14 Adsorption of Dyes and Their Surface Spectra
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
A . H . H E R Z , R. P.
DANNER,
and G . A . J A N U S O N I S
Research Laboratories, Eastman Kodak Company, Rochester, N e w York, 14650
The adsorption halide,
silver
by changes
of dyes and particularly or mica
substrates
in the dye
spectra.
Depending
these changes have been quantitatively reflectance
measurements
Munk relation centrations surface
areas and average
independently
Langmuir energies
adsorption of
adsorbed
and
by
Kubelka-
Surface
generally
measurements
coefficients,
system,
either
of the
dimensions
These values
adsorption,
silver
con-
of the dyes as well
particle
determined
on the
spectroscopy.
coverages
at
accompanied
evaluated
application
or by transmission
strates were obtained. with
with
and saturation
of cyanines
is generally
apparent
probable
as
of the
sub-
agreed
well
and
yielded
standard
orientations
free of
the
dyes.
T t is the p u r p o s e of this p a p e r to describe m e t h o d s for d e t e r m i n i n g a n d A
i n t e r p r e t i n g d y e spectra i n aqueous dispersions of s i l v e r h a l i d e s a n d
other substrates. S u c h spectra c a n b e u t i l i z e d for the d i r e c t m e a s u r e m e n t of surface concentrations of dyes f r o m w h i c h , i n t u r n , the surface area of the substrate c a n be d e r i v e d .
T h e techniques i n v o l v e d are not l i m i t e d
to a specific d y e class b u t w i l l b e i l l u s t r a t e d i n this p a p e r b y the b e h a v i o r of c y a n i n e dyes. T h e k n o w n factors w h i c h influence the s o l u t i o n spectra of cyanines h a v e b e e n r e c e n t l y r e v i e w e d (14,
46, 73).
It w i l l be sufficient to s u m
m a r i z e here some of the c o n c e n t r a t i o n - d e p e n d e n t
spectral properties for
the specific case of l , l ' - d i e t h y l - 2 , 2 ' - c y a n i n e ; this c y a n i n e w a s e m p l o y e d i n m a n y of the present experiments. I n a l c o h o l as i n d i l u t e w a t e r solutions this d y e , w h i c h w i l l b e r e f e r r e d to as P s e u d o c y a n i n e , a l t h o u g h i t has also b e e n c a l l e d P s e u d o i s o c y a n i n e , appears to exist o n l y i n a n e x t e n d e d c o n figuration
a n d has its m a x i m u m a b s o r p t i o n near 523 n . m . T h i s t r a n s i t i o n 173
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
174
ADSORPTION F R O M
AQUEOUS SOLUTION
is associated w i t h i s o l a t e d molecules a n d is r e f e r r e d to as the m o l e c u l a r or M - b a n d a n d is a c c o m p a n i e d b y a s u b s i d i a r y v i b r a t i o n a l s h o u l d e r near 490 n . m . O n i n c r e a s i n g the d y e c o n c e n t r a t i o n b e y o n d about 5 X
10^ M, 5
the i n t e n s i t y of the m o l e c u l a r b a n d decreases a n d a n e w m a x i m u m a p pears near 480 n . m . ; this b a n d is associated w i t h f o r m a t i o n of a d i m e r a n d is a c c o r d i n g l y c a l l e d the D - b a n d . A f u r t h e r increase i n d y e c o n c e n t r a t i o n causes b r o a d e n i n g of the d i m e r b a n d a n d e n h a n c e d
absorption
i n the shorter or h y p s o c h r o m i c w a v e l e n g t h r e g i o n . W i t h some cyanines,
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
a l t h o u g h not w i t h P s e u d o c y a n i n e , this shift to h y p s o c h r o m i c
absorption
is a c c o m p a n i e d b y f o r m a t i o n of definable m a x i m a or H - b a n d s . T h e s e are b e l i e v e d to arise f r o m the f o r m a t i o n of p o l y m e r s o t h e r t h a n the d i m e r . T h e s e c o n c e n t r a t i o n - d e p e n d e n t s p e c t r a l changes m a y also b e b r o u g h t a b o u t b y i n e r t electrolytes, surfactants, or some o r g a n i c solvents
and
h a v e b e e n r e l a t e d to d y e - d y e interactions. A n alternate v i e w (42, 43,
44),
w h i c h a s c r i b e d these m e t a c h r o m a t i c changes to d y e - c o u n t e r i o n i n t e r a c t i o n , has b e e n r e f u t e d o n the basis of c o u n t e r i o n - a c t i v i t y d e t e r m i n a t i o n s (51).
C o n v e r s e l y , there seems to b e n o disagreement a b o u t the p o l y m e r i c
association that occurs i n aqueous P s e u d o c y a n i n e at concentrations a b o v e 5 X 10" M ( 2 5 ° C ) . 3
I n s u c h r e l a t i v e l y c o n c e n t r a t e d solutions, a n a b n o r
m a l increase of viscosity is observed, together w i t h the a p p e a r a n c e of a n a r r o w b a n d of h i g h a b s o r p t i v i t y w h i c h is l o c a t e d at w a v e l e n g t h s longer t h a n the m o l e c u l a r b a n d , at a p p r o x i m a t e l y 570 n . m . T h i s n e w a n d
fluo
rescent t r a n s i t i o n , r e f e r r e d to as the / - b a n d , w a s first i d e n t i f i e d b y J e l l e y (26, 27)
a n d b y S c h e i b e (56, 57, 58, 59)
a n d is t h o u g h t to b e c a u s e d b y
aggregates of stacked c y a n i n e molecules h e l d b y v a n der W a a l s forces i n a c l o s e - p a c k e d a n d p o s s i b l y h e l i c a l c o n f i g u r a t i o n (39, 40, 53).
Absorp
t i o n w i t h i n this b a n d is c o n s i d e r e d to arise f r o m a n electronic t r a n s i t i o n p e r p e n d i c u l a r to the c h r o m o p h o r e
of i n d i v i d u a l molecules a n d p a r a l l e l
to the axis of the m u l t i m o l e c u l a r a r r a y (25, 41, 56, 57, 58,
59).
F r o m this s u m m a r y it is a p p a r e n t that w a t e r solutions of
Pseudo
c y a n i n e a b o v e ca. 5 X 1 0 " M c o n t a i n a m u l t i c o m p o n e n t m i x t u r e of differ 5
e n t l y a b s o r b i n g species.
H e n c e , the r e s u l t i n g s o l u t i o n spectra are n e i t h e r
e x p e c t e d n o r f o u n d to e x h i b i t isosbestic points (12). be
H o w e v e r , as w i l l
s h o w n , i n the presence of a p p r o p r i a t e adsorbents
the spectra
of
P s e u d o c y a n i n e c a n b e d r a s t i c a l l y m o d i f i e d b y i m p o s i t i o n of a n e q u i l i b r i u m between
monomeric
d y e i n s o l u t i o n a n d its / - a g g r e g a t e at the
substrate surface. Experimental M a t e r i a l s . D y e structures are g i v e n i n the figures. P s e u d o c y a n i n e (7,21) (l,l'-diethyl-2,2'-cyanine chloride, C 3 H N C 1 X H 0 ) h a d a m o l a r a b s o r p t i v i t y of 7.0 ± 0.2 X 1 0 M c m . " at 523 n . m . i n w a t e r 2
4
- 1
2 3
2
2
1
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
HERZ E T A L .
Adsorption
of
175
Dyes
( 2 3 ° C . ) at concentrations b e l o w 5 X 1 0 " M . T h e p-toluenesulfonate ( p t s ) salt of this c y a n i n e was also u s e d ; it gave i d e n t i c a l surface spectra a n d a d s o r p t i o n d a t a i n silver a n d silver h a l i d e dispersions (23). Astraphloxin (55) ( l j l ' - d i e t h y l - S ^ j S ^ S ' - t e t r a m e t h y l i n d o c a r b o c y a n i n e pts, C34H40O3N2S X 0.5 H 0 ) h a d a m o l a r a b s o r p t i v i t y of 13.8 ± 0.4 X 1 0 M c m . " at 542 n . m . at concentrations b e l o w 5 X 1 0 " M i n w a t e r . A t h i g h e r concentrations b o t h P s e u d o c y a n i n e a n d A s t r a p h l o x i n f a i l e d to o b e y Beer's l a w , o w i n g to d y e - d y e i n t e r a c t i o n l e a d i n g to f o r m a t i o n of n e w absorption bands (12). S y n t h e t i c m i c a w a s o b t a i n e d f r o m the M i n n e s o t a M i n i n g a n d M a n u f a c t u r i n g C o . , St. P a u l , M i n n . , as B u r n i l M i c r o Plates H X - 6 0 0 . T h i s colorless p o w d e r is d e s c r i b e d b y the m a n u f a c t u r e r as c o n s i s t i n g of p l a t e lets 20-100 A . t h i c k a n d ten times as l o n g . C o l l o i d a l silver w i t h a n average p a r t i c l e d i a m e t e r of a b o u t 150 A . w a s p r e p a r e d b y the d e x t r i n - r e d u c t i o n of h y d r a t e d s i l v e r oxide, a c c o r d i n g to the general p r o c e d u r e of C a r e y L e a (67). A f t e r a d d i t i o n of g e l a t i n , the d i a l y z e d p a r e n t d i s p e r s i o n w a s a d j u s t e d w i t h b r o m i d e to p B r 3 a n d w i t h a c i d to p H 6.5; i t c o n t a i n e d 5 % g e l a t i n b y w e i g h t a n d was 2.5 X 1 0 M i n respect to silver. O n d i l u t i o n w i t h w a t e r , a clear y e l l o w sol r e s u l t e d ; it o b e y e d Beer's l a w at least u p to 3 X 1 0 " M a n d e x h i b i t e d a m o l a r a b s o r p t i v i t y of 1.45 X 1 0 M c m . ' at its 405 n . m . a b s o r p t i o n m a x i m u m . O n e of the silver b r o m i d e d i s p e r sions w a s a l r e a d y u s e d i n p r e v i o u s a d s o r p t i o n experiments (see R e f e r ences 22 a n d 23, D i s p e r s i o n D ) . It c o n t a i n e d 6 m o l e - p e r c e n t i o d i d e a n d h a d a specific surface area of 1.1 m e t e r / g r a m A g X , as d e t e r m i n e d f r o m the s a t u r a t i o n coverage w i t h P s e u d o c y a n i n e . A m o l e c u l a r area of 57 A . h a d b e e n assigned to this d y e . ( A d s o r p t i o n d e t e r m i n a t i o n s w i t h P s e u d o cyanines i n A g B r dispersions w h o s e surface areas w e r e m e a s u r e d b y three i n d e p e n d e n t methods h a v e p r e v i o u s l y l e d to a l i m i t i n g area of 54 ± 4 A . p e r d y e m o l e c u l e (23). F u r t h e r w o r k has s u p p o r t e d the u p p e r l i m i t as the m o r e accurate v a l u e ; a c c o r d i n g l y , w e h a v e a d o p t e d a m o l e c u l a r area of 5 7 A . t h r o u g h o u t o u r c a l c u l a t i o n s . ) T h i s r e l a t i v e l y coarse A g B r d i s p e r s i o n w a s g e n e r a l l y u s e d at a c o n c e n t r a t i o n of 7 X 1 0 " M i n 0 . 