5 Adsorption of Hydrolyzed Hafnium Ions on Glass
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch005
LYNDEN
J . S T R Y K E R and
EGON
MATIJEVIĆ
Department of Chemistry and Institute of C o l l o i d and Surface Science, Clarkson College of Technology, Potsdam, N. Y .
The
adsorption
increase
with
of hafnium
species
the solution
pH
The effects on the adsorption
on glass was found
and hafnium
of the solution
age were studied and the equilibration tion process was determined. was determined
vapor.
The results are discussed
hafnium(IV)
species.
erage was obtained hafnium
is in the
by the B.E.T.
>
solution
soluble
sorption
layer the cross-sectional is nearly
the
using
species.
glass water
hydrolyzed
nearly monolayer Under
these
in its entirety
neutral, which
Hf(OH)4
4.5.
and adsorp-
area of the
method
in terms of the
At equilibrium, at pH
preparation
time for the
The surface
sample
in the
form
In the close packed water
on silica
cov-
conditions
area of this species is 24
same as for
to
concentration.
of adA.
2
surfaces.
T ^ T u m e r o u s experiments d e a l i n g w i t h the a d s o r p t i o n of m e t a l ions o n glass f r o m aqueous solutions h a v e b e e n r e p o r t e d i n the literature. T h e s e studies dealt, for example, w i t h s o d i u m (6,11,18), c e s i u m (11, c i u m (6),
18),
z i r c o n i u m (29,
m e t h i u m (4), thorium
t h a l l i u m ( I ) a n d t h a l l i u m ( I I I ) (32),
(24),
34, 36),
r u t h e n i u m (4, 31),
g o l d ( 2 6 ) , b i s m u t h (17), r a d i u m (22),
p l u t o n i u m (7, 8, 9, 10,13,
14).
l e a d (17),
p r o t a c t i n i u m (35),
potassium silver ( I I ) , c e r i u m (4),
(6), cal pro-
p o l o n i u m (17, 28,
33),
u r a n i u m (30),
and
I n the m a j o r i t y of the experiments r a d i o
active isotopes w e r e u s e d i n tracer q u a n t i t i e s . It w a s established w i t h o u t e x c e p t i o n t h a t the p H w a s the most i m p o r t a n t p a r a m e t e r affecting the a d s o r p t i o n . I n the case of s i m p l e n o n - h y d r o l y z a b l e ions the p H effects w e r e i n t e r p r e t e d i n terms of the h y d r o l y s i s of the glass surface. It is also g e n e r a l l y suggested that the m e c h a n i s m of a d s o r p t i o n of n o n - h y d r o l y z e d ions is essentially an i o n exchange cations i n the glass (3),
of the adsorbate
species w i t h
the
a l t h o u g h there are n u m e r o u s observations w h i c h 44
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
5.
STRYKER
A N D
Hydrolyzed
M A T I J E V I C
Hafnium
45
Ions
i n d i c a t e that the a s s u m p t i o n of the ion-exchange as the o n l y cause for a d s o r p t i o n is a gross o v e r s i m p l i f i c a t i o n
(18).
T h e a d s o r p t i o n of p o l y v a l e n t m e t a l ions o n glass is a c o n s i d e r a b l y m o r e c o m p l e x process.
S u c h ions easily h y d r o l y z e to give a v a r i e t y of
soluble c o m p l e x species a n d , f r e q u e n t l y , i n s o l u b l e h y d r o x i d e s at rather l o w p H values. T h u s , a n increase i n p H not o n l y affects the surface of the glass b u t also changes t h e entire c o m p o s i t i o n of the adsorbate i n solution.
A s a r u l e , the a d s o r p t i o n of p o l y v a l e n t m e t a l ions
increases
d r a m a t i c a l l y a b o v e a c e r t a i n p H . I n some cases, the a d s o r b e d Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch005
rises c o n t i n u o u s l y w i t h a n increase i n p H (32). nounced
adsorption m a x i m a were observed
amount
I n other cases,
pro
at some i n t e r m e d i a t e p H
values. T h e p o s i t i o n of the m a x i m u m v a r i e d w i t h the element (7, 8, 24, 26, 30, 31, 35, 36).
