2 Stabilization of Aqueous Pesticidal Suspensions by Graft Copolymers and Their Subsequent Weak Flocculation by Addition of Free Polymer 1
D. HEATH and TH. F. TADROS
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
ICI Plant Protection Division, Jealott's Hill Research Station, Bracknell, Berkshire, RG12 6EY, United Kingdom R. D. KNOTT and D. A. KNOWLES ICI Plant Protection Division, Works Experimental Department, Yalding, nr Maidstone, Kent, United Kingdom Graft copolymers as dispersing agents for pesticidal suspensions concentrates have been investigated using ethirimol (a fungicide) and a copolymer of polymethyl methacrylate-methacrylic acid/methoxypolyethylene -oxide methacrylate. The results showed that highly concentrated dispersions (with a volume fraction > 0.6) can be obtained. This agent is strongly adsorbed on the particle surface and provides a steric barrier preventing flocculation. The s t e r i c a l l y stabilised dispersions produced can be weakly flocculated by the addition of free (non-adsorbing) polymer such as poly(ethylene oxide). Weak flocculation occurs above a c r i t i c a l free polymer concentration which decreases with increase of molecular weight, M , of the free polymer. The weak flocculation produced in concentrated (55% w/w) dispersions was investigated using rheological measurements. Steady state shear stress-shear rate curves were established and the yield value, τ , was obtained by extrapolation of the linear portion of the curve. Moreover, the yield value was also directly obtained by applying a series of successive stresses of equal increments to the suspension and recording the response u n t i l flow occurred. The results showed that above the flocculation point τ increases with increase of free polymer volume fraction, Ф . This increase took place at a critical, Ф value which decreased with increase of M . The rheological results were interpreted in terms of the energy-minimum, G , produced in the free energy-distance W
β
β
p
p
W
min
1
Author to whom correspondence should be addressed. 0097-6156/84/0254-0011 $06.00/0 © 1984 American Chemical Society Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
12
ADVANCES IN PESTICIDE FORMULATION TECHNOLOGY
curve i n the presence of free polymer. Good correlation was obtained between the increase i n the depth of G and the increase i n τ . Sediment height and redispersion experiments were also consistent with the weak flocculation phenomenon, showing also good correlation with the rheological data.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
min
β
The f o r m u l a t i o n o f a q u e o u s c o n c e n t r a t e d s u s p e n s i o n s o f p e s t i c i d e s r e q u i r e s t h e u s e o f p o w e r f u l d i s p e r s i n g a g e n t s , w h i c h keep t h e particles i n a deflocculated state. This i s the case p a r t i c u l a r l y when h i g h v o l u m e f r a c t i o n s (> 0.4) o f t h e s o l i d a r e required. F l o c c u l a t i o n produces a r a p i d increase i n v i s c o s i t y thus causing problems during p r e p a r a t i o n . Moreover, s t r o n g f l o c c u l a t i o n i s u n d e s i r a b l e s i n c e i t may c a u s e s e v e r e t h i c k e n i n g on s t o r a g e a n d r e d u c e s t h e s p o n t a n e i t y o f d i s p e r s i o n on d i l u t i o n o f t h e s u s p e n s i o n . S e v e r a l a g e n t s may be u s e d t o o b t a i n a d e f l o c c u l a t e d suspension, i . e . , a s t a b l e suspension i n t h e c o l l o i d sense ( 1 ) . T h e s e may be c l a s s i f i e d i n t o i o n i c a n d n o n i o n i c s u r f a c e a c t i v e agents, n o n i o n i c macromolecules and p o l y e l e c t r o l y t e s . Ionic s u r f a c t a n t s produce d e f l o c c u l a t e d suspensions as a r e s u l t o f t h e d o u b l e l a y e r r e p u l s i o n p r o d u c e d b y t h e a d s o r b e d c h a i n s . However, these