2 % g e l a t i n at p H 6.5 a n d p B r 3. T h e other silver b r o m i d e d i s p e r s i o n w a s a L i p p m a n n t y p e (47) a n d consisted of s m a l l , n e a r l y s p h e r i c a l p a r t i c l e s w i t h a n average d i a m e t e r of 585 ± 3 5 A . to 700 ± 4 0 A . , as e s t i m a t e d f r o m e l e c t r o n m i c r o g r a p h s a n d l i g h t scatter, respectively. T h e source of this c o n s i d e r a b l e d i s c r e p a n c y was not f u r t h e r i n v e s t i g a t e d a n d the L i p p m a n n A g B r d i s p e r s i o n was u s e d i n a d i l u t e state at 5 X 1 0 " M or less, at the a l r e a d y c i t e d Br~, H , a n d g e l a t i n concentrations. I n most of the experiments d e s c r i b e d , g e l a t i n was present as a convenience. S i n c e g e l a t i n as w e l l as other o r g a n i c p o l y m e r s m a y i n d u c e m e t a c h r o m a c y i n c y a n i n e dyes (1, 2, 6, 11, 28, 29), it w a s necessary to establish i f the g e l a t i n u s e d i n the dispersions i n t e r f e r e d w i t h the measurements. T h i s w a s d o n e b y c a r r y i n g out a d s o r p t i o n d e t e r m i n a t i o n s w i t h P s e u d o c y a n i n e i n silver a n d silver b r o m i d e dispersions b o t h i n the absence a n d presence of g e l a t i n u n d e r o t h e r w i s e i d e n t i c a l c o n d i t i o n s . I n agreement w i t h expectations ( 9 ) , no e v i d e n c e w a s f o u n d that g e l a t i n i n f l u e n c e d surface s a t u r a t i o n b y the d y e at a d s o r p t i o n e q u i l i b r i u m (62, 70). H o w e v e r , w i t h one p a r t i c u l a r silver d i s p e r s i o n it w a s n o t e d that, after s a t u r a t i o n coverage of the surface b y P s e u d o c y a n i n e h a d b e e n a t t a i n e d w i t h c o n c o m i t a n t f o r m a t i o n of a / - b a n d at 580 n . m . , excess d y e p r o d u c e d a s e c o n d / - b a n d at 570 n . m . 5
2
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
4
_ 1
1
5
- 1
4
4
_ 1
1
2
2
2
2
2
4
+
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
176
ADSORPTION F R O M
AQUEOUS SOLUTION
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
T h i s s e c o n d b a n d w a s r e a d i l y differentiated f r o m the f o r m e r a n d c o n t r o l experiments c a r r i e d out i n the absence of silver d e m o n s t r a t e d t h a t t h e 5 7 0 - b a n d w a s c a u s e d b y i n t e r a c t i o n of the d y e w i t h the specific g e l a t i n d e r i v a t i v e u s e d i n that system. P r o c e d u r e s . U n l e s s otherwise specified, spectra or a d s o r p t i o n deter m i n a t i o n s w e r e m a d e after e q u i l i b r a t i o n of d y e a n d substrate for at least 1 h r . at 23° ± 1 ° C . T h e coarse A g B r t e n d e d to settle a n d w a s a g i t a t e d e v e n i n the s p e c t r o p h o t o m e t r i c c e l l . T h e silver halides w e r e a l w a y s h a n d l e d u n d e r p h o t o g r a p h i c safelights. C o n v e n t i o n a l a d s o r p t i o n isotherms w e r e o b t a i n e d b y u s u a l c e n t r i f u g a t i o n a n d phase-separation p r o c e d u r e s ( 2 3 ) . D i f f e r e n t i a l d y e spectra w e r e d e t e r m i n e d w i t h a d o u b l e - b e a m spectrophotometer, u s u a l l y a B e c k m a n D K - 2 Spectroreflectometer, b y p l a c i n g the d y e d d i s p e r s i o n i n the s a m p l e c e l l (0.1 to 40 m m . ) a n d b y u s i n g the i d e n t i c a l b u t u n d y e d d i s p e r s i o n i n the c o m p a r i s o n c e l l as the s p e c t r a l reference. B e c a u s e c o l l o i d a l silver absorbs s t r o n g l y i n the b l u e s p e c t r a l r e g i o n , i t w a s not feasible to measure d i f f e r e n t i a l spectra w i t h this d i s p e r s i o n at w a v e l e n g t h s b e l o w ca. 480 n . m . W i t h the w e a k l y scat t e r i n g a n d s m a l l - p a r t i c l e dispersions of s i l v e r , m i c a , a n d silver b r o m i d e of t h e L i p p m a n n t y p e , t r a n s m i s s i o n s p e c t r o p h o t o m e t r y p r o v e d t o b e p r a c t i c a l . H o w e v e r , w i t h coarse a n d h i g h l y t u r b i d silver h a l i d e d i s p e r sions, the diffuse reflectance, R, w a s d e t e r m i n e d u n d e r c o n d i t i o n s s u c h that R p r e v a i l e d — i . e . , a n increase i n c e l l l e n g t h h a d n o m e a s u r a b l e influence o n reflectivity. I n the reflectance measurements the u n d y e d d i s p e r s i o n w a s a g a i n u s e d as the s p e c t r a l reference a n d experiments w i t h p o l a r i z i n g screens s h o w e d that the l i g h t reflected f r o m the s i l v e r h a l i d e dispersions c o n t a i n e d no a p p r e c i a b l e F r e s n e l components. x
Results T h e t r a n s m i s s i o n spectra of F i g u r e 1 A s h o w that, w i t h progressive a d d i t i o n s of synthetic m i c a to a constant c o n c e n t r a t i o n of P s e u d o c y a n i n e s o l u t i o n , the i n t e n s i t y of the M - b a n d d i m i n i s h e d , w i t h the c o n c o m i t a n t a p p e a r a n c e of n e w m a x i m a . T h e first n e w p e a k a p p e a r e d near 460 n . m . a n d w a s f o l l o w e d b y another b a n d near 480 n . m .
T h e appearance
these
by
hypsochromic
transitions w a s
accompanied
f o r m a t i o n of
of a
b a t h o c h r o m i c / - b a n d w i t h a p r i n c i p a l a b s o r p t i o n at 568 n . m . a n d a s h o u l d e r near 577 n . m . A t r e l a t i v e l y l o w m i c a / d y e ratios ( C u r v e s a - c ) , t h e spectra pass t h r o u g h isosbestic points, a n o b s e r v a t i o n w h i c h suggests that the free d y e is i n e q u i l i b r i u m w i t h d y e a d s o r b e d i n its d i m e r i c a n d its /-state. H o w e v e r , the isosbestic points are not m a i n t a i n e d at the h i g h est m i c a concentrations w h e r e the h y p s o c h r o m i c b a n d s lose a b s o r b a n c e a n d d e f i n i t i o n a n d g i v e w a y to a single intense / - b a n d at 568 n . m . (c
=
2.3 X l O W " c m ; ) . T h i s b a n d has a h a l f - w i d t h of a b o u t 13 n . m . a n d is 1
1
associated w i t h a w e a k s u b s i d i a r y m a x i m u m near 520 n . m . T h e c h a r a c t e r of b o t h transitions strongly resembles t h a t o b t a i n e d o n n a t u r a l , f r e s h l y cleaved mica
(63).
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
Adsorption
of
177
Dyes
Wavelength
(n.m)
Figure 1. Transmission spectra at 23°C. of a fixed concentration of Pseudocyanine and varying amounts of aqueous dispersions. Dispersions without dye served as spectral references A. 10' M dye in water: (a) 0.0 gram, (b) 0.008 gram, (c) 0.016 gram, (d) 0.064 gram, (e) 0.4 gram, (f) 2.0 gram, (g) 2.8 gram synthetic mica per liter B. 4X 10~ M dye in 1 % gelatin at pH 6, pBr 5.3: (a) 0.0 gram, (b) 0.1 gram, (c) 0.2 gram, (d) 0.3 gram, (e) 0.4 gram, (f) 0.6 gram, (g) 0.7 gram colloidal silver per liter C. 5 X 10 M dye in 0.24% gelatin at pH 6.5, pBr 3: (a) 0.0 gram, (b) 0.02 gram, (c) 0.12 gram, (d) 0.22 gram, (e) 0.87 gram AgBr (Lippmann) per liter 5
5
e
I n c o n t r a d i s t i n c t i o n to the spectra o b t a i n e d i n the m i c a d i s p e r s i o n , P s e u d o c y a n i n e , w h e n a d d e d to the c o l l o i d a l silver a n d silver h a l i d e systems of F i g u r e s I B a n d 1 C , y i e l d e d no H - b a n d s b u t f o r m e d
well
defined / - b a n d s . T h e latter also e x h i b i t e d a w e a k secondary p e a k l o c a t e d near the a b s o r p t i o n m a x i m u m of d i s s o l v e d , u n p e r t u r b e d d y e . A l t h o u g h the p o s i t i o n a n d i n t e n s i t y of the / - b a n d v a r i e d w i t h the substrate (4, 38, 61),
17,
the d i f f e r e n t i a l spectra o b t a i n e d i n these silver systems e x h i b i t e d
m a r k e d similarities.
A n increase i n the c o n c e n t r a t i o n of the substrate
p r o d u c e d i n b o t h cases a m o n o t o n i c change i n the absorbance of the
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
M-
178
ADSORPTION F R O M
AQUEOUS SOLUTION
a n d / - b a n d s ; whereas t h e f o r m e r decreased, t h e / - b a n d s i n c r e a s e d i n intensity u n t i l a m a x i m u m v a l u e w a s r e a c h e d .
A d d i t i o n of f u r t h e r s u b
strate h a d t h e n n o n o t i c e a b l e effect o n t h e a b s o r p t i v i t y of this b a n d . T h e s e s p e c t r a l changes, w h i c h w e r e a c c o m p a n i e d b y t h e a p p e a r a n c e of isosbestic regions near 555 n . m . w i t h t h e silver, a n d near 545 n . m . w i t h the silver b r o m i d e d i s p e r s i o n , suggested the existence of a substrate d e p e n d e n t e q u i l i b r i u m b e t w e e n t w o states: U n p e r t u r b e d d y e i n s o l u t i o n a n d d y e a d s o r b e d i n its /-state.
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
Q u i t e p a r a l l e l changes o c c u r w h e n a s o l u t i o n of t h e sulfate ester of poly ( v i n y l alcohol)
(52)
is a d d e d to d i l u t e aqueous P s e u d o c y a n i n e . A s
i l l u s t r a t e d i n F i g u r e 2, there is n o e v i d e n c e f o r t h e f o r m a t i o n of a d i n i e r ; one observes a g a i n the a p p e a r a n c e of a / - b a n d at 568 n . m . A t t h e highest polymer concentration a l l unperturbed dye h a d apparently disappeared ( C u r v e c ) a n d f u r t h e r p o l y m e r a d d i t i o n d i d n o t c h a n g e t h e shape of xio
4
IO.O
c
-
7.5
q
400
500
6 60 0
Wavelength (nmj Figure 2. Transmission spectra at 23°C. of aqueous Pseudocyanine with varying concentrations of poly(vinyl alcohol) sulfate ester: (a) 0.0 gram, (b) 0.004 gram, (c) 0.004 gram PVAsulfate per liter
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
HERZ E T A L .