W h i l e there w a s evidence t h a t this m a x i m u m w a s
i n d e p e n d e n t of the adsorbent (4),
a b i g difference w a s f o u n d w h e n glass
a n d q u a r t z w e r e c o m p a r e d u s i n g the same c o u n t e r i o n (7,8).
It is u s u a l l y
a s s u m e d that at v e r y l o w p H , w h e r e h y d r o l y s i s is n e g l i g i b l e , the p o l y v a l e n t m e t a l ions to b e e x c h a n g e d for cations i n the glass are i n c o m p e t i t i o n w i t h the h i g h excess of h y d r o g e n ions. T h e increase i n a d s o r p t i o n w i t h p H has b e e n i n t e r p r e t e d i n v a r i o u s w a y s . I n general, the h y d r o l y s i s of the a d s o r b i n g m e t a l ions has b e e n a s s u m e d responsible f o r the e n h a n c e d a d s o r p t i o n , a l t h o u g h the use a n d the m e a n i n g of the t e r m " h y d r o l y s i s " is not a l w a y s consistent.
I n some instances this refers to the
f o r m a t i o n of soluble, w h i l e i n other cases to i n s o l u b l e p r o d u c t s .
The
greater a d s o r p t i v i t y of soluble c o m p l e x species w a s p r o p o s e d b y several investigators (7,8,13,14,24, to m a k e
30, 34,36).
H o w e v e r , no one ever a t t e m p t e d
a quantitative correlation between
the
composition
of
the
adsorbate s o l u t i o n a n d the a d s o r b e d q u a n t i t i e s . I n g e n e r a l i t is b e l i e v e d that the a d s o r p t i o n depends on the charge of the i o n i c complexes that l o w e r c h a r g e d or n e u t r a l sspecies adsorb less s t r o n g l y (34,
and
36).
M o r e f r e q u e n t l y the d e p e n d e n c e of a d s o r p t i o n u p o n p H w a s r e l a t e d to the f o r m a t i o n of c o l l o i d a l m e t a l h y d r o x i d e s .
A g a i n , some authors
expressed the o p i n i o n that the f o r m a t i o n of c o l l o i d s p r o m o t e d the a d s o r p t i o n (31,32)
w h i l e some others c l a i m e d the opposite (7, 8, 24, 36).
How
ever, it w a s g e n e r a l l y agreed that w h e n a n a d s o r p t i o n m a x i m u m w a s o b s e r v e d as a f u n c t i o n of the p H , the r e d u c e d a d s o r p t i o n at h i g h e r p H values w a s e x p l a i n e d b y the electrostatic r e p u l s i o n b e t w e e n the c o l l o i d particles a n d glass surface b e a r i n g the same charge. T h e entire p i c t u r e is s t i l l m o r e c o n f u s i n g because of the fact t h a t several different types of c o l l o i d s are d i s t i n g u i s h e d — i . e . , " r a d i o c o l l o i d s , " "pseudo-colloids"
(7, 8, 28, 33),
a n d " t r u e c o l l o i d s . " R a d i o - c o l l o i d s refer
to systems of radiotracers w h i c h a p p e a r to b e i n c o l l o i d a l f o r m a l t h o u g h t h e y are i n concentrations w e l l b e l o w t h e i r i o n i c s o l u b i l i t y (25, 26).
The
t e r m p s e u d o - c o l l o i d is u s e d to describe the f o r m a t i o n of a c o l l o i d system
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
46
ADSORPTION
F R O M
AQUEOUS
SOLUTION
b y the a d s o r p t i o n of a r a d i o e l e m e n t o n s o l i d i m p u r i t i e s c o n t a i n e d i n the s o l u t i o n (7, 8, 29). v e r s i a l (25, 27)
W h i l e the n a t u r e of " r a d i o c o l l o i d s " is s t i l l c o n t r o
the m e a n i n g of " p s e u d o - c o l l o i d s " is c o m p l e t e l y
obscure.