a r e seldom s u i t a b l e f o r p r o d u c i n g c o n c e n t r a t e d suspensions s i n c e double l a y e r o v e r l a p l e a d s t o an i n c r e a s e i n t h e v i s c o s i t y a t m o d e r a t e l y h i g h volume f r a c t i o n s . M o r e o v e r , t h e s e systems a r e s e n s i t i v e t o e l e c t r o l y t e s a n d t h e s u r f a c t a n t may n o t b e s t r o n g l y a d s o r b e d on t h e p a r t i c l e s u r f a c e s . N o n - i o n i c s u r f a c t a n t s c a n be u s e d as d i s p e r s i n g agents as a r e s u l t o f s t e r i c r e p u l s i o n between the adsorbed l a y e r s . Provided the chains are w e l l solvated, s t r o n g s t e r i c r e p u l s i o n e n a b l e s one t o o b t a i n d e f l o c c u l a t e d systems. However, t h e s e s y s t e m s may s u f f e r f r o m d e s o r p t i o n o f t h e c h a i n s w h i c h a r e i n many c a s e s o n l y w e a k l y a d s o r b e d on t h e p a r t i c l e s u r f a c e s . In theory t h e best agents f o r p r o d u c i n g d e f l o c c u l a t e d suspensions a r e those polymers o f t h e b l o c k and g r a f t type (2). T h e s e a g e n t s a r e d e s i g n e d t o h a v e two m a i n g r o u p s A a n d B, where A has a s t r o n g a f f i n i t y t o t h e p a r t i c l e s u r f a c e ( i e . s t r o n g l y and i r r e v e r s i b l y adsorbed and b e i n g i n s o l u b l e i n t h e continuous medium) a n d Β i s a g r o u p t h a t p r o v i d e s t h e s t e r i c s t a b i l i s a t i o n , b e i n g h i g h l y s o l v a t e d b y t h e c o n t i n u o u s medium a n d o f s u f f i c i e n t l e n g t h t o p r o v i d e a s t e r i c b a r r i e r . A-B, B-A-B b l o c k a n d A - B g r a f t c o p o l y m e r s may be u s e d f o r t h i s p u r p o s e . The a n c h o r i n g A n
g r o u p c a n be a n i n s o l u b l e h y d r o p h o b i c g r o u p s u c h a s p o l y s t y r e n e or polymethymethacrylate, which has a s t r o n g a f f i n i t y t o t h e h y d r o p h o b i c p e s t i c i d e p a r t i c l e , w h e r e a s Β c a n be a w a t e r s o l u b l e c h a i n such as p o l y ( e t h y l e n e o x i d e ) . T h i s h y p o t h e s i s has been t e s t e d i n t h e p r e s e n t i n v e s t i g a t i o n by u s i n g a g r a f t copolymer o f
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
2.
HEATH ET AL.
13
Stabilization of Aqueous Suspensions
polymethylmethacrylate-methacrylic acid/methoxy p o l y e t h y l e n e oxide methacrylate. The p o l y m e r i s t h e r e f o r e , a "comb" t y p e w i t h p o l y e t h y l e n e o x i d e c h a i n s ( t e e t h ) . As an e x a m p l e o f a p e s t i c i d e , e t h i r i m o l ( a f u n g i c i d e m a n u f a c t u r e d by I C I ) was used. The a n c h o r i n g o f t h e c h a i n t o t h e p a r t i c l e s was a s s e s s e d u s i n g a d s o r p t i o n / d e s o r p t i o n i s o t h e r m s , w h e r e a s i t s d i s p e r s i n g power was e v a l u a t e d f r o m measurement o f v i s c o s i t y a s a f u n c t i o n o f v o l u m e f r a c t i o n of the p a r t i c l e s .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
w
w
Although the production of h i g h l y d e f l o c c u l a t e d suspensions i s a primary o b j e c t i v e f o r formulation of suspension c o n c e n t r a t e s , these systems tend t o s e t t l e under g r a v i t y forming d i l a t a n t sediments ( c l a y s ) . The l a t t e r must be p r e v e n t e d e i t h e r by c o n t r o l l e d f l o c c u l a t i o n o r by t h e a d d i t i o n o f a s e c o n d d i s p e r s e p h a s e t o t h e c o n t i n u o u s medium ( 1 ) . One m e t h o d w h i c h may be a p p l i e d t o s t e r i c a l l y s t a b i l i s e d d i s p e r s i o n s , i s t o a d d a f r e e ( i e . n o n - a d s o r b i n g ) p o l y m e r t o t h e c o n t i n u o u s medium. R e c e n t s t u d i e s i n o u r l a b o r a t o r y (3) u s i n g p o l y s t y r e n e l a t e x d i s p e r s i o n s s t a b i l i s e d by t h e above c o m b d i s p e r s i n g agent have shown t h a t p o l y m e r s s u c h a s p o l y ( e t h y l e n e o x i d e ) i n d u c e weak f l o c c u l a t i o n above a c e r t a i n c r i t i c a l c o n c e n t r a t i o n o f f r e e p o l y m e r w h i c h was d e p e n d e n t on t h e m o l e c u l a r w e i g h t o f t h e c h a i n . M