Adsorption
of
179
Dyes
this c u r v e so that this s p e c t r u m represents the a t t a i n a b l e c o n v e r s i o n of the M - to the /-state.
( I t cannot b e a s s u m e d that C u r v e c represents
c o m p l e t e c o n v e r s i o n of the d y e to its /-state.
C u r v e analysis b y
our
colleague, F . W e b s t e r , has d e m o n s t r a t e d that as m u c h as 5 4 % of the d y e m a y h a v e r e m a i n e d i n its u n p e r t u r b e d M - s t a t e . R e c o n s t r u c t i o n of C u r v e c o n that basis does not c h a n g e its p r i n c i p a l features b u t decreases the i n t e n s i t y of the m a x i m a near 500 a n d 535 n.m.)
T h i s state manifests
itself b y the w e a k b u t r e s o l v e d transitions near 500 a n d 535 n . m . a n d t h e
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
intense b a n d at 568 n . m . w i t h a n e x t i n c t i o n greater t h a n 1.2 X cm."
1
lO^M"
1
a n d a h a l f - w i d t h of a b o u t 15 n . m . E s s e n t i a l l y i d e n t i c a l results w e r e
r e p o r t e d for the spectra o b t a i n e d w i t h p o l y e t h y l e n e sulfonate a n d a n i o n i c polysaccharides b y A p p e l a n d Scheibe deductions,
(1).
I n agreement w i t h t h e i r
present results i n d i c a t e that salt f o r m a t i o n b e t w e e n
the
c a t i o n i c d y e a n d closely adjacent a n i o n i c sites i n the p o l y m e r is r e s p o n sible for the spectra i l l u s t r a t e d i n F i g u r e 2. T h u s , n o / - b a n d w a s o b t a i n e d w i t h poly (vinyl alcohol)
itself n o r w i t h a s u l f o n a t e d p o l y s t y r e n e .
In
the latter p o l y m e r the distance b e t w e e n a c i d sites a p p a r e n t l y w a s greater t h a n the ca. 5 A . , w h i c h appears to b e the m a x i m u m distance p e r m i t t i n g the / - s t a t e b y electronic c o u p l i n g b e t w e e n adjacent d y e m o l e c u l e s
(1).
T h e i m p o r t a n c e of salt f o r m a t i o n i n this system is also i l l u s t r a t e d b y the fact that P V A - s u l f a t e gave no / - b a n d w i t h a s u l f o a l k y l p s e u d o c y a n i n e w h i c h h a d a net charge of zero. It w a s n o t e d , h o w e v e r , that i n the silver and
silver h a l i d e dispersions this z w i t t e r i o n i c d y e e x h i b i t e d a d s o r p t i o n
and
s p e c t r a l properties that w e r e
essentially i d e n t i c a l w i t h those
of
P s e u d o c y a n i n e itself. T h e procedures u s e d to o b t a i n F i g u r e 1 c a n b e reversed. F i g u r e 3 illustrates the s p e c t r a l changes a c c o m p a n y i n g the a d d i t i o n of i n c r e a s i n g amounts of P s e u d o c y a n i n e to a fixed c o n c e n t r a t i o n of c o l l o i d a l silver. T h e r e s u l t i n g f a m i l y of d i f f e r e n t i a l spectra s h o w that, after the / - b a n d had
reached a critical intensity ( A
m a x
v a r i e d b e t w e e n 578-582 n . m . ) ,
a d d i t i o n a l d y e e x h i b i t e d o n l y the s p e c t r a l chracteristics of u n p e r t u r b e d d y e i n its s o l u t i o n state (cf.,
Figure I B , Curve a).
T h e salient features
of these spectra are m a d e m o r e o b v i o u s b y p l o t t i n g the c o n c e n t r a t i o n of a d d e d d y e against the a b s o r b a n c e of the c o r r e s p o n d i n g / - b a n d . T h i s w a s d o n e i n F i g u r e 4 A . F o l l o w i n g a n i n i t i a l l i n e a r increase i n the a b s o r b a n c e of the / - b a n d , a c r i t i c a l r e g i o n w a s r e a c h e d b e y o n d w h i c h f u r t h e r a d d i t i o n of d y e h a d little effect o n this t r a n s i t i o n a n d c a u s e d a m a r k e d c h a n g e i n the slope of the c u r v e .
( T h e m o n o m e l i c a b s o r p t i o n spectra of cyanines
often e x t e n d w e a k l y b u t m e a s u r a b l y i n t o the / - r e g i o n a n d e v e n u n p e r t u r b e d P s e u d o c y a n i n e i n s o l u t i o n w i l l m a k e a slight c o n t r i b u t i o n to / - b a n d absorbance.
M o r e o v e r , as a l r e a d y discussed, u n d e r some c o n d i t i o n s of
salt or surfactant concentrations, cyanines m a y e x h i b i t intense / - b a n d s i n solution.)
A c h a n g e i n slope at the same c r i t i c a l d y e c o n c e n t r a t i o n w a s
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
180
ADSORPTION F R O M
500
AQUEOUS SOLUTION
600
Wavelength
(am)
Figure 3. Transmission spectra of 4.65 X 10~ M colloidal silver in 1% gelatin at 23°C, pBr 5.3, pH 6.5 with varying concentrations of Pseudocyanine: (a) 0.8, (b) 1.6, (c) 2.4, (d) 4.0, (e) 5.6, (f) 7.6, (g) 9.0, (h) 11.0 X W M dye. Undyed colloidal silver served as reference, 2mm. cells were used 3
5
also o b s e r v e d w h e n the r a t i o of M to / absorbances w a s p l o t t e d against the c o n c e n t r a t i o n o f a d d e d d y e .
It s h o u l d b e n o t e d that absorbance i n
the M - b a n d r e g i o n involves not o n l y u n p e r t u r b e d d y e b u t also d y e i n its / - s t a t e w h i c h contains a c o m p o n e n t t h a t absorbs at shorter w a v e l e n g t h s . W e c o n s i d e r e d the c o n c e n t r a t i o n - d e p e n d e n t s p e c t r a l d a t a of F i g u r e 4 A to be a m a n i f e s t a t i o n of the a d s o r p t i o n e q u i l i b r i u m o f the dye.
Spe
cifically, w e a s s u m e d that the i n i t i a l l i n e a r increase of / - a b s o r b a n c e r e p r e sents b i n d i n g of a l l the a d d e d d y e at the substrate a n d that d e p a r t u r e f r o m this l i n e a r p o r t i o n corresponds to a d d e d b u t u n a d s o r b e d d y e ; the latter w o u l d t h e n a c c o u n t f o r the s u d d e n increase of the M/J
absorbance
ratio. It f o l l o w s f r o m this i n t e r p r e t a t i o n that the intercepts o b t a i n e d b y e x t r a p o l a t i n g t h e l i n e a r sections of the p l o t of d y e c o n c e n t r a t i o n vs. J. or M/J
absorbance, s h o u l d c o r r e s p o n d to the a m o u n t of d y e a d s o r b e d at
saturation of the surface.
If w e assume f u r t h e r that the absorbances
of
F i g u r e 3 a n d 4 A o b e y B e e r s l a w , t h e n the i n t e n s i t y of t h e / - b a n d w i l l be
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
HERZ E T AL.
Adsorption
181
of Dyes
p r o p o r t i o n a l t o the surface c o n c e n t r a t i o n o f t h e d y e a n d the s p e c t r a l d a t a of F i g u r e 4 A c a n b e c o n v e r t e d i n t o a n a d s o r p t i o n i s o t h e r m . T h i s w a s d o n e i n F i g u r e 4 B , w h e r e the a m o u n t of d y e a d s o r b e d p e r m o l e o f c o l l o i d a l silver ( a ) is p l o t t e d against the e q u i l i b r i u m c o n c e n t r a t i o n o f d y e i n s o l u t i o n ( c ) . T h e r e s u l t i n g i s o t h e r m is expressed b y t h e L a n g m u i r adsorption l a w 1 aK
a*
a
w h e r e a i s the s a t u r a t i o n coverage a n d K is the L a n g m u i r a d s o r p t i o n Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
8
coefficient.
T h e slope o f t h e l i n e a r r e l a t i o n o f c/a against c y i e l d e d a
I
2
3
4
5
6
7 x IO"
6
7 x IO"
3
Millimoles dye added
I
2
3
4
5
5
Molarity of equilibrium concentration (c)
Figure 4A. Absorbance of the J-band and the M / J ratio at varying concentrations of Pseudocyanine in 50 ml. of 4.65 m M colloidal silver (cf. Figure 3) B. Adsorption isotherm of Pseudocyanine in colloidal silver calculated from the spectral data of Figure 4A. See text for details
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
182
ADSORPTION F R O M
AQUEOUS SOLUTION
s a t u r a t i o n coverage, a , of 10 m i l l i m o l e s of P s e u d o c y a n i n e p e r m o l e 8
of
silver. O n the a s s u m p t i o n that the p a c k i n g of the d y e at this s i l v e r surface is s i m i l a r to that o n silver h a l i d e substrates—i.e., 57A.
2
per molecule
(23),
a specific area of 35 sq. meter per g r a m of silver w a s o b t a i n e d . A s i m i l a r analysis of the s p e c t r a l d a t a of F i g u r e I B gave the same results. I f the c o l l o i d a l silver particles are c o n s i d e r e d to b e s p h e r i c a l , this surface area is e q u i v a l e n t to a n average p a r t i c l e d i a m e t e r of 180 A . T h i s v a l u e agrees i n m a g n i t u d e w i t h d i a m e t e r estimates of 110, 140, a n d 190 A . o b t a i n e d
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
b y Stevens a n d B l o c k (64)
w i t h three i n d e p e n d e n t methods o n s i m i l a r l y
p r e p a r e d s i l v e r dispersions. M o r e o v e r , a p p l i c a t i o n of the d e s c r i b e d spec t r a l m e t h o d to a different silver d i s p e r s i o n y i e l d e d a n average p a r t i c l e d i a m e t e r of 45 A . , whereas a v a l u e of about 48 A . was o b t a i n e d f r o m electronmicrographs.
T h i s agreement
w i t h independent
size
estimates
makes i t p r o b a b l e that the assumptions a p p l i e d to the i n t e r p r e t a t i o n of the d y e spectra i n silver dispersions w e r e v a l i d . A s a l r e a d y i n d i c a t e d , the spectra of P s e u d o c y a n i n e i n the m i c a d i s p e r s i o n ( F i g u r e 1 A ) w o u l d r e q u i r e a m o r e d e t a i l e d analysis for t h e i r q u a n t i t a t i v e i n t e r p r e t a t i o n . I n c o m m o n w i t h silicates l i k e m o n t m o r i l l o nite ( 3 ) , the synthetic m i c a behaves as i f it possesses different types of b i n d i n g sites w h i c h c a u s e d a d s o r p t i o n of the d y e b o t h i n the d i m e r i c a n d i n the /-state.