O n e gets the f e e l i n g that the latter c o n c e p t w a s i n t r o d u c e d for l a c k of u n d e r s t a n d i n g of the c o m p l e x process of a d s o r p t i o n of h y d r o l y z e d species f r o m aqueous solutions. F r o m the p r e c e d i n g s u r v e y it is a p p a r e n t that f u r t h e r studies are n e e d e d to e l u c i d a t e the m e c h a n i s m of a d s o r p t i o n of h y d r o l y z a b l e ions o n v a r i o u s adsorbents, p a r t i c u l a r l y o n glass.
O f s p e c i a l interest is t h e
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch005
q u e s t i o n w h e t h e r a n e n h a n c e d a d s o r p t i o n at h i g h e r p H is c a u s e d
by
soluble h y d r o l y z e d species or b y the f o r m a t i o n of c o l l o i d a l h y d r o x i d e s . I f the s o l u b l e complexes are responsible for the greater a d s o r p t i v i t y t h e r e l a t i o n s h i p of the latter to the charge, size, shape, configuration, a n d l i g a n d c o m p o s i t i o n of the adsorbate species becomes p e r t i n e n t . T h e a n s w e r to these p r o b l e m s is essential for the u n d e r s t a n d i n g of v a r i o u s surface p h e n o m e n a i n the presence of h y d r o l y z a b l e ions s u c h as sol s t a b i l i t y , flota t i o n , c o p r e c i p i t a t i o n , a d h e s i o n , p a p e r s i z i n g , etc. S e v e r a l attempts h a v e b e e n m a d e to correlate the a d s o r p t i v i t y of h y d r o l y z a b l e cations to the c o m p o s i t i o n of the species i n aqueous s o l u t i o n (1, 2, 20).
I n p a r t i c u l a r , the a d s o r p t i o n of t h o r i u m o n s i l v e r h a l i d e s
i n d i c a t e d a v e r y close r e l a t i o n s h i p b e t w e e n the change i n the a m o u n t of t h o r i u m a d s o r b e d a n d the c o n c e n t r a t i o n of the h y d r o l y z e d species i n s o l u t i o n (19).
soluble
T h e major difficulty i n this t y p e of w o r k is the
l a c k of q u a n t i t a t i v e d a t a o n the h y d r o l y s i s of v a r i o u s m e t a l ions.
The
o t h e r u n c e r t a i n t y is w i t h r e g a r d to the k n o w l e d g e of the true surface area of the adsorbent i n aqueous solution. T h i s latter i n f o r m a t i o n is n e e d e d if surface coverages are to b e e v a l u a t e d . A t least some of these difficulties h a v e b e e n o v e r c o m e i n t h e w o r k to b e r e p o r t e d i n this s t u d y , w h i c h deals w i t h the a d s o r p t i o n of h a f n i u m h y d r o l y z e d species o n p o w d e r e d glass as a f u n c t i o n of the a c i d i t y of the m e d i u m . T h e a d s o r p t i o n of h a f n i u m species f r o m aqueous s o l u t i o n has a p p a r e n t l y never b e e n i n v e s t i g a t e d , yet this i o n lends itself c o n v e n i e n t l y to studies of the p r o b l e m s discussed above. T h e c h e m i s t r y of the h a f n i u m i o n i n w a t e r is f a i r l y w e l l u n d e r s t o o d
(23)
a v a i l a b l e for a d s o r p t i o n studies.