n
T h i s phenomenon h a s b e e n a p p l i e d t o t h e p r e s e n t p e s t i c i d a l s u s p e n s i o n and t h e r e s u l t s o b t a i n e d ( u s i n g r h e o l o g i c a l and sediment volume e x p e r i m e n t s ) a r e g i v e n i n t h e p r e s e n t p a p e r . Experimental Materials Ethirimol, crystalline
solid
a f u n g i c i d e m a n u f a c t u r e d by
(density =
1.21
g cm"
I C I , was
) w h i c h was
used
a
white
as
received. The "comb" d i s p e r s i n g a g e n t was a g r a f t c o p o l y m e r o f polymethylmethacrylate-methacrylic acid (methoxypolyethylene o x i d e m e t h a c r y l a t e ) s u p p l i e d by I C I P a i n t s D i v i s i o n ( S l o u g h ) a n d u s e d a s r e c e i v e d . The e x a c t m o l e c u l a r w e i g h t o f t h e p o l y m e r i s n o t known, b u t i t i s e x p e c t e d t o be i n t h e r e g i o n o f 20-30,000 ( a s i n d i c a t e d by I C I P a i n t s D i v i s i o n ) . The M of the p o l y e t h y l e n e c h a i n s was 750. T h r e e p o l y e t h y l e n e o x i d e (PEO) s a m p l e s w i t h n o m i n a l m o l e c u l a r w e i g h t s 20,000, 35,000 a n d 90,000 were u s e d . These were s u p p l i e d by F l u k a , H o e c h s t , a n d U n i o n C a r b i d e r e s p e c t i v e l y , and u s e d as r e c e i v e d . w
A d s o r p t i o n Isotherms I n t h e s e e x p e r i m e n t s a "comb" w i t h a s i m i l a r s t r u c t u r e was u s e d . The e t h i r i m o l u s e d was a r e c r y s t a l l i s e d m a t e r i a l which had been ground ( u s i n g a ^ C o f f e e m i l l ) t o p r o d u c e a p o w d e r w i t h s u r f a c e a r e a 0.29 m g" (as m e a s u r e d b y BET K r a d s o r p t i o n ) . A b o u t 1 gm o f s o l i d was a c c u r a t e l y w e i g h e d i n t o 2oz w i n c h e s t e r s a n d t h e n 25cm^ s o l u t i o n s o f t h e d i s p e r s i n g a g e n t , c o v e r i n g a c o n c e n t r a t i o n o f 0-1000 ppm were a d d e d . The p o w d e r was d i s p e r s e d
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
14
ADVANCES IN PESTICIDE FORMULATION TECHNOLOGY
u s i n g a s o n i p r o b e and t h e n l e f t s t i r r i n g o v e r n i g h t t o r e a c h e q u i l i b r i u m . Ten cm o f e a c h d i s p e r s i o n was t h e n c e n t r i f u g e d f o r h a l f an h o u r a t 4000 g a n d t h e n f o r a n o t h e r h a l f an h o u r a t 25,000 g. The c o n c e n t r a t i o n o f t h e p o l y m e r i n t h e s u p e r n a t a n t l i q u i d was d e t e r m i n e d u s i n g a c o l o r i m e t r i c m e t h o d b a s e d on complexation with I l (4)· The p r o c e d u r e h a s b e e n d e s c r i b e d b e f o r e ( 5 ) . D e s o r p t i o n was i n v e s t i g a t e d by r e d i s p e r s i n g t h e s e d i m e n t e d p a r t i c l e s i n t o d i s t i l l e d water, r e c e n t r i f u g i n g and a n a l y s i n g f o r any d e s o r b e d p o l y m e r . +
K
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
2