I n contrast to the m i c a - d y e system, t r a n s m i s s i o n spectra
of P s e u d o c y a n i n e i n the c o l l o i d a l s i l v e r b r o m i d e i n d i c a t e d the p r e d o m i nance of o n l y one t y p e of surface i n t e r a c t i o n ( F i g u r e 1 C ) .
A n a l y s i s of
these spectra b y the m e t h o d d e s c r i b e d for the case of c o l l o i d a l silver, gave a specific area of 11 sq. m e t e r / g r a m A g B r w i t h a n average p a r t i c l e d i a m e t e r of 950 db 60 A . T h e a c c u r a c y of these results is u n c e r t a i n since the true p a r t i c l e d i m e n s i o n s w e r e not k n o w n (cf.,
section).
Experimental
T h e a p p l i c a b i l i t y of this in situ m e t h o d for the d e t e r m i n a t i o n of surface areas d e p e n d s not o n l y o n k n o w l e d g e of the dye's m o l e c u l a r area i n the a d s o r b e d state b u t also o n the a s s u m p t i o n t h a t the chosen s p e c t r a l p a r a m e t e r measures the surface c o n c e n t r a t i o n of the dye.
I n order to
test the r e l a t i o n b e t w e e n a d s o r p t i o n of d y e to s i l v e r h a l i d e a n d its spec t r a l characteristics i n the b o u n d state, the b e h a v i o r of P s e u d o c y a n i n e i n a coarse silver h a l i d e suspension ( D i s p e r s i o n D ) w a s s t u d i e d . T h i s p a r t i c u l a r d i s p e r s i o n w a s chosen because some of its r e l e v a n t a d s o r p t i o n characteristics h a d a l r e a d y b e e n e x a m i n e d (22, 23).
Moreover, observa
tions b y B o y e r a n d C a p p e l a e r e w i t h P s e u d o c y a n i n e a d s o r b e d o n A g B r powders (5)
i n d i c a t e d that / - b a n d i n t e n s i t y v a r i e d w i t h the a m o u n t of
a d s o r b e d d y e a n d w a s not sensitive to the c o n c e n t r a t i o n of A g
+
or B r "
ions i n the range p A g 3.3-8.7. T h e r e r e m a i n e d the q u e s t i o n of h o w to evaluate d y e
spectra i n
c o n c e n t r a t e d silver h a l i d e dispersions w h o s e p a r t i c l e sizes r a n g e d b e t w e e n 0.2-2.0 [i, a n d w h e r e m u l t i p l e i n t e r p a r t i c l e l i g h t scatter m a d e i t u n f e a s i b l e
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
HEBZ E T AL.
Adsorption
of
183
Dyes
to a p p l y transmittance measurements of the k i n d u s e d i n F i g u r e s 1 a n d 3. I n other studies (46, 50, 70, 71)
the f o l l o w i n g r e l a t i o n ,
% Absorbance = 100 — % Transmittance — % Reflectance or one of its components, h a d b e e n used.
H o w e v e r , i n the absence of
c a l i b r a t i o n d a t a , the results d i d not y i e l d a verifiable d i r e c t r e l a t i o n b e t w e e n the p h o t o m e t r i c parameters a n d the surface c o n c e n t r a t i o n dye.
of
I n this w o r k w e a p p l i e d the K u b e l k a - M u n k reflectivity f u n c t i o n ,
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
w h e r e K a n d S are a b s o r p t i o n a n d scatter coefficients of the substrate, R
x
is the reflectivity of a n i n f i n i t e l y t h i c k layer, a n d C a n d c are the m o l a r
concentration
a n d m o l a r a b s o r p t i v i t y coefficients,
respectively.
This relation, w h i c h
has b e e n s t u d i e d i n m u c h d e t a i l b y K o r t u m , w h o adsorption phenomena
(31,
also a p p l i e d i t to
32, 3 3 ) , has a f o r m s i m i l a r to B e e r s l a w ,
except that i n reflectometry the c o n c e n t r a t i o n C is p r o p o r t i o n a l to
K/S
rather t h a n to absorbance. T h e K u b e l k a - M u n k f u n c t i o n is a p p l i c a b l e to silver h a l i d e dispersions, p r o v i d e d t h a t s p e c u l a r or F r e s n e l reflections
are n e g l i g i b l e a n d t h a t
infinite reflectivities, R , are a c t u a l l y m e a s u r e d (24). x
A f t e r it h a d b e e n
ascertained that these c o n d i t i o n s h a d b e e n met, a c o n c e n t r a t i o n series of P s e u d o c y a n i n e i n the coarse s i l v e r b r o m i d e suspension ( D i s p e r s i o n
D)
was p r e p a r e d a n d y i e l d e d the K/S spectra i l l u s t r a t e d i n F i g u r e 5 A . It is a p p a r e n t that these c o n c e n t r a t i o n - d e p e n d e n t
reflection spectra possess
characteristics s i m i l a r to the t r a n s m i s s i o n spectra o b t a i n e d w i t h the s i l v e r substrate i n F i g u r e 3. A g a i n one observes t h a t the / - b a n d near 572 n . m . tends t o w a r d a m a x i m u m v a l u e .
I n F i g u r e 5 B the m i l l i m o l e s of
dye
a d d e d p e r m o l e of s i l v e r b r o m i d e are p l o t t e d against / - b a n d i n t e n s i t y expressed i n K/S values. T h e character of the r e s u l t i n g c u r v e is s i m i l a r to the c o r r e s p o n d i n g similarly.
g r a p h i n F i g u r e 4 A a n d the d a t a w e r e
treated
E x t r a p o l a t i o n of the l i n e a r parts i n F i g u r e 5 B y i e l d e d a n
i n t e r c e p t w h i c h was a g a i n t a k e n to define the a m o u n t of d y e a d s o r b e d at saturation coverage a n d served as the reference p o i n t for the c o n v e r s i o n of the s p e c t r a l d a t a i n t o the a d s o r p t i o n i s o t h e r m i n F i g u r e 8 A . I n c o m p a r i s o n w i t h a n azo d y e a d s o r b e d o n a n h y d r o u s b a r i u m s u l fate ( 3 J ) , the K/S values of F i g u r e 5 are r e m a r k a b l y large. I n p a r t this is because of the h i g h e x t i n c t i o n coefficient of the Pseudocyanine's / - b a n d (cf.,
F i g u r e 1) a n d i n p a r t to the non-zero base l i n e i n F i g u r e 5 A . It w a s
e x p e r i m e n t a l l y c o n v e n i e n t to use a n 0.2 absorbance filter i n the s a m p l e b e a m of the spectrophotometer;
i n the absence of this
filter—it
h a d no
influence o n the final r e s u l t s — t h e K/S v a l u e at s a t u r a t i o n coverage w o u l d
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
184
ADSORPTION F R O M
400
500
AQUEOUS
SOLUTION
600
Wavelength (ryrO
Figure 5A. Reflection spectra of 6.43 X I 0 * M AgBr (Dispersion D) in 0.2% gelatin at 23°C, pBr 3, pH 6.5 with varying concentrations of Pseudocyanine chloride (a) 0.01, (b) 0.05, (c) 0.25. (d) 0.5, (e) 0.75, (f) 1.0, (g) 1.5, (h) 2.5, (i) 3.5, (k) 6.0, (I) 7.0 X 10~ M dye. Sample beam of spectrophotometer passed through a 0.2 absorbance filter, undyed AgBr served as spectral reference, 40 mm. cells were used. See text for explanation of reflection parameter K / S B. Dependence of ]-band reflectivity on concentration of Pseudocyanine. Millimoles of dye in 100 ml. of 6.43 X 10~ M AgBr 5
2
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
HERZ E T AL.
Adsorption
b e 3.2 i n s t e a d of near 6.0.
of
185
Dyes
I n F i g u r e 5 B a slight toe is n o t i c e a b l e i n the
c u r v e at l o w d y e concentrations.
T o the extent t h a t this is c a u s e d b y a
systematic reflectivity error i t m a y b e c o r r e c t e d present purposes
(32, 34, 37),
there was n o n e e d to consider
b u t for
this d e p a r t u r e
from
l i n e a r i t y at l o w surface coverage b y the d y e . T h e v e r y same dispersions w h i c h h a d y i e l d e d the spectra of F i g u r e 5 A w e r e c e n t r i f u g e d to separate s o l i d a n d l i q u i d phases i n order
to
measure d y e a d s o r p t i o n b y c o n v e n t i o n a l m e t h o d s (23, 7 0 ) . T h e r e s u l t i n g Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
d a t a are also s h o w n i n F i g u r e 8 A w h e r e t h e y c a n b e c o m p a r e d w i t h the s p e c t r a l l y d e t e r m i n e d a d s o r p t i o n i s o t h e r m . T h e agreement b e t w e e n the t w o i n d e p e n d e n t m e t h o d s is g o o d a n d indicates that in situ spectra c a n b e u s e d to d e t e r m i n e d i r e c t l y the surface c o n c e n t r a t i o n of P s e u d o c y a n i n e . T h i s d y e is p a r t i c u l a r l y s u i t a b l e for that p u r p o s e because its spectra at e l e v a t e d surface coverages a l w a y s seem to b e associated w i t h the n a r r o w / - b a n d w h i c h has a h i g h e x t i n c t i o n coefficient. H o w e v e r , the f o r m a t i o n of a / - b a n d is not a p r e r e q u i s i t e for the spec t r a l d e t e r m i n a t i o n of surface concentrations of a d y e ; it is sufficient that the difference b e t w e e n s o l u t i o n a n d surface spectra c a n be e v a l u a t e d q u a n t i t a t i v e l y . A s t r a p h l o x i n is a n e x a m p l e of a d y e that meets these c o n d i t i o n s . I n d i l u t e aqueous s o l u t i o n its p r i n c i p a l a b s o r p t i o n at 542 n . m . is separated some 1250 c m .
- 1
f r o m a s u b s i d i a r y a n d p r o b a b l y v i b r a t i o n a l m a x i m u m at
521 n . m . A t concentrations i n excess of 2 X
1 0 " M , this d y e exhibits a 4
n e w h y p o s o c h r o m i c t r a n s i t i o n at 505 n . m . c o n s i d e r e d to be c a u s e d b y a d i m e r (12);
no / - b a n d has b e e n f o u n d i n A s t r a p h l o x i n solutions u n d e r
c o n d i t i o n s w h e r e P s e u d o c y a n i n e does f o r m one.
F i g u r e 6 illustrates the
spectra o b t a i n e d b y a c o n c e n t r a t i o n series of A s t r a p h l o x i n i n the same silver b r o m i d e suspension ( D i s p e r s i o n D ) a n d u n d e r the same c o n d i t i o n s as h a d b e e n u s e d i n c o n n e c t i o n w i t h F i g u r e 5.
