s t r i a l a n d c i v i c effluent, interference of trace m e t a l ions i n a n a l y t i c a l a n d e l e c t r o a n a l y t i c a l c h e m i s t r y , ore
flotation,
metallurgical
l e a c h i n g processes, a n d the s t a b i l i t y of c e r a m i c slips are a l l processes w h i c h are c o n t r o l l e d to a large extent b y i n t e r a c t i o n of m e t a l ions w i t h s o l i d - l i q u i d interfaces. R e c e n t studies i n d i c a t e that the a d s o r p t i o n of m e t a l ions is c o n t r o l l e d o n l y i n p a r t b y the c o n c e n t r a t i o n of t h e free ( a q u o ) m e t a l i o n ; of c o n s i d e r a b l e i m p o r t a n c e is the a b i l i t y of h y d r o x o a n d other c o m p l e x ions a n d m o l e c u l e s to adsorb. T h e r e h a v e b e e n t w o a p p a r e n t l y d i v e r g e n t approaches to d e s c r i b e the r o l e p l a y e d b y h y d r o x o m e t a l complexes i n a d s o r p t i o n at solid-aqueous electrolyte interfaces.
M a t i j e v i c et al.
h a v e p r o p o s e d t h a t specific h y d r o l y s i s products—e.g., A l ( O H ) o 8
2
4 +
(9)
i n the
A 1 ( I I I ) - H 0 system, are r e s p o n s i b l e for extensive c o a g u l a t i o n a n d charge 2
reversal of h y d r o p h o b i c c o l l o i d s . M a t i j e v i c that the free (aquo)
It has also b e e n
demonstrated
by
species of t r a n s i t i o n a n d other m e t a l ions 62
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
6.
H E A L Y
E T
A L .
Adsorption
of Aqueous
Co(II)
63
is f r e q u e n t l y u n a b l e to reverse the c h a r g e of a sol whereas the h y d r o l y s i s p r o d u c t s , often of l o w e r charge p e r i o n , c a n reverse the m o b i l i t y of A g l sols ( i n statu nascendi)
electrophoretic
a n d r u b b e r latex sols ( J O ) .
A l t e r n a t i v e l y , several w o r k e r s h a v e s h o w n that not o n l y is t h e soluble, z e r o - c h a r g e d h y d r o l y s i s p r o d u c t c o n s i d e r a b l y m o r e surface active t h a n the free ( a q u o ) i o n b u t also a p o l y m e r i c c h a r g e d or u n c h a r g e d h y d r o l y sis p r o d u c t m a y b e f o r m e d at the s o l i d - l i q u i d interface at c o n d i t i o n s w e l l Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 13, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch006
b e l o w s a t u r a t i o n or p r e c i p i t a t i o n i n s o l u t i o n . H a l l ( 5 )
has
considered
the c o a g u l a t i o n of k a o l i n i t e b y a l u m i n u m ( I I I ) a n d c o n c l u d e d that sur face p r e c i p i t a t e s r e l a t e d to h y d r a t e d a l u m i n u m h y d r o x i d e c o n t r o l the adsorption-coagulation behavior.
S i m i l a r l y H e a l y a n d Jellett ( 6 )
p o s t u l a t e d that the p o l y m e r i c , soluble, u n c h a r g e d Z n ( O H ) be n u c l e a t e d c a t a l y t i c a l l y at Z n O - H 0 interfaces a n d w i l l 2
2
have
polymer can flocculate
the
c o l l o i d a l Z n O via a b r i d g i n g m e c h a n i s m . These
two
mechanisms,
t h e one
e m p h a s i z i n g the
adsorption
of
specific often p o l y n u c l e a r h y d r o l y s i s p r o d u c t s , the other e m p h a s i z i n g the role of p o l y m e r i c species, are c l e a r l y not m u t u a l l y e x c l u s i v e ; a n earlier s t u d y o n t h o r i u m ( I V ) a d s o r p t i o n suggested a c o m b i n e d m e c h a n i s m T h e present s t u d y is o n a system C o ( I I ) - H 0 - S i 0 2
2
(I).
for w h i c h i t w a s
e x p e c t e d that there w o u l d be m i n i m a l a d s o r p t i o n of p o l y n u c l e a r species of the m e t a l i o n b u t the p o s s i b i l i t y of surface catalysis to y i e l d surface p o l y m e r s of the h y d r o x i d e . T h e oxide, a - q u a r t z , w a s selected as the substrate for the present a n d c o n t i n u i n g studies of m e t a l i o n a d s o r p t i o n .