Preparation of Suspensions A 66.8% w/w s u s p e n s i o n was p r e p a r e d by s l o w l y a d d i n g t h e powder t o t h e a q u e o u s s o l u t i o n o f t h e "comb" s t a b i l i s e r ( 2 % w/w) while s t i r r i n g . C a r e was t a k e n t o a v o i d a i r being entrapped i n the suspension. The l a t t e r was t h e n m i l l e d u s i n g a Dyno m i l l ( e x . W i l l y . A. B a c h o f e n , B a s l e , S w i t z e r l a n d ) a n d then l e f t standing while being s t i r r e d . I n some c a s e s , t h e p a r t i c l e s i z e d i s t r i b u t i o n o f t h e r e s u l t i n g s u s p e n s i o n was d e t e r m i n e d u s i n g an o p t i c a l d i s c c e n t r i f u g e . T y p i c a l l y , the s u s p e n s i o n g a v e a d i s t r i b u t i o n t h a t was >50% b e l o w 1μπι i n d i c a t i n g adequate m i l l i n g . F o r r h e o l o g i c a l measurements ( s e e below) samples o f t h e s u s p e n s i o n c o n c e n t r a t e s were m i x e d w i t h PEO s o l u t i o n s t o g i v e 55% w/w e t h i r i m o l , w h i l e v a r y i n g t h e c o n c e n t r a t i o n o f PEO. For v i s c o s i t y - v o l u m e f r a c t i o n c u r v e s a 60% w/v s u s p e n s i o n was p r e p a r e d by m i l l i n g u s i n g 3% o f t h e "comb" s t a b i l i s e r . The r e s u l t i n g s u s p e n s i o n was f u r t h e r c o n c e n t r a t e d by c e n t r i f u g a t i o n and t h e sediment d i l u t e d w i t h t h e s u p e r n a t a n t l i q u i d t o g i v e a range o f volume f r a c t i o n s . Sediment volume and r e d i s p e r s i o n F o r sediment volume e x p e r i m e n t s a 50% w/v s u s p e n s i o n was p r e p a r e d u s i n g a 2% w/w o f t h e p o l y m e r . 5g o f t h e r e s u l t i n g s u s p e n s i o n was a d d e d t o 5 m l s o l u t i o n s o f PEO t o c o v e r a wide c o n c e n t r a t i o n and the r e s u l t i n g s u s p e n s i o n p l a c e d i n s t o p p e r e d c y l i n d e r s and k e p t i n c o n s t a n t t e m p e r a t u r e c a b i n e t s (25 ± 1 ° C ) . The s e d i m e n t h e i g h t was f o l l o w e d w i t h t i m e f o r s e v e r a l weeks u n t i l e q u i l i b r i u m was r e a c h e d . At t h i s p o i n t the t u b e s were m e c h a n i c a l l y i n v e r t e d e n d - o v e r - e n d a n d t h e number o f r e v o l u t i o n s r e q u i r e d f o r r e d i s p e r s i o n was n o t e d . R h e o l o g i c a l measurements Two i n s t r u m e n t s were u s e d t o i n v e s t i g a t e the rheology of the suspensions. The f i r s t was a Haake R o t o v i s k o m o d e l RV2(MSE S c i e n t i f i c I n s t r u m e n t s , Crawley, S u s s e x , E n g l a n d ) f i t t e d w i t h an MK50 m e a s u r i n g h e a d . This i n s t r u m e n t was u s e d t o o b t a i n s t e a d y s t a t e s h e a r s t r e s s - s h e a r r a t e c u r v e s . From t h e s e c u r v e s i n f o r m a t i o n c a n be o b t a i n e d on t h e v i s c o s i t y as a f u n c t i o n o f s h e a r r a t e . The y i e l d v a l u e may be o b t a i n e d by e x t r a p o l a t i o n o f t h e l i n e a r p o r t i o n o f t h e s h e a r s t r e s s - s h e a r r a t e curve t o zero shear r a t e . The p r o c e d u r e h a s been d e s c r i b e d b e f o r e ( 3 ) .
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
2.
HEATH ET AL.
15
Stabilization of Aqueous Suspensions
The s e c o n d i n s t r u m e n t was a D e e r r h e o m e t e r (model PDR881, I n t e g r a t e d P e t r o n i c Systems L t d . , London) f i t t e d w i t h c o n c e n t r i c cylinder platens. T h i s i n s t r u m e n t was u s e d t o m e a s u r e o f t h e y i e l d v a l u e by a p p l y i n g a s e r i e s o f s t r e s s v a l u e s o f e q u a l i n c r e m e n t s and r e c o r d i n g t h e r e s p o n s e u n t i l f l o w o c c u r r e d .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