W h a t makes h a f n i u m a p a r t i c u l a r l y
a n d a s u i t a b l e isotope,
1 8 1
H f , is
interesting system is the fact that i t forms the entire series of h y d r o l y z e d species: H f ( O H )
n
( 4
"
w ) +
w h e r e n ^ 4. A t i n t e r m e d i a t e acidities ( p H >
the solutions of l o w concentrations species H f ( O H ) . 4
4)
c o n t a i n o n l y the n e u t r a l , s o l u b l e
It s h o u l d be e m p h a s i z e d t h a t there is a p H a n d a
c o n c e n t r a t i o n range over w h i c h this species is present w i t h o u t s i m u l t a n e ous f o r m a t i o n of h a f n i u m h y d r o x i d e .
T h u s , it is possible to e l u c i d a t e
the effect of the i o n i c charge u p o n the a d s o r p t i o n of h y d r o l y z e d species i n systems v o i d of c o l l o i d a l h y d r o x i d e s .
T h e glass p o w d e r w a s u s e d i n
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
5.
STRYKER
A N D
M A T I J E V I C
Hydrolyzed
Hafnium
Ions
47
order to h a v e a sufficient surface area of adsorbent w h i c h c a n b e deter m i n e d w i t h reasonable a c c u r a c y a n d w h i c h w o u l d not change a p p r e c i a b l y u p o n dispersion i n water.
T h e p r e l i m i n a r y w o r k o f t h e a d s o r p t i o n of
h a f n i u m o n silver h a l i d e sols (21) c o u l d not b e f u l l y a n a l y z e d because the surface area o f the adsorbent w a s not k n o w n . A n o t h e r a d v a n t a g e of h a f n i u m is that, i f the a d s o r p t i o n o f the n e u t r a l species takes p l a c e , a close p a c k e d m o n o l a y e r s h o u l d e v e n t u a l l y result o w i n g to t h e absence of electrostatic r e p u l s i o n .
K n o w i n g t h e surface
area o f the adsorbent this w o u l d enable one t o evaluate the cross-sectional Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch005
area of t h e h y d r o l y z e d c o m p l e x
ion.
This information has not been
available. Experimental Materials. H f was e m p l o y e d i n tracer concentrations a n d was o b t a i n e d f r o m O a k R i d g e N a t i o n a l L a b o r a t o r i e s i n the f o r m of the c h l o r i d e i n a p p r o x i m a t e l y I N H C 1 . T h e analysis of t h e g a m m a r a y s p e c t r u m r e v e a l e d that p u r i f i c a t i o n of the isotope w a s unnecessary. T h e solutions w e r e p r e p a r e d i n the f o l l o w i n g m a n n e r . O n e p o r t i o n of the a c i d i f i e d iso tope s o l u t i o n w a s d i l u t e d t o a d e s i r e d v o l u m e w i t h n i t r i c a c i d g i v i n g a final c o n c e n t r a t i o n o f 0 . 4 N H N 0 . A second isotope s o l u t i o n w a s p r e p a r e d i n exactly the same m a n n e r except t h a t the d i l u t i o n w a s m a d e w i t h d o u b l y d i s t i l l e d w a t e r , r e s u l t i n g i n a final s o l u t i o n of w h i c h the p H w a s 3.5. A k n o w n q u a n t i t y of these r a d i o a c t i v e h a f n i u m solutions w a s t h e n a d d e d to a s o l u t i o n o f stable h a f n i u m t e t r a c h l o r i d e to o b t a i n a reasonable c o u n t rate over t h e c o n c e n t r a t i o n r a n g e s t u d i e d . T h e p H o f t h e final stock s o l u t i o n w a s either 2.0 or 3.1 d e p e n d i n g o n w h e t h e r it w a s p r e p a r e d w i t h a c i d o r w a t e r d i l u t e d tracer. A p e r i o d of three days w a s a l l o w e d for e q u i l i b r a t i o n b e t w e e n the s o l