H o w e v e r , i n s t e a d of
p l o t t i n g the d a t a as K/S values, w e h a v e r e c o r d e d t h e m as t h e m o r e accessible reflection absorbances ( — L o g R ) f r o m w h i c h % R x
c o u l d b e c o m p u t e d for a n y d e s i r e d w a v e l e n g t h .
a n d K/S
x
I n order to f a c i l i t a t e
comparisons, F i g u r e 6 also contains a t r a n s m i t t a n c e s p e c t r u m of A s t r a phloxin (dashed curve) w i t h the difference
i n the absence of the silver h a l i d e . I n a c c o r d
i n refractive i n d e x of w a t e r a n d A g B r
(72),
the
s p e c t r u m of the d y e at l o w surface coverages is d i s p l a c e d a p p r o x i m a t e l y 25 n . m . t o w a r d s l o n g e r w a v e l e n g t h s ( C u r v e a, b ) .
H e n c e , the n e w p r i n
c i p a l t r a n s i t i o n near 565 n . m . is d e s i g n a t e d the M - b a n d because i t is a
associated w i t h i s o l a t e d , u n p e r t u r b e d b u t a d s o r b e d molecules.
A s the
d y e c o n c e n t r a t i o n is increased, t w o other transitions b e c o m e defined i n F i g u r e 6, a h y p s o c h r o m i c p e a k (H) b a n d (B)
near 580 n . m .
near 530 n . m . a n d a b a t h o c h r o m i c
A t the most e l e v a t e d d y e levels, the B - b a n d
reaches a l i m i t i n g v a l u e whereas the H - b a n d shifts t o w a r d s the m a x i m u m associated w i t h the free d y e i n s o l u t i o n (542 n . m . ) . A t first i t w a s t h o u g h t
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
186
ADSORPTION F R O M
400
500
Wavelength
AQUEOUS SOLUTION
600
(ryu)
Figure 6. Reflection spectra of 6.26 X 10*M AgBr (Dispersion D) in 0.2% gelatin at 23°C, pBr 3, pH 6.5 with varying concentration of Astraphloxin: (a) 0.01, (b) 0.10, (c) 1.0, (d) 2.0, (e) 3.0,(f) 4.0, (g) 5.0 X 10~ M dye. Undyed AgBr served as spectral reference, 40 mm. cells were used. Dashed curve: Transmission absorbance of 7 X lO^M dye (1 cm. ceU) in same solvent system after removal of AgBr by centrifugation 5
that the H- a n d B - b a n d s m i g h t represent t w o different states of a d s o r b e d Astraphloxin.
H o w e v e r , experiments analogous
to those i n F i g u r e 1,
w h e r e d y e c o n c e n t r a t i o n w a s k e p t constant b u t A g B r w a s a d d e d i n v a r i ous amounts, y i e l d e d spectra w h i c h suggested a different i n t e r p r e t a t i o n . O v e r a l i m i t e d r a n g e of A g B r , a f a m i l y of spectra r e s u l t e d w h i c h , i n a d d i t i o n to the c h a r a c t e r i s t i c transitions associated w i t h free d y e ,
ex
h i b i t e d H-, a n d B - b a n d s . A l l these spectra passed t h r o u g h a n isosbestic p o i n t (558 n . m . ) ; thus t h e y not o n l y i n d i c a t e d a n e q u i l i b r i u m b e t w e e n free a n d a d s o r b e d d y e b u t also suggested that the c i t e d b a n d s are a m a n i f e s t a t i o n of a single state of the a d s o r b e d d y e .
( W h e n Astraphloxin
is a d s o r b e d o n 100-faces of c u b i c A g B r r a t h e r t h a n o n its o c t a h e d r a l I l l - f a c e s , the transitions of the B-state are d i s p l a c e d b a t h o c h r o m i c a l l y b y a b o u t 5 n . m . M o r e o v e r , i n some s i l v e r h a l i d e systems, shoulders n e a r 490 a n d 610 n . m . c a n b e n o t e d ; the latter has b e e n / - b a n d (54).)
F o l l o w i n g W e s t et al. (46),
d e s c r i b e d as a
this c o n d i t i o n w i l l be r e f e r r e d
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
Adsorption
HERZ E T AL.
187
of Dyes
to as t h e B-state a n d is assumed to b e a c o n s e q u e n c e of p e r t u r b a t i o n between
n e i g h b o r i n g d y e molecules
adsorbed
a n d p a c k e d closely o n
t h e i r l o n g axis. U n l i k e the s i m i l a r l y a r r a y e d / - s t a t e , it is t h o u g h t that the p r i n c i p a l t r a n s i t i o n o f the B-state involves a n e l e c t r o n i c m o m e n t p a r a l l e l to the c o n j u g a t e d c h a i n o f the m o l e c u l e .
E i t h e r the B - o r the M - b a n d a
c a n b e u s e d t o c a l c u l a t e the surface s a t u r a t i o n b y A s t r a p h l o x i n . D e s p i t e o v e r l a p p i n g a b s o r p t i o n f r o m free d y e , t h e M - b a n d has t h e a d v a n t a g e a
that i t measures c o n t r i b u t i o n s f r o m a d s o r b e d , i s o l a t e d molecules at l o w
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
coverage as w e l l as c o n t r i b u t i o n s f r o m t h e p e r t u r b e d B-state w h i c h is o b s e r v e d at h i g h e r surface concentrations.
Hence, b y using differential
reflection spectra, some of w h i c h are s h o w n i n F i g u r e 6, the c o n c e n t r a t i o n d e p e n d e n c e of the M a - b a n d w a s o b t a i n e d a n d is expressed i n F i g u r e 7 i n terms o f various p h o t o m e t r i c parameters. %
R
x
nor — L o g R
x
I t c a n b e seen t h a t n e i t h e r
(reflection a b s o r b a n c e ) p r o d u c e d a d i r e c t r e l a t i o n
f r o m w h i c h the dye's surface c o n c e n t r a t i o n c o u l d b e estimated. O n the other h a n d , the K/S reflectivity p a r a m e t e r a g a i n y i e l d e d t w o l i n e a r plots w h o s e e x t r a p o l a t e d intercept f u r n i s h e d the a m o u n t of d y e a d s o r b e d a t saturation coverage. A s before, this m a d e i t possible t o convert the K/S d a t a into a n a d s o r p t i o n i s o t h e r m w h i c h w a s a g a i n f o u n d t o b e i n a c c o r d w i t h independently obtained adsorption determinations ( F i g u r e 8 A ) . T h e a d s o r p t i o n isotherms
of A s t r a p h l o x i n a n d P s e u d o c y a n i n e i n
F i g u r e 8 A w e r e also expresed b y the L a n g m u i r a d s o r p t i o n e q u a t i o n . T h e r e s u l t i n g l i n e a r r e l a t i o n of F i g u r e 8 B demonstrates excellent
agreement
b e t w e n the d a t a o b t a i n e d f r o m phase separation a n d s p e c t r a l techniques.
K S
o 20 8 40
rr
60
- 80
.1
.2
.3
.4
.5
.6
.7
.8
.9
100
i.o
Millimoles dye added/mole Agx Figure 7. Dependence of M -band reflectivity of Astraphloxin in Figure 6 expressed in terms of different reflection parameters. See text for significance of K / S values a
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
188
ADSORPTION F R O M
AQUEOUS SOLUTION
F r o m the slope a n d i n t e r c e p t of these plots the s a t u r a t i o n coverage a n d a d s o r p t i o n coefficient given equation.
w e r e o b t a i n e d b y a p p l i c a t i o n of the p r e v i o u s l y
T h e results are l i s t e d i n T a b l e I, w h i c h also i n c l u d e s
the area p e r d y e m o l e c u l e at s a t u r a t i o n coverage a n d the s t a n d a r d free energy of a d s o r p t i o n , A G ° . A l t h o u g h the latter p a r a m e t e r w a s c a l c u l a t e d as b e f o r e ( 2 3 ) , its t h e r m o d y n a m i c v a l i d i t y is q u e s t i o n a b l e since r e v e r s i
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
b i l i t y of a d s o r p t i o n of these dyes w a s not d e m o n s t r a t e d . T h e m o l e c u l a r
1
1
1
-
-
-
/*
1
1.0
1
2.0
Molarity of equilibrium concentration
1
3.0
(c)
Figure 8A. Adsorption isotherms of Pseudocyanine (No. 1, Circles) and of Astraphloxin (No. 2, Squares) in AgBr (Dispersion D) containing 0.2% gelatin at 23°C., pBr 3, pH 6.5. The data are expressed as the concentration of free dye (c) in equilibrium with dye adsorbed per mole of AgBr (a). Open data points and solid lines: Results calculated from surface spectra. Solid data points and dashed lines: Results obtained from phase-separation procedure B. Adsorption isotherms of Figure 8A expressed in terms of the Langmuir equation. See text
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
HERZ E T AL.
Adsorption
of
189
Dyes
area of A s t r a p h l o x i n w a s o b t a i n e d f r o m its s a t u r a t i o n coverage r e l a t i v e to t h a t of P s e u d o c y a n i n e to w h i c h a n area of 57 A . h a d b e e n assigned. 2
A s discussed elsewhere (23),
a v a l u e of this m a g n i t u d e is n o t o n l y c o n
sistent w i t h t h e t h e o r e t i c a l d i m e n s i o n s of the d y e b o u n d o n its l o n g edge i n a closely p a c k e d a r r a y , b u t it is also i n reasonable agreement
with
v a r i o u s c i t e d measurements o b t a i n e d i n other laboratories. Adsorption determinations w i t h Astraphloxin i n homodisperse
cubic
a n d o c t a h e d r a l s i l v e r b r o m i d e dispersions of the t y p e w h i c h w e r e p r e v i Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
ously d e s c r i b e d (20, 23), 76 ±
7 A.
2
i n d i c a t e d a m e a n l i m i t i n g area for this d y e of
w h i c h is i n f a i r agreement w i t h the 69 A .
2
obtained
from
F i g u r e 8. Since a m o n o l a y e r of d y e i n its flat o r i e n t a t i o n w o u l d r e q u i r e a n area i n excess of 130 A .
2
p e r m o l e c u l e , the results i n d i c a t e t h a t at
saturation A s t r a p h l o x i n w a s a d s o r b e d at its l o n g edge (ca.
19 A . ) w i t h
a n i n t e r m o l e c u l a r s p a c i n g of a b o u t 4.0 A . A s seen i n the spectra, a d s o r p t i o n o c c u r r e d w i t h o u t f o r m a t i o n of a / - s t a t e a n d its absence i n these experiments m a y account for its r e l a t i v e l y l o w free energy of a d s o r p t i o n (Table I).