Results Adsorption Isotherm F i g . 1 shows t h e a d s o r p t i o n isotherm ( o b t a i n e d a t room t e m p e r a t u r e 2 0 ± 2 ° C ) o f t h e "comb" s t a b i l i s e r on ethirimol. The i s o t h e r m i s o f t h e h i g h a f f i n i t y t y p e and t h e a d s o r p t i o n r e a c h e d a p l a t e a u v a l u e o f ~20 mg m . No d e s o r p t i o n was d e t e c t e d when t h e c e n t r i f u g e a s e d i m e n t was r e d i s p e r s e d i n t o water. The p l a t e a u a d s o r p t i o n v a l u e i s much higher than t h a t r e c e n t l y o b t a i n e d on p o l y s t y r e n e l a t e x p a r t i c l e s (~3 mg m " ) . However, i t s h o u l d be m e n t i o n e d t h a t t h e a d s o r p t i o n v a l u e s were b a s e d on t h e BET s u r f a c e a r e a o f t h e powder, w h i c h c o u l d be an u n d e r e s t i m a t e o f t h e t r u e a r e a , p a r t i c u l a r l y s i n c e t h e p o w d e r s were d i s p e r s e d u s i n g u l t r a s o n i c i r r a d i a t i o n w h i c h may r e s u l t i n some a t t r i t i o n p r o d u c i n g fine p a r t i c l e s which would i n c r e a s e the s u r f a c e area s i g n i f i c a n t l y . S i n c e t h e o b j e c t o f t h e a d s o r p t i o n e x p e r i m e n t was t o s t u d y i r r e v e r s i b i l i t y of a d s o r p t i o n , o b t a i n i n g the absolute f i g u r e f o r t h e a d s o r p t i o n was n o t c o n s i d e r e d i m p o r t a n t a n d no a t t e m p t was made t o m e a s u r e t h e s u r f a c e a r e a o f t h e p a r t i c l e s when d i s p e r s e d in solution. 2
Viscosity-volume
fraction
curves
Fig.2
shows t h e
viscosity
as
a
f u n c t i o n o f volume f r a c t i o n o f p a r t i c l e s . The r e s u l t s a r e t y p i c a l of those u s u a l l y obtained with concentrated d i s p e r s i o n s ( 6 ) , s h o w i n g a r a p i d i n c r e a s e i n v i s c o s i t y above a c r i t i c a l volume f r a c t i o n o f the d i s p e r s e d phase. When t h e v o l u m e f r a c t i o n reaches the s o - c a l l e d packing f r a c t i o n , φ (see D i s c u s s i o n S e c t i o n ) , the v i s c o s i t y reaches a very hign value. may be o b t a i n e d f r o m a p l o t o f V5HTr v e r s u s Φ 3 a n d e x t r a p o l a t i o n t o 1//Ti^=0. T h i s gave a φ v a l u e o f ~0.73 f o r the bare particles. W i t h an a v e r a g e p a r t i c l e s i z e o f 1μπι, t h e a c t u a l v o l u m e f r a c t i o n ( p a r t i c l e + a d s o r b e d l a y e r ) w i l l be o n l y s l i g h t l y l a r g e r than t h i s value. A s s u m i n g an a d s o r b e d l a y e r t h i c k n e s s o f 5nm ( w h i c h i s a r e a s o n a b l e e s t i m a t e f o r a l a y e r o f PEO with M=750), φ f o r p a r t i c l e and l a y e r i s -0.74. sp 3 ρ
I n f l u e n c e o f a d d i t i o n o f f r e e p o l y m e r on t h e r h e o l o g y o f t h e suspensions F i g . 3 shows t h e e f f e c t o f a d d i t i o n o f PEO (M =20,000, 35,000 and 90,000 r e s p e c t i v e l y ) on t h e e x t r a p o l a t e d y i e l d value o b t a i n e d from the shear s t r e s s - s h e a r r a t e curves u s i n g t h e Haake R o t o v i s k o . On t h e o t h e r h a n d , F i g u r e 4 shows t h e r e s u l t s o b t a i n e d u s i n g the Deer rheometer i n which was d i r e c t l y obtained. A l t h o u g h t h e t r e n d o b t a i n e d i s t h e same, t h e y i e l d v a l u e s o b t a i n e d u s i n g t h e Deer rheometer a r e s i g n i f i c a n t l y w
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
ADVANCES IN PESTICIDE FORMULATION TECHNOLOGY
400 600 C (p.p.m.) 2
gure
1. A d s o r p t i o n on
isotherm
o f t h e "comb" s t a b i l i s e r
ethirimol.
Experimental 300h
200
100
$Theory|
J
0
Figure
0-1
ι
02
2. V i s c o s i t y
ι
0 3
ι
0-4
L
0-5
0-6
- volume f r a c t i o n
07
curves
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
HEATH ET AL.
Figure
3.
Stabilization of Aqueous Suspensions
Effect
o f PEO
extrapolated
concentration y i e l d value
on
the
(using the
Haake
Rotovisko).
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
18
ADVANCES IN PESTICIDE FORMULATION TECHNOLOGY