It is of c o n s i d e r a b l e i m p o r
tance i n several p r a c t i c a l situations—e.g.,
water purification and
flotation—and
ore
has the i m p o r t a n t p r o p e r t y that it is n e g a t i v e l y c h a r g e d
over a w i d e p H range since its zero-point-of-charge
(z.p.c.) is circa p H 2.
Experimental T h e quartz dispersion was prepared by milling pure, acid leached, m i l k y «-quartz specimens f r o m W a t t l e G u l l y , V i c t o r i a , A u s t r a l i a , i n a s y n t h e t i c p o r c e l a i n m i l l . T h e b a l l m i l l p r o d u c t was f u r t h e r c l e a n e d b y repeated washing-centrifugation w i t h conductivity water. E.S.R. spectra of the as d r i e d o x i d e p o w d e r itself a n d the d r i e d p o w d e r w h e n y - i r r a d i a t e d i n a C o source, s h o w e d there w e r e n o p a r a m a g n e t i c i m p u r i t i e s . T h i s t e c h n i q u e of analysis i n w h i c h p a r a m a g n e t i c centers are generated around any multi-electron contaminant atom w i l l be reported i n detail shortly; i t has p r o v e d u s e f u l i n the d e t e c t i o n of t r a n s i t i o n m e t a l i o n c o n taminants at the sub p . p . m . l e v e l o n oxide surfaces. T h e q u a r t z p o w d e r w a s f o u n d to have a B . E . T . surface area, b a s e d o n k r y p t o n a d s o r p t i o n , of 5.4 m e t e r / g r a m . 6 0
2
T h e m e t a l ions w e r e generated f r o m t h e i r p e r c h l o r a t e salts w h i c h w e r e either p r e p a r e d f r o m A . R . starting materials or p u r c h a s e d as A . R . chemicals. Solutions w e r e freshly p r e p a r e d for each experiment. A c i d -
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
64
ADSORPTION F R O M
AQUEOUS SOLUTION
base p H adjustment w a s m a d e w i t h A . R . p e r c h l o r i c a c i d a n d A . R . potas s i u m h y d r o x i d e , respectively. C o n d u c t i v i t y w a t e r w a s p r e p a r e d b y d o u b l e d i s t i l l a t i o n a n d d u r i n g t h e course of t h e i n v e s t i g a t i o n h a d a c o n d u c t a n c e of 0.9 ± 0.1 m i c r o m h o s c m . " . W a t e r outside this u p p e r l i m i t w a s r e jected. C o b a l t ( I I ) h y d r o x i d e , p r e c i p i t a t e d f r o m p e r c h l o r a t e s o l u t i o n w i t h K O H , was washed repeatedly w i t h conductivity water. W h i l e m e t a l ions m a y b e s a i d to adsorb s t r o n g l y at the o x i d e - w a t e r interface, a d s o r p t i o n studies are h a m p e r e d b y t h e n e e d to d e t e r m i n e m e t a l ions at t h e s u b m i c r o m o l a r l e v e l . A g a i n the s i m i l a r i t y b e t w e e n s i l i c a w a t e r a n d glass-water interfaces means that t h e m e t a l i o n species w i l l a d s o r b o n a l l glass surfaces. F o r d e t e r m i n a t i o n of t h e a d s o r p t i o n isotherms of C o ( I I ) , r a d i o a c t i v e tracer techniques w e r e e m p l o y e d u s i n g t h e C o isotope. F o r this y - e m i t t i n g isotope l i q u i d G e i g e r - M u l l e r tubes w e r e f o u n d to b e satisfactory. A t a l l times " b l a n k " runs w e r e c o n d u c t e d to correct f o r a d s o r p t i o n o n t h e glass vessels. E q u i l i b r a t i o n of t h e s i l i c a - w a t e r suspension w i t h the m e t a l i o n w a s c o n d u c t e d i n a t h e r m o s t a t t e d vessel s i m i l a r to that d e s c r i b e d p r e v i o u s l y ( 1 5 ) . H o l e s i n t h e loose fitting l i d w e r e p r o v i d e d f o r p H electrodes,
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 13, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch006
2
6 0
I
2
3
u
pH
4
5
6
Figure 1. The coagulation and electrophoretic mobility (microns sec.' /volt cm.' ) behavior of quartz in electrolyte solutions as a function of pH 1
1
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
6.