u t i o n a n d the container w a l l s . A l l subse q u e n t d i l u t i o n s w e r e p r e p a r e d f r o m these stock solutions. A n e e d f o r the p r o p e r p r o c e d u r e of p r e p a r a t i o n of the l a b e l l e d solutions of h y d r o l y z a b l e m e t a l ions w a s e m p h a s i z e d b y several investigators (25, 26). F r e s h l y p r e p a r e d stock solutions, o b t a i n e d as d e s c r i b e d a b o v e a p p e a r e d to b e h o m o g e n e o u s a n d free o f c o l l o i d a l p r e c i p i t a t e s . H o w e v e r , after p r o l o n g e d storage traces of h a f n i u m h y d r o x i d e w e r e f o u n d . S u c h s o l u tions w e r e not u s e d i n experiments. I n s t e a d fresh stock solutions w e r e p r e p a r e d every f e w weeks. 1 8 1
3
H a f n i u m tetrachloride, nitric acid, and potassium hydroxide solu tions w e r e p r e p a r e d u s i n g d o u b l y - d i s t i l l e d w a t e r f r o m a n a l l b o r o s i l i c a t e glass s t i l l . T h e c h e m i c a l s w e r e of the highest p u r i t y grade c o m m e r c i a l l y available a n d were used without further purification. T h e glass p o w d e r , w h i c h served as the adsorbent, w a s o b t a i n e d f r o m the A r t h u r S. L a p i n e C o m p a n y i n the f o r m of s p h e r i c a l beads a p p r o x i m a t e l y 40 n i n d i a m e t e r . T h e beads w e r e w a s h e d w i t h a l a r g e q u a n t i t y o f d i s t i l l e d w a t e r a n d d r i e d i n a n o v e n at 1 2 0 ° C . b e f o r e use i n t h e a d s o r p t i o n experiments. A s a m p l e of the glass p o w d e r was l e a c h e d b y r e f l u x i n g w i t h 1 5 % H C 1 a t 8 0 ° C . f o r a p p r o x i m a t e l y f o u r days. A f t e r this t h e beads w e r e
A. C. S. Editorial Library In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
48
ADSORPTION
F R O M
AQUEOUS
SOLUTION
w a s h e d t h o r o u g h l y w i t h d i s t i l l e d w a t e r a n d t h e n h e a t e d i n a n o v e n at 3 8 0 ° C . for several h o u r s . T h e surface area of the adsorbent, c l e a n e d b y the first p r o c e d u r e , w a s m e a s u r e d b y the B . E . T . m e t h o d u s i n g w a t e r v a p o r as the adsorbate. A s s u m i n g the cross-sectional area of w a t e r to b e 12.5 A . ( 5 ) , three deter m i n a t i o n s r e s u l t e d i n a v a l u e of 0.80 db 0.05 m e t e r / g r a m . F o r c o m p a r i son reasons, the geometric surface area w a s also d e t e r m i n e d f r o m a h i s t o g r a m o b t a i n e d b y c o u n t i n g several h u n d r e d glass particles o n m i c r o p h o t o g r a p h s . T h i s surface area w a s o n l y 0.04 m e t e r / g r a m . T h e difference b e t w e e n the t w o procedures e m p l o y e d indicates that the glass beads u s e d e x h i b i t e d significant surface roughness. Method. A l l a d s o r p t i o n samples w e r e p r e p a r e d b y w e i g h i n g the glass p o w d e r o n a n a n a l y t i c a l b a l a n c e a n d b y a d d i n g the a p p r o p r i a t e amounts of r a d i o a c t i v e h a f n i u m , n i t r i c a c i d or p o t a s s i u m h y d r o x i d e , a n d d o u b l y - d i s t i l l e d w a t e r to g i v e a constant final v o l u m e of 10 m l . T h e solutions w e r e a g i t a t e d b y means of a m a g n e t i c stirrer for the d e s i r e d p e r i o d s of t i m e w h e r e u p o n the systems w e r e c e n t r i f u g e d at 3,500 r . p . m . , c o r r e s p o n d i n g to 2.5 X 1 0 g, for 15 m i n u t e s i n a n I E C I n t e r n a t i o n a l C e n t r i f u g e . A n a l i q u o t of the supernatant s o l u t i o n w a s t h e n r e m o v e d for r a d i o a c t i v e analysis. T h e r e m a i n i n g s o l u t i o n w a s u s e d for p H m e a s u r e ments e m p l o y i n g c a l i b r a t e d glass electrodes i n a B e c k m a n M o d e l G p H meter. T h e glass beads f r o m the same s a m p l e w e r e w a s h e d t w i c e w i t h a n i n a c t i v e s o l u t i o n of h a f n i u m of the same c o n c e n t r a t i o n as the m o t h e r l i q u o r . T h e w a s h i n g s w e r e r e m o v e d a n d d i s c a r d e d . T o d e t e r m i n e the a m o u n t of h a f n i u m a d s o r b e d o n the glass, 10 m l . of a 0 . 5 N H N 0 s o l u t i o n w e r e a d d e d to the samples a n d stirred o v e r n i g h t after c o m p l e t i o n o f the w a s h i n g . T h i s w a s necessary i n o r d e r to m a i n t a i n constant geometry c o n d i t i o n s . R a d i o a c t i v e countings w e r e p e r f o r m e d w i t h a T r a c e r l a b G a m m a G u a r d F u l l y A u t o m a t i c W e l l Scintillation Console System. 2
2
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch005
2
3
3
C e n t r i f u g a t i o n w a s u s e d to d e t e r m i n e the p r e c i p i t a t i o n l i m i t of the h a f n i u m solutions as a f u n c t i o n of the p H . A series of solutions c o n t a i n i n g a constant a m o u n t of h a f n i u m , to w h i c h s o d i u m h y d r o x i d e w a s a d d e d i n i n c r e a s i n g amounts to v a r y the p H i n s m a l l increments f r o m system to system, w a s a l l o w e d to e q u i l i b r a t e for a c e r t a i n p e r i o d of t i m e . T h e d e s i r e d p H w a s adjusted a u t o m a t i c a l l y u s i n g a R a d i o m e t e r M o d e l P H M - 2 8 p H meter, w i t h glass electrodes. T h e solutions w e r e t h e n c e n t r i f u g e d at 3,500 r . p . m . for 1/2 h o u r . F i v e m i l l i l i t e r a l i q u o t s w e r e d r a w n f r o m the u p p e r p a r t of e a c h of the solutions a n d the a c t i v i t y of this p o r t i o n was c o m p a r e d w i t h the a c t i v i t y of the r e m a i n i n g 5 m l . sample. F r o m this the f r a c t i o n of the c e n t r i f u g e d h a f n i u m w a s d e t e r m i n e d . I n c e r t a i n cases, w h i c h w i l l b e discussed later o n , it w a s necessary to u l t r a c e n t r i f u g e the systems. T h e samples w e r e p r e p a r e d i n a n analogous m a n ner and centrifuged i n a B e c k m a n Preparative Ultracentrifuge M o d e l L - 2 at 25,000 r . p . m . , c o r r e s p o n d i n g to 5.5 X 1 0 g, for one h o u r . 4
I n a l l c a l c u l a t i o n s , corrections w e r e m a d e for the a d s o r p t i o n o n the test tubes. A s a r u l e these corrections w e r e s m a l l d u e to the s m a l l surface area of the test tubes i n c o m p a r i s o n to that of the glass p o w d e r u s e d . All H f d e t e r m i n a t i o n s w e r e m a d e o n constant final v o l u m e s of 10 m l . to insure r e p r o d u c i b l e c o u n t i n g c o n d i t i o n s . S t a n d a r d samples w e r e p r e p a r e d f r o m the w o r k i n g s o l u t i o n of r a d i o a c t i v e h a f n i u m t e t r a c h l o r i d e t a k i n g k n o w n v o l u m e s of this s o l u t i o n 1 8 1
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
5.