lower than those obtained u s i n g the e x t r a p o l a t i o n procedure. T h i s i s expected s i n c e the e x t r a p o l a t i o n procedure u s u a l l y overestimates the y i e l d v a l u e . The d a t a o f F i g s . 3 a n d 4 show a r a p i d i n c r e a s e i n y i e l d v a l u e a b o v e a c r i t i c a l PEO concentration, φ . T h i s c o n c e n t r a t i o n corresponds to the c r i t i c a l f l o c c u l a t i o n c o n c e n t r a t i o n of the f r e e polymer. However, s i n c e the r i s e i n d i d n o t o c c u r a t a s h a r p φ^ v a l u e , t h e l a t t e r was t a k e n as t h e i n t e r s e c t i o n p o i n t a t w h i c h t h e e x t r a p o l a t e d h o r i z o n t a l and v e r t i c a l l i n e s meet. T h i s gave v a l u e s o f φ of 0 . 0 2 ± 0 . 0 0 2 , 0.01±0.001 a n d 0.005+0.001 f o r PEO w i t h M of 20,000, 35,000 a n d 90,000 r e s p e c t i v e l y . M o r e o v e r , t h e φ v a l u e s o b t a i n e d f r o m t h e two s e t s o f r h e o l o g i c a l r e s u l t s were a l m o s t t h e same w i t h i n t h e e r r o r o f l o c a t i n g φ^. w
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
ρ
S e d i m e n t h e i g h t and r e d i s p e r s i o n As an i l l u s t r a t i o n t h e r e s u l t s o b t a i n e d u s i n g PEO 20,000 a r e shown i n F i g . 5. T h i s f i g u r e shows t h e v a r i a t i o n o f s e d i m e n t h e i g h t a n d number o f r e v o l u t i o n s r e q u i r e d f o r r e d i s p e r s i o n as a f u n c t i o n o f PEO concentration, e x p r e s s e d as volume f r a c t i o n o f p o l y m e r i n t h e c o n t i n u o u s p h a s e , φ . W i t h o u t a d d e d PEO, t h e s e d i m e n t h e i g h t was q u i t e h i g h and t h e w h o l e d i s p e r s i o n was t u r b i d ( i n d i c a t e d by l e t t e r Τ on t h e diagram). On s t a n d i n g t h i s d i s p e r s i o n s e t t l e d t o t h e b o t t o m o f t h e t u b e l e a v i n g a t u r b i d s u p e r n a t a n t and t h e s e d i m e n t formed c o u l d n o t be r e d i s p e r s e d a f t e r r o t a t i n g t h e t u b e f o r more t h a n 100 r e v o l u t i o n s i n d i c a t i n g f o r m a t i o n o f a h a r d c l a y a t t h e b o t t o m of the tube. On a d d i t i o n o f 0.5% PEO 20,000 ( φ = 0 . 0 0 7 ) , t h e d i s p e r s i o n a p p e a r e d t u r b i d and t h e e q u i l i b r i u m sediment h e i g h t was r e d u c e d . However, t h e s e d i m e n t c o u l d be r e d i s p e r s e d by a p p l i c a t i o n of 5 r o t a t i o n s t o the tube. F u r t h e r i n c r e a s e i n PEO c o n c e n t r a t i o n r e s u l t e d i n a c l e a r s u p e r n a t a n t l i q u i d and t h e s e d i m e n t h e i g h t r e a c h e d a minimum h e i g h t b e t w e e n 1 a n d 2% PEO (φρ b e t w e e n 0.015 a n d 0 . 0 2 7 ) , a b o v e w h i c h t h e r e was a continuous i n c r e a s e i n sediment h e i g h t with c l e a r s u p e m a t a n t s . A b o v e 1-2% PEO, t h e s e d i m e n t became more v i s c o u s a l t h o u g h no claying occurred. T h e s e v i s c o u s s e d i m e n t s were more d i f f i c u l t t o r e d i s p e r s e and t h e number o f r e v o l u t i o n s r e q u i r e d f o r r e d i s p e r s i o n i n c r e a s e d s h a r p l y a b o v e 3% PEO ( φ = 0 . 0 4 ) . Thus, t h e sediment h e i g h t e x p e r i m e n t s i n d i c a t e f l o c c u l a t i o n between 1 a n d 2% PEO ( φ b e t w e e n 0.015 and 0.027); the e x a c t f l o c c u l a t i o n c o n c e n t r a t i o n was d i f f i c u l t t o a s s i g n . Therefore, the r e d i s p e r s i o n e x p e r i m e n t s showed c l a y i n g i n t h e a b s e n c e o f PEO and a h i g h l y v i s c o u s s u s p e n s i o n a b o v e t h e f l o c c u l a t i o n p o i n t by t h e f r e e polymer. ρ
ρ
ρ
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Stabilization of Aqueous Suspensions
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
HEATH ET AL.
Figure
5.
Sediment h e i g h t f u n c t i o n o f PEO
and r e d i s p e r s i o n as a 20,000 c o n c e n t r a t i o n .