HEALY
Adsorption
ET AL.
of Aqueous
65
Co(II)
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 13, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch006
n i t r o g e n gas, a n d for c a p i l l a r y p l a s t i c t u b i n g for s a m p l e r e m o v a l a n d a c i d / b a s e a d d i t i o n f r o m a n a u t o m a t i c p H - s t a t f a c i l i t y . It w a s f o u n d necessary to a l l o w f r o m 3 to 12 hours for e q u i l i b r i u m to be established. T h i s k i n e t i c effect is c u r r e n t l y b e i n g i n v e s t i g a t e d i n m o r e d e t a i l .
i 0
i 2
i
i
i
4
i 6
i
i 8
i
i
i
10
i 12
PH
Figure 2.
Percent adsorption on quartz of cobalt (II) as a function of pH for 1.3 X 10~*M total Co(ClO ) Jf 2
E l e c t r o p h o r e t i c m o b i l i t i e s of the q u a r t z particles i n c o b a l t ( I I ) p e r chlorate solutions w e r e d e t e r m i n e d w i t h a c a l i b r a t e d Z e t a - M e t e r a p p a ratus. C o a g u l a t i o n s e d i m e n t a t i o n b e h a v i o r w a s f o l l o w e d u s i n g a stopflow t y p e apparatus. T h e d i s p e r s i o n is p u m p e d i n a closed l o o p f r o m a n e q u i l i b r a t i o n vessel t h r o u g h a n o p t i c a l c e l l l o c a t e d i n the sample c o m p a r t m e n t of a r e c o r d i n g spectrophotometer. F r o m the o p t i c a l d e n s i t y t i m e c u r v e o b t a i n e d f r o m the t i m e the p u m p is s w i t c h e d off, the t u r b i d i t y i n d e x ( i n a r b i t r a r y u n i t s ) is o b t a i n e d as the slope of the c u r v e at z e r o time.
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
66
ADSORPTION F R O M
AQUEOUS SOLUTION
Results T h e g e n e r a l surface properties of q u a r t z are s h o w n i n F i g u r e 1 i n w h i c h the electrophoretic
m o b i l i t y a n d t u r b i d i t y of q u a r t z i n s i m p l e
electrolytes is p l o t t e d as a f u n c t i o n of p H . T h e d o t t e d lines s h o w n i n F i g u r e 1 represent a r e g i o n of i o n i c strength for w h i c h inaccuracies i n m o b i l i t y d e t e r m i n a t i o n p r e v e n t the a c c u m u l a t i o n of m e a n i n g f u l
data.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 13, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch006
A l t h o u g h the a p p r o a c h to the z.p.c. of q u a r t z is o b s c u r e d b y this effect, the t u r b i d i t y d a t a c o n f i r m that the z.p.c. is at p H 1.8-2.0 i n agreement w i t h other w o r k e r s
(13).