It m u s t b e stressed that, a l t h o u g h the g e m - d i m e t h y l groups
of A s t r a p h l o x i n are l o c a t e d p e r p e n d i c u l a r to the conjugated c h a i n , close s p a c i n g of molecules is s t i l l possible i f t h e y are o r i e n t e d o n t h e i r l o n g edge i n a staggered array. P r e s u m a b l y , it is this o r i e n t a t i o n w h i c h , c o n t r a r y to Sheppard's e a r l y s u p p o s i t i o n (61),
is responsible for the f o r m a
t i o n of / - b a n d s i n the N , N ' - d i m e t h y l a n a l o g of this d y e (54)
a n d i n its
d e r i v a t i v e s h a v i n g substituents i n the b e n z e n e r i n g . T h e s t u d y of surface-dye i n t e r a c t i o n b y the in situ o p t i c a l p r o c e d u r e has
also
been
applied
to
5,5'-dichloro-3,3',9-triethylthiacarbocyanine,
w h i c h was k n o w n to b e a d s o r b e d i n m u l t i l a y e r s ( 7 0 ) .
W h e n this d y e
w a s a d d e d to a suspension of o c t a h e d r a l A g B r at p B r 3, a / - b a n d w a s f o r m e d near 640 n . m . ( F i g u r e 9 A ) .
I n c r e a s i n g d y e concentrations
en
h a n c e d the r e f l e c t i v i t y of this b a n d u n t i l i t r e a c h e d a l i m i t i n g i n t e n s i t y ; once r e a c h e d , a d d i t i o n a l d y e c o n t r i b u t e d i n s i g n i f i c a n t l y to reflectivity values i n t h a t s p e c t r a l r e g i o n .
(However, overlapping absorption from
d y e i n other states m a y , at h i g h d y e concentrations, cause a n a p p a r e n t c o n t r i b u t i o n to a b s o r p t i o n . level shown i n Figure 9A.) flection
T h i s effect is i l l u s t r a t e d b y the highest d y e A s before, the c o n c e n t r a t i o n - d e p e n d e n t
re
densities of the / - b a n d w e r e c o n v e r t e d to K / S f u n c t i o n s ( F i g u r e
9 B ) f r o m w h i c h the a d s o r p t i o n i s o t h e r m m a r k e d " O p t i c a l M e t h o d " w a s then derived (Figure 9 C ) .
T h e same
figure
also shows a n a d s o r p t i o n
i s o t h e r m o b t a i n e d f r o m the same system b y the c l a s s i c a l phase separation technique.
T h e latter m e a s u r e m e n t exhibits the slight h o r i z o n t a l step
w h i c h W e s t et al. h a d i n t e r p r e t e d as s i g n i f y i n g c o m p l e t i o n of a m o n o l a y e r before the onset of p o l y l a y e r a d s o r p t i o n S t r i k i n g differences
(70).
are a p p a r e n t b e t w e e n
the t w o
independently
d e t e r m i n e d a d s o r p t i o n isotherms w h i c h are i l l u s t r a t e d i n F i g u r e 9 C .
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
ADSORPTION F R O M AQUEOUS
SOLUTION
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
Mmoles dye added / mole Ag
Wavelength (m/x)
o.i 0.2 Millimoles dye / liter
Figure 9A. Reflection spectra of 0.1M octahedral AgBr (Dispersion C of Reference 23) in 0.3% gelatin at 23°C, pBr 3, pH 6.5 with added 5,5'-dichloro-3,3'-9-triethu1r thiacarhocyanine bromide in millimoles per mole AgBr B. Dependence of J-band reflectivity at 640 n.m. on concentration of the thiacarbocyanine in the AgBr dispersion. See text for significance of K / S values C. Adsorption isotherms of the thiacarbocyanine in the octahedral AgBr dispersion. Open data points: Results calculated from surface spectra of Parts A and B. Solid data points: Results obtained from phase-separation procedure
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
Adsorption
HERZ E T AL.
191
of Dyes
W h e r e a s the o p t i c a l m e t h o d i n d i c a t e s a t t a i n m e n t of s a t u r a t i o n coverage b y the d y e i n its /-state, results o b t a i n e d w i t h the phase-separation t e c h n i q u e s h o w that, after r e a c h i n g a p p a r e n t saturation, f u r t h e r a d s o r p t i o n occurs as the d y e c o n c e n t r a t i o n i n s o l u t i o n is increased. T h e h o r i z o n t a l step o b s e r v e d w i t h the phase separation m e a s u r e m e n t is i n a p p r o x i m a t e agreement w i t h the m a x i m u m surface c o n c e n t r a t i o n of d y e i n its /-state as d e t e r m i n e d b y the o p t i c a l m e t h o d . t r a r y to earlier suppositions
(70),
H e n c e , i t is c o n c l u d e d that, c o n
o n l y the first l a y e r of this d y e is
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
a d s o r b e d i n its / - s t a t e ; subsequent d y e layers m u s t b e a d s o r b e d i n d i f ferent states. Table I.
Adsorption Data for Cyanines on Silver Bromide
7 X 10~ M AgBr (Dispersion D) in 0.2% gelatin at pH = 6.5, pBr = 3 2
23°C,
Pseudocyanine Saturation Coverage ( m M Dye/mole AgX) Area per molecule ( A . ) Langmuir Coefficient K ( m M " ) A G ° (kcal./mole)
0.57 0.56* 57 3 X 10 -9.8
1
6
0.46° 0.47* 69 7 X 10 -8.8
s
2
a
Astraphloxin
3
2
Values obtained from phase-separation procedure. Values calculated from spectra of Figures 5 and 6.
Discussion O n c o m p a r i n g the P s e u d o c y a n i n e spectra of F i g u r e s 1, 2, 3, a n d 5 w i t h those o b t a i n e d i n c o n c e n t r a t e d aqueous d y e solutions (12, 58, 59),
56,
57,
obvious similarities of the r e s u l t i n g /-states w i l l be n o t e d . Present
a n d earlier d a t a m a k e it a p p a r e n t that electronic c o u p l i n g
between
adjacent d y e molecules c a n p r o d u c e s i m i l a r /-states, regardless of w h e t h e r a p p r o p r i a t e o r i e n t a t i o n a n d p r o x i m i t y of the molecules Coulombic
a t t r a c t i o n , as
i n salt f o r m a t i o n w i t h
w h e t h e r i t is i n d u c e d b y v a n der W a a l s forces.
is caused
polymeric
ions,
by or
T h e latter are p r i m a r i l y
i n v o l v e d i n the f o r m a t i o n of d y e aggregates i n w a t e r as w e l l as i n the c h a r g e - i n d e p e n d e n t a d s o r p t i o n of d y e m o n o l a y e r s at silver h a l i d e sur faces
(23,46).
T h e p r i n c i p a l s p e c t r a l feature of the /-state of P s e u d o c y a n i n e is the b a t h o c h r o m i c b a n d w h i c h , d e p e n d i n g o n the substrate, absorbs b e t w e e n 568-582 n . m . w i t h a n e x t i n c t i o n coefficient of 0.5-2.3 X 1 0 M 5
_ 1
cm.
- 1
and
a h a l f - w i d t h of less t h a n 50 c m . " . T h e s e values are i n r o u g h agreement 1
w i t h those o b t a i n e d i n aqueous gels of P s e u d o c y a n i n e at concentrations a b o v e 0 . 1 M (12).
I n a d d i t i o n to this intense a n d n a r r o w b a n d , the
/ - s t a t e also contains components w h i c h absorb w e a k l y at shorter w a v e -
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
192
ADSORPTION F R O M
lengths.
AQUEOUS SOLUTION
T h i s spectral s p l i t t i n g of the /-state has b e e n discussed
with
reference to c o u p l e d oscillators a n d to q u a n t u m t h e o r y b y F o r s t e r ; m o r e recently, M c R a e a n d K a s h a h a v e t r e a t e d this subject i n terms of m o l e c u l a r e x c i t o n m o d e l (16,
45).
the
T h e l o w - i n t e n s i t y transitions of the
/-state o v e r l a p the a b s o r p t i o n of u n p e r t u r b e d d y e i n s o l u t i o n ; t h e y are p o o r l y defined i n F i g u r e 1, w h e r e they a p p e a r as shoulders f r o m about 480-540 n . m .
extending
H o w e v e r , they are c l e a r l y r e s o l v e d i n the
spectra r e s u l t i n g f r o m i n t e r a c t i o n w i t h
appropriate anionic
polymers
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
a n d e x h i b i t d i s t i n c t s u b s i d i a r y m a x i m a of 500 a n d 535 n . m . ( F i g u r e 2, a n d Reference 1 ) .
T h e s e short-wave c o m p o n e n t s c a n also b e
observed
o n e x a m i n i n g the a n i s o t r o p i c b e h a v i o r of fibrous /-aggregates i n w a t e r , w h e r e t h e y a p p e a r near 500 a n d 540 n . m . w i t h the electric vector p e r p e n d i c u l a r to the fiber axis a n d p a r a l l e l to the longest d i m e n s i o n of the m o l e c u l e (25, 41, 56, 57, 58, 59).
S u c h h i g h - f r e q u e n c y bands w e r e f o u n d
to b e associated as a n i n t e g r a l p a r t of the /-state w i t h a l l cyanines w h i c h were examined. A p p a r e n t l y , it w a s l a r g e l y l a c k of r e c o g n i t i o n of these
short-wave
c o m p o n e n t s of the /-state w h i c h r e c e n t l y l e d P a d d a y a n d W i c k h a m to the c o n c l u s i o n that i n silver h a l i d e dispersions P s e u d o c y a n i n e is a d s o r b e d at s a t u r a t i o n coverage i n t w o d y e layers. It was s u p p o s e d t h a t a b s o r p t i o n i n the M - b a n d r e g i o n (540 n.m.) w a s c a u s e d o n l y b y a flat m o n o l a y e r of d y e c o v e r i n g the surface a n d that a second d y e l a y e r w a s b o u n d o n top of the first i n a n edge-on o r i e n t a t i o n w h i c h t h e n gave rise to t h e / - b a n d at 573 n . m . (50). figuration
T h e s e v i e w s c o n c e r n i n g a n a priori
unlikely dye con
h a v e r e c e i v e d no e x p e r i m e n t a l s u p p o r t f r o m earlier or present
evidence. roll (8),
H o w e v e r , i n agreement w i t h conclusions s u m m a r i z e d b y C a r present experiments have s h o w n that a d s o r p t i o n of
isolated
P s e u d o c y a n i n e c o u l d b e detected b y the appearance of a n M - b a n d o n l y a
u n d e r c o n d i t i o n s of v e r y l o w surface coverage. T h e M - b a n d at 543 n . m . a
i n F i g u r e 5 ( C u r v e a ) is b a r e l y e v i d e n t before the onset of d i s t i n c t / - b a n d f o r m a t i o n at h i g h e r d y e
concentrations
r e o r i e n t a t i o n of the d y e molecules
w h i c h presumably involves
(JO, 70).
a
T h e extent to w h i c h M a -
b a n d s f o r m appears to d e p e n d also o n the c r y s t a l h a b i t of t h e silver halide.
T h u s , c o n t i n u i n g the p r e v i o u s l y r e p o r t e d a d s o r p t i o n
ments of
Pseudocyanine
dispersions (23),
i n c r y s t a l l o g r a p h i c a l l y defined
measure
AgBr
gelatin
i t w a s f o u n d that, i n the c u b i c A g B r system, t h e d y e
was a d s o r b e d i n its M - s t a t e at coverages a p p r o a c h i n g 5 % of the surface a
before the /-state b e c a m e prevalent. O n the other h a n d , i n the o c t a h e d r a l A g B r d i s p e r s i o n n o M - b a n d c o u l d b e detected a n d o n l y the / - b a n d was a
observed.