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
20
ADVANCES IN PESTICIDE FORMULATION TECHNOLOGY
Discussion D i s p e r s i n g power o f t h e "comb" s t a b i l i s e r Both adsorption i s o t h e r m s a n d v i s c o s i t y - v o l u m e f r a c t i o n c u r v e s show c l e a r l y t h e a b i l i t y o f t h e "comb" s t a b i l i s e r t o p r o d u c e h i g h l y d e f l o c c u l a t e d suspensions. T h u s , t h e s t r o n g a n c h o r i n g p r o d u c e d by t h e b a c k b o n e o f t h e g r a f t c o p o l y m e r (no d e s o r p t i o n was d e t e c t e d when t h e s e d i m e n t was d i l u t e d w i t h w a t e r ) a n d t h e s t e r i c s t a b i l i s a t i o n due t o t h e PEO c h a i n s w h i c h a r e w e l l s o l v a t e d i n w a t e r , e n a b l e s one to produce suspensions approaching the t h e o r e t i c a l packing f r a c t i o n (0.74 f o r a m o n o d i s p e r s e h e x a g o n a l l y c l o s e - p a c k e d d i s p e r s i o n and h i g h e r v a l u e s f o r p o l y d i s p e r s e s y s t e m s ) . This i s shown by t h e η "-φ c u r v e ( F i g . 2 ) w h i c h , u s i n g t h e e x t r a p o l a t i o n procedure described i n the Results s e c t i o n , gives a packing fraction, Φ / o f 0.74. The i n t e r a c t i o n i n t h i s s t e r i c a l l y s t a b i l i s e d a i s p e r s i o n may be r e p r e s e n t e d by a h a r d s p h e r e m o d e l w i t h a h a r d s p h e r e r a d i u s o f (a+6) where 6 i s t h e a d s o r b e d l a y e r thickness. I f t h i s i s t h e c a s e , t h e n i t s h o u l d be p o s s i b l e t o f i t t h e η-φ c u r v e t o t h e D o u g h e r t y - K r i e g e r e q u a t i o n ( 6 , 7 ) .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
Γ
Ό 8
n
r
« Π-(Φ /Φ 3
8
)]~
[
n
]
*s
P
(1)
Using the extrapolated φ v a l u e and t h e t h e o r e t i c a l v a l u e o f [η] o f 2.5, T) was c a l c u l a t e d a s a f u n c t i o n o f φ a n d t h e r e s u l t s a r e shown f o r c o m p a r i s o n i n F i g 2. The t h e o r e t i c a l - φ curve i s s i g n i f i c a n t l y lower than the e x p e r i m e n t a l curve. T h i s may be due t o t h e v a n d e r W a a l s a t t r a c t i o n a s t h e p a r t i c l e s are c l o s e together i n the very concentrated suspension. T h e r e f o r e , t h e h a r d s p h e r e m o d e l c a n n o t be a p p l i e d t o a v e r y c o n c e n t r a t e d d i s p e r s i o n w i t h o u t i n t r o d u c i n g a p e r t u r b a t i o n due t o t h e van der Waals a t t r a c t i o n . r
η
Γ
Interpretation of rheological results The t r e n d s i n t h e v a r i a t i o n of w i t h φ^ a r e s i m i l a r t o t h o s e o b t a i n e d r e c e n t l y (3) u s i n g a m o d e l p o l y s t y r e n e l a t e x d i s p e r s i o n . The φ + v a l u e s o b t a i n e d i n the p r e s e n t system are a l s o c l o s e t o t h o s e o b t a i n e d w i t h t h e m o d e l d i s p e r s i o n ( 0 . 0 1 7 , 0.008 a n d 0.005 f o r PEO 20,000, 35,000 a n d 90,000 r e s p e c t i v e l y ) . As m e n t i o n e d before the sharp i n c r e a s e i n above φ+ i n d i c a t e s t h a t a t t h e o n s e t o f f l o c c u l a t i o n t h e d i s p e r s i o n s show m a r k e d viscoelasticity. The f l o c c u l a t i o n o b t a i n e d a t φ ^ c o r r e s p o n d s t o t h e o n s e t o f t h e " s e m i d i l u t e " r e g i o n , φ^, i . e . , where t h e p o l y m e r c o i l s i n s o l u t i o n b e g i n t o a r r a n g e t h e m s e l v e s i n some
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
2.
HEATH ET AL.
close-packed The
a r r a y as
v a l u e o f φ*
polymer
i n bulk
21
Stabilization of Aqueous Suspensions a result
corresponding solution
c a n be
of excluded to the
volume
effects.
o v e r l a p of the
c a l c u l a t e d using the
free equation
(8)
(2) Φ
ρ
=
b* is t h e r a d i u s o f g y r a t i o n o f t h e p o l y m e r , b * i s a c o n s t a n t (5.63 f o r hexagonal c l o s e packing of the polymer), N i s Avogadro's number a n d p i s t h e d e n s i t y o f t h e p o l y m e r . The v a l u e o f ^ was c a l c u l a t e d f r o m t h e i n t r i n s i c v i s c o s i t y o f t h e c o r r e s p o n d i n g polymer s o l u t i o n u s i n g the Stockmayer-Fixman r e l a t i o n s h i p ( 9 ) . The v a l u e s f o r φ * d e r i v e d were f o u n d t o be 0.029, 0.02 a n d 0.01 f o r PEO w i t h M o f 20,000, 35,000 a n d 90,000 respectively. I t seems t h a t t h e φ* v a l u e s a r e a l w a y s h i g h e r than the φ+ v a l u e s .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