T h e a d s o r p t i o n of c o b a l t ( I I )
at 1.3 X
10" M C o ( C 1 0 ) 4
4
2
is s h o w n
i n F i g u r e 2. i n the p H range f r o m 1.7 to 12.0. T h i s f o r m of p l o t , percent a d s o r p t i o n vs. p H or c o n c e n t r a t i o n w h i l e u s e f u l for d e m o n s t r a t i n g the d r a m a t i c increase i n a d s o r p t i o n over a n a r r o w p H o r c o n c e n t r a t i o n range, is h o w e v e r of l i m i t e d t h e o r e t i c a l v a l u e . I n F i g u r e 3 the c o b a l t ( I I )
ad
s o r p t i o n d a t a are therefore r e d r a w n as l o g ( a d s o r p t i o n d e n s i t y ) vs. p H . T h e v e r t i c a l d a s h e d lines i n F i g u r e s 2 a n d 3 represent the m i n i m u m p H for p r e c i p i t a t i o n of 1.3 X
10" M C o (II) 4
i n the absence of
adsorption.
T h e p l a t e a u of F i g u r e 3 therefore represents a d s o r b e d a n d p r e c i p i t a t e d cobalt. I
Figure 3.
1
1
1
1
1
1
Adsorption isotherm of cobalt (II) on quartz as a of pH and at 1.3 X i O ' M total Co(ClO )
function
lt 2
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 13, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch006
6.
H E A L Y
I0"
E T A L .
Adsorption
10"*
7
EQUILIBRIUM
Figure
4.
Complete
of Aqueous
io'
I0"
8
CONCENTRATION
67
Co(II)
OF
I0~
4
8
Co(H), M / L I T E R
adsorption isotherm of Co(II) on quartz at pH 6.0 and 25°C.
T h e adsorption of C o ( I I )
at p H 6.0 is s h o w n i n F i g u r e 4, a g a i n
p l o t t e d o n a log-log scale. S i n c e c o b a l t ( I I ) h y d r o x i d e does not p r e c i p i tate at p H 6 at less t h a n 1 M t o t a l cobalt, the p l a t e a u a t t a i n e d represents saturation a d s o r p t i o n w i t h o u t interference b y p r e c i p i t a t i o n . T h e v a r i a t i o n w i t h p H o f t h e e l e c t r o p h o r e t i c m o b i l i t y of q u a r t z i n 1 0 " M c o b a l t ( I I ) p e r c h l o r a t e a n d a c o m p a r i s o n o f the m o b i l i t y o f q u a r t z 4
i n 1 0 " M K C 1 is s h o w n i n F i g u r e 5. I n c l u d e d i n F i g u r e 5 is the v a r i a t i o n 4
w i t h p H of electrophoretic m o b i l i t y o f p r e c i p i t a t e d c o b a l t ( I I ) h y d r o x i d e . It c a n b e seen that t h e s i l i c a surface w i t h a d s o r b e d
C o (II)
acts as
c o b a l t ( I I ) h y d r o x i d e f o r p H values a b o v e 8.0. T h e t u r b i d i t y vs. p H b e h a v i o r at 1 0 " M C o ( 0 0 4 ) 2 4
is s h o w n i n F i g u r e 6. T h e t w o curves
represent t h e b e h a v i o r f o r i n c r e a s i n g a n d decreasing p H a n d w i t h i n e x p e r i m e n t a l error the curves superimpose. Discussion T h e most g e n e r a l feature o f the a d s o r p t i o n b e h a v i o r o f m e t a l ions at solid-aqueous s o l u t i o n interfaces is the a b r u p t rise i n a d s o r p t i o n over a n a r r o w p H range. T h i s has b e e n i l l u s t r a t e d , for e x a m p l e , for manganese a d s o r p t i o n o n glass (2), c o b a l t o n h y d r o u s f e r r i c oxide ( 8 ) , manganese o n h y d r o u s manganese
oxide
(12), p r o t a c t i n i u m o n glass
(14), a n d
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
68
ADSORPTION F R O M
AQUEOUS SOLUTION
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 13, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch006
CO o o h1x1 o X CL
o
h
Figure 5. Electrophoretic mobility (microns sec.' / volt cm.' ) of Si0 in different electrolyte solutions together with the electrophoretic mobility of cobalt (II) hydroxide as a function of pH 1
1
2
— A — SiO 10-*M Co(II) Co(OH),, 10-''M KCl ti
t h o r i u m o n silver i o d i d e (11).