T h i s d e p e n d e n c e of M - s t a t e c o n c e n t r a t i o n o n the c r y s t a l h a b i t a
of the substrate is b e l i e v e d to i n d i c a t e differences
i n their adsorption
forces. It is l i k e l y that, w h e r e substrate-dye i n t e r a c t i o n is strongest, the d y e w i l l be a d s o r b e d as isolated a n d p o s s i b l y flat molecules
(10,
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
70),
14.
HERZ E T AL.
Adsorption
of
Dyes
193
whereas l a t e r a l d y e - d y e i n t e r a c t i o n l e a d i n g to the /-state w i l l be f a v o r e d w h e n c o m p e t i n g forces f r o m the substrate are r e l a t i v e l y w e a k . A c c o r d i n g to this i n t e r p r e t a t i o n , the energy of a d s o r p t i o n of P s e u d o c y a n i n e at l o w coverages of A g B r s h o u l d be greater for the c u b i c t h a n for the o c t a h e d r a l substrate. T h e silver d i s p e r s i o n gave no i n d i c a t i o n that P s e u d o c y a n i n e
was
b o u n d i n the M - s t a t e at a n y surface coverage ( F i g u r e s I B a n d 3 )
and
a
i n this respect it b e h a v e d l i k e the o c t a h e d r a l A g B r substrate.
Although
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
c o l l o i d a l silver h a v i n g r e p r o d u c i b l e spectral properties w a s r e a d i l y p r e p a r e d b y the i n d i c a t e d p r o c e d u r e , these silver preparations are n e i t h e r homodisperse, n o r do they possess a w e l l - d e f i n e d surface. A m o r e s u i t a b l e silver substrate w a s p r e p a r e d b y d e p o s i t i n g silver o n g o l d n u c l e i
(48).
T h i s sol was p u r i f i e d b y d i a l y s i s ; i t h a d a n a r r o w size d i s t r i b u t i o n w i t h a n average
p a r t i c l e d i a m e t e r of 320 A . a n d o n c e n t r i f u g i n g gave a n
o p t i c a l l y clear supernatant l i q u i d .
U n d e r the same c o n d i t i o n s as those
d e s c r i b e d i n F i g u r e I B , P s e u d o c y a n i n e a g a i n gave a / - b a n d near 580 n . m . ; h o w e v e r , its m o l a r e x t i n c t i o n w a s t w i c e as h i g h as that s h o w n i n F i g u r e IB.
M o r e d e t a i l e d e x a m i n a t i o n of the i n t e r a c t i o n of this silver sol w i t h
the p-toluenesulfonate
salt of P s e u d o c y a n i n e b y b o t h the c e n t r i f u g a t i o n
and spectral procedure,
d e m o n s t r a t e d that a d s o r p t i o n of t h e d y e
and
/ - b a n d f o r m a t i o n o c c u r r e d i n the presence b u t not i n the absence of c h l o ride, bromide,
or
iodide.
Furthermore, if reducing
compounds
h y d r a z i n e or s i l v e r - c o m p l e x i n g agents s u c h as sulfite or c y a n i d e
like were
a d d e d to the system before the d y e , neither / - b a n d f o r m a t i o n n o r a d s o r p t i o n w a s detected, e v e n i n the presence of 1 0 " M or m o r e h a l i d e . 4
w e tentatively conclude
Hence,
that the a d s o r p t i o n sites for P s e u d o c y a n i n e
in
these dispersions are not silver b u t consist of silver h a l i d e . I n this c o n n e c t i o n i t is significant that p r e v i o u s l y r e p o r t e d a d s o r p t i o n of this d y e o n silver substrates w a s o b s e r v e d o n a d d i t i o n of h a l i d e salts of the d y e (19, 4 9 ) . Present d a t a i l l u s t r a t e the t e c h n i q u e for a n in situ d e t e r m i n a t i o n of surface areas. R e l a t e d methods h a d b e e n a p p l i e d p r i m a r i l y to the s t u d y of site d i s t r i b u t i o n s i n c l a y m i n e r a l s , p a r t i c u l a r l y b y R u s s i a n w o r k e r s (66), a n d they were used b y Bergmann a n d O ' K o n s k i i n a detailed inves t i g a t i o n of
the m e t h y l e n e
blue-montmorillonite
system
(3).
changes i n electronic spectra a r i s i n g f r o m surface interactions
In
fact,
received
sufficient a t t e n t i o n i n the past to w a r r a n t t h e i r r e v i e w b y A . T e r e n i n (65).
M o s t of these investigations i n v o l v e d t r a n s m i t t a n c e spectra
n e w techniques i n reflection s p e c t r o p h o t o m e t r y
but
a n d a p p l i c a t i o n s of the
K u b e l k a - M u n k r e l a t i o n h a v e f a c i l i t a t e d the q u a n t i t a t i v e e v a l u a t i o n of spectra i n h i g h l y t u r b i d m e d i a (35, 69, 7 7 ) .
T h u s , i n agreement
with
the w o r k of K o r t i i m o n p o w d e r s a n d a n h y d r o u s dispersions ( 3 1 , 32, 3 3 ) , o u r results demonstrate the a p p l i c a b i l i t y of the K u b e l k a - M u n k f u n c t i o n
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
194
ADSORPTION F R O M
AQUEOUS SOLUTION
to s t r o n g l y scattering aqueous silver h a l i d e s . T h e y also s h o w t h a t the p e r t u r b a t i o n of a dye's electronic transitions i n d u c e d b y its a d s o r p t i o n c a n y i e l d d i r e c t i n f o r m a t i o n o n surface coverages (24)
and allows con
clusions to b e m a d e about m o l e c u l a r o r i e n t a t i o n i n the d y e
monolayer.
F o r t h e p u r p o s e of m e a s u r i n g the surface area of a substrate b y s u c h s p e c t r a l changes, the use of P s e u d o c y a n i n e c o m m e n d s
itself.
N o t only
is the m o l e c u l a r area of this d y e reasonably w e l l k n o w n b u t the n a r r o w a n d intense t r a n s i t i o n associated w i t h its c l o s e - p a c k e d
adsorbed
state
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
does not d e p e n d strongly o n the c o m p o s i t i o n of the silver h a l i d e or its crystal habit.
M o r e o v e r , present results a n d earlier experiments
demonstrated
t h a t d y e a d s o r p t i o n measurements
with
have
Pseudocyanine,
either i n the absence or presence of p r o t e c t i v e c o l l o i d s , c a n y i e l d silver h a l i d e surface areas w h i c h are i n g o o d agreement p e n d e n t estimates
w i t h various inde
(9,23).
It r e m a i n s to be d e t e r m i n e d to w h a t extent the d y e
adsorption
t e c h n i q u e is a p p l i c a b l e to other substrates.
N o evidence was obtained
for P s e u d o c y a n i n e a d s o r p t i o n to M n 0 , F e 0
3
2
2
or to p u r e silver surfaces,
a l t h o u g h this d y e c a n b e b o u n d to m i c a , l e a d h a l i d e s , a n d m e r c u r y salts w i t h f o r m a t i o n of a / - b a n d (61).
N o t o n l y cyanines b u t other d y e classes
c a n y i e l d surface spectra w h i c h m a y b e s i m i l a r l y a n a l y z e d . T h i s is spe cifically the case w i t h the p h t h a l e i n a n d a z i n e dyes w h i c h w e r e
recom
m e n d e d b y F a j a n s a n d b y K o l t h o f f as a d s o r p t i o n i n d i c a t o r s i n p o t e n t i o m e t r i c titrations (15, 30).
T h e t e c h n i q u e s d e s c r i b e d are also c o n v e n i e n t
for d e t e r m i n i n g rates a n d heats of a d s o r p t i o n a n d surface concentrations of dyes; t h e y h a v e a l r e a d y f o u n d a p p l i c a t i o n i n studies of (18)
a n d electrophoresis
(68)
luminescence
of silver h a l i d e s as a f u n c t i o n of
dye
coverage. Sorption of
Meso-alkylcarbocyanines
A l t h o u g h w i t h P s e u d o c y a n i n e the existence of a /-state does not d e p e n d o n the silver halide's c r y s t a l structure, m e s o - a l k y l c a r b o c y a n i n e s c a n e x h i b i t r e m a r k a b l y different surface spectra o n c u b i c a n d o c t a h e d r a l silver b r o m i d e s (13,17).
T h e s e dyes are p a r t i c u l a r l y sensitive to v a r i a t i o n
i n s p a c i n g of lattice sites at ( 1 0 0 ) a n d ( 1 1 1 ) faces a n d to the different field forces e m a n a t i n g f r o m t h e m . T h u s , w i t h v a r i o u s l y c h a r g e d 9 - m e t h y l t h i a c a r b o c y a n i n e s (22, 23, 36),
f u r t h e r experiments at p B r 3-4 i n c u b i c A g B r
dispersions s h o w e d H- a n d B - b a n d s of essentially e q u a l i n t e n s i t y near 520 a n d 590 n . m . , respectively.
T h e s e b a n d s w e r e n e a r l y absent o n the
o c t a h e d r a l substrate w h i c h , i n s t e a d , c a u s e d f o r m a t i o n of a / - b a n d near 620 n . m . O f the v a r i o u s possibilities to account for these s p e c t r a l differ ences, there are at least three w h i c h w a r r a n t close c o n s i d e r a t i o n : ( a )
The
t h i a c a r b o c y a n i n e m a y b e a d s o r b e d either flat or o n its l o n g edge, d e p e n d -
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
Adsorption
HERZ E T AL.
i n g o n the substrate,
(b)
of
195
Dyes
S t a c k i n g of d y e molecules o n t h e i r l o n g e d g e
m a y v a r y i n o r i e n t a t i o n s u c h that the n i t r o g e n atoms of the d y e c a n b e near the surface i n one case, whereas i n the other, s u l f u r w o u l d b e i n that p o s i t i o n . A l t e r n a t i n g orientations of this t y p e o c c u r r e d w i t h a t h i a c a r b o c y a n i n e (75, 76)
i n its c r y s t a l l i n e state, ( c )
D i f f e r e n t stereoisomers
of the d y e are a d s o r b e d o n the t w o substrates.
T h e existence of i n t e r
c o n v e r t i b l e stereoisomers strated
(60,
of 9 - a l k y l t h i a c a r b o c y a n i n e s has b e e n
a n d Zechmeister
74)
has r e p o r t e d
the
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
separation of a t h i a t r i c a r b o c y a n i n e i n t o s u c h isomers
demon
chromatographic (78).
O f these alternatives o n l y the first c a n n o w b e e l i m i n a t e d since the c a t i o n i c 9 - m e t h y l t h i a c o r b o c y a n i n e w a s f o u n d to o c c u p y the same l i m i t i n g area of ca. 60 A . p e r m o l e c u l e i n b o t h c u b i c a n d o c t a h e d r a l A g B r 2
(23).