STRYKER
A N D
M A T I J E V I C
Hydrolyzed
Hafnium
49
Ions
a n d d i l u t i n g to a v o l u m e of 10 m l . T h e s e standards w e r e a l w a y s c o u n t e d i m m e d i a t e l y f o l l o w i n g the a d s o r p t i o n samples to e l i m i n a t e c o r r e c t i o n for d e c a y losses. A l i n e a r r e l a t i o n s h i p b e t w e e n the a c t i v i t y a n d the a m o u n t of h a f n i u m d i s s o l v e d w a s f o u n d over a c o n c e n t r a t i o n range of t w o orders of m a g n i t u d e . E x p e r i m e n t a l results s h o w e d that the c o m b i n e d a c t i v i t y o b t a i n e d for the a d s o r b e d h a f n i u m a n d h a f n i u m r e m a i n i n g i n s o l u t i o n w a s w i t h i n ± 3 % of the i n t r o d u c e d a c t i v i t y . T a b l e I gives some t y p i c a l results i n d i c a t i n g this g o o d agreement.
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch005
Table I.
HfCl>
Count Rate Introduced Count Rate (c.p.m.) of the Total (c.p.m.) of the Supernatant Count Rate Count Rate (c.p.m.) Adsorbed Amount Solution (c.p.m.)
% Error
1,136,364 1,136,364 568,729 568,729 210,713 210,713
+2.6 -0.5 +2.1 -0.5 +2.9 -0.6
1 X 10" M 1 X 10" M 5 X 10" M 5 X 10" M 2.5 X 1 0 " M 2.5 X 1 0 " M
442,137 495,500 332,049 281,611 213,658 169,867
4
4
5
5
5
5
1,166,119 1,131,786 580,769 565,855 216,860 209,395
723,982 636,286 248,720 284,244 3,204 39,528
Results Precipitation of H a f n i u m Hydroxide. I n o r d e r to i n t e r p r e t the a d s o r p t i o n d a t a it w a s necessary to d e t e r m i n e the c o n d i t i o n s w h i c h l e a d to the p r e c i p i t a t i o n of h a f n i u m h y d r o x i d e . It is not u s u a l l y a d v i s a b l e to d e p e n d o n the s o l u b i l i t y p r o d u c t b e c a u s e the i n f o r m a t i o n o n this q u a n t i t y is often u n r e l i a b l e for h y d r o x i d e s of p o l y v a l e n t m e t a l ions. I n a d d i t i o n , "radiocolloids" may apparently form m u c h below saturation conditions i n r a d i o a c t i v e isotope solutions. I n the specific case of h a f n i u m h y d r o x i d e o n l y t w o measurements of the s o l u b i l i t y seem to h a v e b e e n A c c o r d i n g to L a r s o n a n d G a m m i l l (16)
K
4
only
X
10"
Hf(OH) 10"
55
2
26
2 +
.
(15).
a s s u m i n g the
existence
s
of
T h e second r e p o r t e d v a l u e is K
=
s o
[Hf(OH) one
2
2 +
reported.
] [OH-]
hydrolyzed
— [Hf ] [ O H " ] 4 +
4
2
=
species =
If one uses the s o l u b i l i t y d a t a b y L a r s o n a n d G a m m i l l
3.7
X
(Ref.
16, T a b l e s I a n d I I I ) a n d takes i n t o c o n s i d e r a t i o n a l l m o n o m e l i c h a f n i u m species ( 2 3 ) a K
so
Because
of
v a l u e of 4 X 1 0 " the i n c o n s i s t e n c y
58
is c a l c u l a t e d . of
these results, experiments
were
c a r r i e d out to establish the p r e c i p i t a t i o n b o u n d a r i e s , as d e s c r i b e d earlier. F i g u r e 1 gives as a n e x a m p l e f o u r curves i n w h i c h the f r a c t i o n of h a f n i u m r e m o v e d b y p r e c i p i t a t i o n as h y d r o x i d e is p l o t t e d against the p H for four different concentrations of H f C l . 4
O p e n a n d b l a c k e n e d symbols are for
experiments i n w h i c h systems w e r e e q u i l i b r a t e d before c e n t r i f u g a t i o n 1 h o u r a n d 70 h o u r s , respectively.