If w e c o m p a r e the p H range at w h i c h
i n c r e a s e d a d s o r p t i o n occurs w i t h the properties of the s o l u t i o n i n the same p H range there is often a s t r i k i n g p a r a l l e l o b s e r v e d . M a t i j e v i c et al.
F o r example,
h a v e s h o w n that t h e increase i n a d s o r p t i o n of
(11)
t h o r i u m occurs over the same p H r a n g e w h e r e the r a t i o [ T h ( O H )
3 +
]/
[ T h ( N O ) ] also increases a b r u p t l y . H
4
W e c a n g e n e r a l i z e b y n o t i n g that there w i l l be i n c r e a s e d a d s o r p t i o n at the p * K i of the a q u o complex—i.e., * K M(H 0) 2
6
n +
X
for
4- H 0 ?± M ( H 0 ) ( O H ) " " 2
2
5
(
1 ) +
+ H.O
(1)
+
T h u s , for t h o r i u m ( I V ) t h e a d s o r p t i o n increase occurs at p H 3.82
(13).
H o w e v e r , for C o ( I I ) w i t h a p * K i v a l u e of 9.8, the a d s o r p t i o n increase does not c o r r e s p o n d to p * K i b u t is d i s p l a c e d to a l o w e r p H v a l u e . C o m p a r i s o n of F i g u r e s 2 a n d 5 shows that at the p H range 6.5 to 7.5 w h e r e i n c r e a s e d a d s o r p t i o n occurs, simultaneous r e v e r s a l of c h a r g e a n d e q u i v a l e n t c o a g u l a t i o n are b o t h observed.
T h i s suggests
that strong
a d s o r p t i o n of a c a t i o n i c c o b a l t ( I I ) species is o c c u r r i n g . T h e p r i n c i p a l
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
6.
H E A L Y
E T
Adsorption
A L .
of Aqueous
69
Co(II)
c o b a l t ( I I ) s o l u t i o n species r e p o r t e d i n the l i t e r a t u r e ( 3 ) are represented i n F i g u r e 7 for the f o l l o w i n g self-consistent set of s t a b i l i t y constants Co(OH) ^Co 2
2 +
+ 20H-
log
Co
2 +
+ OH"^ CoOH
Co
2 +
+ H 0 5± C o O H + H
log K
+
+
2
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 13, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch006
Co(OH) Here, C o ( O H )
2
2
1
=
-14.8
(2)
= 4.2
(3)
-9.8
(4)
> log K =
-6.40
(5)
=
-5.10
(6)
X
2
+ OH"^
0
log *K =
+
Co(OH) ^±Co(OH) aq. 2
K =
S 2
C o ( O H ) - log K 3
B 8
represents the s o l i d h y d r o x i d e . T h e s o l u t i o n d a t a s h o w
that at p H values of 7.5 a n d 6.5 the d o m i n a n t c o b a l t ( I I ) species is t h e free ( a q u o ) i o n b y factors of 100 a n d 1000 respectively.
It is therefore
h i g h l y u n l i k e l y that the c o a g u l a t i o n at p H 6.5-7.5 a n d 1 0 " M C o ( I I ) 4
the r e v e r s a l of charge c a n b e c a u s e d b y the free C o O H
+
species.
and
If it is
caused b y p o l y n u c l e a r c h a r g e d species t h e n the l o g - l i n e a r r e l a t i o n s h i p ( 9 ) b e t w e e n the c r i t i c a l c o a g u l a t i o n c o n c e n t r a t i o n a n d the valence of the c o a g u l a t i n g i o n w o u l d r e q u i r e a p o l y n u c l e a r species to h a v e a charge of + 5 or + 6 .
S u c h a species has not b e e n i d e n t i f i e d . ( I t is of interest to
note t h a t i f this species d i d exist i t w o u l d have to b e a c o m p a c t
5
6
7
8 pH
9
10
Figure 6. Coagulation of silica in aqueous 10~*M Co(II) solution as a function of pH. Increase in the turbidity index indicates an increase in dispersion
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
ion,
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 13, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch006
70
ADSORPTION F R O M
O
2.
4
C P
H
8
10
AQUEOUS SOLUTION
12.