F o r a c l o s e - p a c k e d m o n o l a y e r , this area r e q u i r e m e n t is consistent w i t h essentially v e r t i c a l a l i g n m e n t b u t is too s m a l l , b y a factor greater t h a n t w o , to a l l o w for h o r i z o n t a l o r i e n t a t i o n of the a d s o r b e d d y e .
However,
r e l a t i v e l y m i n o r v a r i a t i o n s i n t i l t angle of the m o l e c u l a r planes, e.g.,
50°
vs. 60° w o u l d p r o b a b l y not b e detectable b y these area d e t e r m i n a t i o n s . Y e t s u c h a n g u l a r d i s p l a c e m e n t s (14,45)
are e x p e c t e d to exert p r o n o u n c e d
effects o n surface spectra. H e n c e , i t is clear that sufficient d a t a are not yet a v a i l a b l e to f u l l y s u p p o r t a n e x p l a n a t i o n of s p e c t r a l properties
of
m e s o - s u b s t i t u t e d c a r b o c y a n i n e s w h i c h are b o u n d to s i l v e r h a l i d e s h a v i n g different c r y s t a l h a b i t s . Acknowledgments It is a pleasure to t h a n k H . E l i n s , for h a v i n g b r o u g h t to o u r a t t e n t i o n the i n t e r a c t i o n of P s e u d o c y a n i n e w i t h P V E - s u l f a t e ; F . G r u m , for assist ance i n the d e t e r m i n a t i o n of spectra; a n d J . H e l l i n g , for m u c h h e l p i n e a r l y a d s o r p t i o n measurements. Note T h e area d e t e r m i n a t i o n s b y d y e a d s o r p t i o n f r o m s o l u t i o n d i s c u s s e d here are a p p l i c a b l e to aqueous dispersions. A l t h o u g h s a t u r a t i o n c o v e r a g e of s i l v e r h a l i d e s b y P s e u d o c y a n i n e r e m a i n e d u n c h a n g e d i n 4 0 % m e t h a n o l b y v o l u m e , it is k n o w n that i n o r g a n i c solvents w h e r e i o n - p a i r s m a y b e a d s o r b e d , the m o l e c u l a r cross section of the c y a n i n e c a n v a r y w i t h the dye's anion—cf. Reference
23 for
d i s c u s s i o n a n d l i t e r a t u r e citations.
R e c e n t d e t e r m i n a t i o n s of A g l areas b y a d s o r p t i o n of P s e u d o c y a n i n e w e r e r e p o r t e d to h a v e b e e n u n r e a l i s t i c a n d salt-dependent ( v a n d e n H u l , H . J . , L y k l e m a , J . , / . Phys.
Chem.
9 0 , 3010 ( 1 9 6 8 ) ) .
A l i k e l y reason f o r this
result is the c i r c u m s t a n c e that these investigators c a r r i e d out t h e i r m e a surements i n a l c o h o l dispersions of the substrate w h e r e the c i t e d solventdependent limitations w o u l d apply.
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
196
ADSORPTION F R O M
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
Literature
AQUEOUS
SOLUTION
Cited
(1) A p p e l , W . , Scheibe, G . , Z . Naturforschg. 13b, 359 (1958). (2) Bean, R. C., Shepherd, W . C., K a y , R. E., W a l w i c k , E. R., J. Phys. Chem. 6 9 , 4 3 6 8 (1965). (3) Bergmann, K . , O'Konski, C., J. Phys. Chem. 67, 2169 (1963). (4) Borginon, H., Danckaert, V., Phot. Korr. 98, 74 (1962). (5) Boyer, S., Cappelaere, J . , J. Chim. Phys. 60, 1123 (1963). (6) Boyer, S., Pinchon, L., Degove, O., J. Chim. Phys. 60, 301 (1965). (7) Brooker, L. G . S., Keyes, G . H., J. Am. Chem. Soc. 57, 2488 (1935). (8) Carroll, B . H., Phot. Sci. Eng. 5, 65 (1961). (9) Curme, H. G . , Natale, C . C., J. Phys. Chem. 68, 3009 (1964). (10) D a v e y , E. P . , Trans. Faraday Soc. 36, 323 (1940). (11) Dickinson, H. O., Nature 163, 485 (1949). (12) Ecker, H., Koll. Z. 92, 35 (1940). (13) Eggers, J . , Gunther, E., Moisar, E . , Phot. Korr. 102, 144 (1966). (14) Emerson, E., C o n l i n , M., Rosenoff, A . , Norland, K . , Rodriguez, H., C h i n , D . , B i r d , G . , J. Phys. Chem. 7 1 , 2396 (1967). (15) Fajans, K., " N e w e r Methods of Volumetric Chemical Analysis," trans, by R. Oesper, D . V a n Nostrand C o . , N e w York, 1938. (16) Förster, T h . , "Fluoreszenz Organischer Verbindungen," p. 256 ff, V a n denhoeck and Ruprecht, Goettingen, 1951. (17) Frieser, H., Graf, A., Eschrich, D . , Z . Electrochem. 65, 870 (1961). (18) G i l m a n , P. C., Phot. Sci. Eng. 11, 222 (1967). (19) Groszek, A., W o o d , H., J. Phot. Sci. 13, 133 (1965). (20) Gunther, E., Moisar, E., J. Phot. Sci. 13, 280 (1965). (21) Hamer, F. M., J. Chem. Soc. 1928, 206. (22) H e r z , A . H., H e l l i n g , J . O., J. Colloid Sci. 17, 293 (1962). (23) H e r z , A. H., H e l l i n g , J . O., J. Colloid Interface Sci. 22, 391 (1966). (24) H e r z , A . H., H e l l i n g , J . O., Koll. Z. and Z. Polymere 218, 157 ( 1 9 6 7 ) . (25) H o p p e , W., Koll. Z. 109, 27 (1944). (26) Jelley, E. E., Nature 138, 1009 (1936). (27) Ibid., 139, 631 (1937). (28) K a y , R. E., W a l w i c k , E . R., Gifford, C . K., J. Phys. Chem. 68, 1896 (1964). (29) Ibid., 68, 1907 (1964). (30) Kolthoff, I. M., Chem. Rev. 16, 87 (1935). (31) Kortüm, G . , Vogel, J . , Chem. Ber. 93, 706 (1960). (32) Kortüm, G . , Oelkrug, D . , Z . Physik. Chem. (Frankfurt) 34, 58 (1962). (33) Kortüm, G . , Braun, W . , Z . Physik. Chem. (Frankfurt) 48, 282 (1966). (34) Kortüm, G . , Oelkrug, D., Naturwiss. 53, 600 (1966). (35) Kottler, F . , "Progress i n Optics," V o l . III, p. 1, E . W o l f , ed., North Holland Publishing C o . , Amsterdam, 1964. (36) K r a g h , A . , Peacock, R., Reddy, G . , J. Phot. Sci. 14, 185 (1966). (37) L i e u , V., F r o d y m a , M., Talanta 13, 1319 (1966). (38) M a r k o c k i , W . , J. Phot. Sci. 13, 85 (1965). (39) Mason, S. F., Proc. Chem. Soc. 1964, 119. (40) Mason, S. F., "Optische Anregung Organischer Systeme," p. 143, 2nd. Intern. Farbensymposium, Verlag Chemie, W e i n h e i m , Germany, 1966. (41) Mattoon, R. W . , J. Chem. Phys. 12, 263 (1944). (42) M c K a y , R. B . , Hillson, P. J., Trans. Faraday Soc. 6 1 , 1800 (1965). (43) Ibid., 62, 1439 (1966). (44) Ibid., 63, 777 (1967). (45) M c R a e , E., Kasha, M., "Physical Processes i n Radiation Biology," p. 23 ff., Academic Press, N e w York, 1964. (46) Mees, C . E . K., James, T . H., " T h e Theory of the Photographic Process," 3rd. ed., Chapt. 12, The M a c m i l l a n C o . , N e w York, 1966.
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14.
Downloaded by UCSF LIB CKM RSCS MGMT on December 2, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch014
(47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78)
HERZ E T AL.
Adsorption
197
of Dyes
Ibid., Chapt. 1. Morriss, R., Collins, L., J. Chem. Phys. 4 1 , 3357 (1964). Newmiller, R. J . , Pontius, R. B . , Phot. Sci. Eng. 5, 283 (1961). Padday, J . F., W i c k h a m , R., Trans. Faraday Soc. 62, 1283 (1966). Padday, J . F . , J. Phys. Chem. 7 1 , 3488 (1967). Patat, F., Vogler, K . , Helv. Chim. Acta 35, 128 (1952). Paticolas, W . , J. Chem. Phys. 40, 1463 (1964). Riester, O., "Scientific Photography," p. 480, Proc. I n t l . Colloq. Liege, 1959, H. Sauvenier, ed., Pergamon Press, L o n d o n , 1962. Ruggli, P., Jensen, P., Helv. Chim. Acta 18, 624 (1935). Scheibe, G . , Z . Angew. Chem. 50, 51 (1937). Scheibe, G . , Koll. Z. 82, 1 (1938). Scheibe, G . , Z . Elektrochem. 52, 283 (1948). Scheibe, G . , "Optische Anregung Organischer Systeme," p. 109, 2nd Intern. Farbensymposium, Verlag Chemie, W e i n h e i m , Germany, 1966. Scheibe, G . , W o r z , O., Angew. Chem. 78, 304 (1966). Sheppard, S. E., Rev. Mod. Phys. 14, 303 (1942). Sheppard, S. E., Lambert, R. H., Walker, R. D . , J. Chem. Phys. 7, 265 (1939). Skerlak, T., Koll. Z. 95, 265 (1941). Stevens, G . W . W . , Block, P., J. Phot. Sci. 12, 247 (1964). Terenin, A., Advan. Catalysis 15, 227 (1964). Vedeneeva, N., quoted by E i t e l , W . , "Silicate Science," p. 448, V o l . 1, Academic Press, N e w York, 1964. Weiser, H. B., "Inorganic C o l l o i d Chemistry," V o l . 1, p. 119, J . W i l e y and Sons, N e w York, 1933. Weiss, G . R., Ericson, R. H., Herz, A . H., J. Colloid Interface Sci. 23, 277 (1967). Wendlandt, W . , Hecht, H., "Reflectance Spectroscopy," Interscience P u b lishers, N e w York, 1966. West, W . , Carroll, B. H., W h i t c o m b , D . L., J. Phys. Chem. 56, 1054 (1952). West, W . , Carroll, B . H., W h i t c o m b , D . L., Ann. N. Y . Acad. Sci. 58, 893 (1954). West, W . , Geddes, A . L., J. Phys. Chem. 68, 837 (1964). West, W . , Pearce, S., J . Phys. Chem. 69, 1894 (1965). West, W . , Pearce, S., G r u m , F., J. Phys. Chem. 7 1 , 1316 (1967). Wheatley, P., J. Chem. Soc. 1959, 3245. Ibid., 1959, 4096. Wolfe, R. N., D e P a l m a , J. J., Saunders, S., J. Opt. Soc. Am. 55, 956 (1965). Zechmeister, L., Pinckard, J . , Experentia
RECEIVED
October 26,
9, 16 (1953).
1967.
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.