I n a l l cases i n s o l u b l e precipitates are
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch005
50
ADSORPTION F R O M
10.0
AQUEOUS SOLUTION
12.0
Figure 1. The fraction of hafnium tetrachloride removed from solution by centrifugation at 3,500 r.p.m. for 1 /2 hour as a function of the pH. Open and blackened symbols represent centrifugation 1 hour and 70 hours after mixing the precipitating components, respectively. Squares represent the fraction of hafnium removed by ultracentrifugation at 25,000 r.p.m. for 1 hour and the corresponding dashed line represents the curves which would remit from these studies f o r m e d a b o v e a c e r t a i n p H a n d this l i m i t increases w i t h a decrease i n the salt c o n c e n t r a t i o n .
I n these examples the p H range for the onset of
p r e c i p i t a t i o n varies b e t w e e n 5.7 a n d 6.5. A b o v e this p H the r e m o v a l of h a f n i u m b y p r e c i p i t a t i o n f r o m the s o l u t i o n of h a f n i u m c h l o r i d e is n e a r l y complete.
H o w e v e r , except for the highest c o n c e n t r a t i o n of H f C l
4
the
p r e c i p i t a t i o n r e g i o n is f o l l o w e d at still h i g h e r p H values b y a r e g i o n over w h i c h p r e c i p i t a t i o n a n d s e t t l i n g of h a f n i u m h y d r o x i d e does not take
In Adsorption From Aqueous Solution; Weber, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
5.
STRYKER
Hydrolyzed
A N D M A T I J E V I G
Hafnium
p l a c e u n d e r the e x p e r i m e n t a l c o n d i t i o n s e m p l o y e d .
51
Ions
T h i s c o u l d either b e
c a u s e d b y the f o r m a t i o n of s o l u b l e a n i o n i c complexes of h a f n i u m or b y e x t r e m e l y finely d i s p e r s e d h y d r o x i d e .
I n o r d e r to d i s t i n g u i s h b e t w e e n
the t w o possibilities several samples i n the second r e g i o n of l o w fractions r e m o v e d w e r e u l t r a c e n t r i f u g e d as d e s c r i b e d . 10.3 a n d 10.6 for
1 X
10" M and 5 5
X
Results at p H values of
10 M HfCl , _ 6
4
respectively,
s h o w e d that the h a f n i u m is c o m p l e t e l y r e m o v e d f r o m s o l u t i o n i n d i c a t i n g the presence of finely d i s p e r s e d h y d r o x i d e .
T h e s e points are i n d i c a t e d
i n the d i a g r a m as squares. If a l l the systems over the h i g h p H r a n g e w e r e Downloaded by MICHIGAN STATE UNIV on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch005
u l t r a c e n t r i f u g e d the curves w o u l d l o o k as i n d i c a t e d b y the d a s h e d lines. T h e o r i g i n a l measurements at h i g h e r p H values o b t a i n e d u s i n g the l o w e r speed centrifuge are r e p o r t e d to s h o w that erroneous conclusions m a y easily result o w i n g to the s t a b i l i t y of the extremely
finely
dispersed
h a f n i u m h y d r o x i d e . N o attempt w a s m a d e at this p o i n t to c h a r a c t e r i z e this h y d r o x i d e sol. S i m i l a r u l t r a c e n t r i f u g a t i o n experiments w e r e c a r r i e d out w i t h sys tems at p H values b e l o w the p r e c i p i t a t i o n r e g i o n . H o w e v e r , the results w e r e i d e n t i c a l to those o b t a i n e d u s i n g the l o w e r speed c e n t r i f u g e as s h o w n i n F i g u r e 1. It is therefore c o n c l u d e d that over the l o w p H r a n g e a n d the concentrations u s e d the solutions of h a f n i u m t e t r a c h l o r i d e are v o i d of c o l l o i d a l p a r t i c l e s .
o
-
UJ CD
O
afro—^Q^.
o 1 CO
s § .8 O ho