A
2
2
P
+ W i t h f u r t h e r i n c r e a s e i n φ^ a b o v e φ^, t h e y i e l d v a l u e c o n t i n u e s t o i n c r e a s e i n d i c a t i n g an i n c r e a s e i n t h e e x t e n t o f flocculation. S e v e r a l mechanisms were p r o p o s e d t o e x p l a i n t h e f l o c c u l a t i o n i n d u c e d by t h e a d d i t i o n o f f r e e (non-adsorbing polymer). The f i r s t e x p l a n a t i o n was g i v e n by A s a k u r a a n d Oosawa (10). When two p a r t i c l e s a p p r o a c h e a c h o t h e r w i t h i n a d i s t a n c e of s e p a r a t i o n t h a t i s s m a l l e r than the diameter of the f r e e polymer c o i l , e x c l u s i o n o f the polymer from the i n t e r s t i c e s between t h e p a r t i c l e s t a k e s p l a c e l e a d i n g t o t h e f o r m a t i o n of a polymer f r e e zone. T h i s p r o d u c e s an a t t r a c t i v e f o r c e a s s o c i a t e d w i t h a lower o s m o t i c p r e s s u r e i n t h e r e g i o n between t h e particles. Thus, t h e f l o c c u l a t i o n r e s u l t s from d e p l e t i o n o f the f r e e polymer from t h e i n t e r s t i c e s between t h e p a r t i c l e s and hence i s u s u a l l y r e f e r r e d t o as d e p l e t i o n f l o c c u l a t i o n . The t h e o r y o f A s a k u r a a n d Oosawa (10) h a s b e e n e i t h e r e x t e n d e d and/or m o d i f i e d by v a r i o u s i n v e s t i g a t o r s . F o r example, V r i j (11) h a s d e v e l o p e d a t h e o r y f o r d é s t a b i l i s a t i o n b a s e d on t h e e x p u l s i o n of t h e polymer from t h e i n t e r s t i t i a l spaces between a p p r o a c h i n g p a r t i c l e s b a s e d on "volume r e s t r i c t i o n " a s w e l l a s " o s m o t i c " c o n s i d e r a t i o n s . V i n c e n t e t a l (8) h a v e s p e c i f i c a l l y c o n s i d e r e d t h e c a s e where t h e p a r t i c l e s c a r r y an a d s o r b e d polymer, l a y e r ; t h e y c a l c u l a t e d t h e n e t f r e e e n e r g y c h a n g e i n v o l v e d when t h e f r e e polymer c o i l s a r e d i s p l a c e d from the r e g i o n between t h e p a r t i c l e s into bulk s o l u t i o n . In t h e i r t h e o r y , o n l y m i x i n g terms a r e c o n s i d e r e d ; the n e t f r e e energy i n v o l v e d i n the exchange p r o c e s s amounts i n e f f e c t t o t h e f r e e e n e r g y o f m i x i n g o f t h e
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
22
ADVANCES IN PESTICIDE FORMULATION TECHNOLOGY
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
a d s o r b e d l a y e r s ( a t a g i v e n s e p a r a t i o n ) minus the f r e e energy g a i n e d by t h e d e m i x i n g o f t h e ( d i s p l a c e d ) p o l y m e r c o i l s w i t h t h e a d s o r b e d l a y e r s . F e i g i n and N a p p e r (12) h a v e d e v e l o p e d a t h e o r y b a s e d upon r o t a t i o n a l i s o m e r i c s t a t e Monte C a r l o p r o c e d u r e s f o r c a l c u l a t i n g segment c o n c e n t r a t i o n p r o f i l e s o f m a c r o m o l e c u l e s i n t h e r e g i o n b e t w e e n two p a r t i c l e s . They then c a l c u l a t e d the change i n the o v e r a l l f r e e energy of m i x i n g w i t h d i s t a n c e o f s e p a r a t i o n between the p l a t e s u s i n g F l o r y - H u g g i n s t h e o r y o f polymer s o l u t i o n s . The above t h e o r i e s may be u s e d f o r i n t e r p r e t a t i o n o f t h e r h e o l o g i c a l r e s u l t s , i n p a r t i c u l a r the i n c r e a s e i n the B i n g h a m y i e l d v a l u e , τ ^ , w i t h i n c r e a s e i n φ^. As m e n t i o n e d b e f o r e (3) c a n be a n a l y s e d i n t e r m s o f i n t e r p a r t i , c l e interactions. T h i s may be e q u a t e d t o t h e amount o f e n e r g y n e e d e d t o t o t a l l y s e p a r a t e the f l o e s i n t o s i n g l e u n i t s (13,14), i e . To = Ν ρ
E
^ sep
(3)
e
where Ν i s t h e t o t a l number o f c o n t a c t s b e t w e e n p a r t i c l e s i n f l o e s and E i s the energy r e q u i r e d t o break each c o n t a c t . The t o t a l number o f c o n t a c t s , N, may be r e l a t e d t o t h e p a r t i c l e volume f r a c t i o n , φ and t h e a v e r a g e number o f c o n t a c t s p e r p a r t i c l e , n, by ( 1 3 ) , g
e
3
3 ώ Ν =
η
(—±1
1/2
4 π a
)
(4)
3
where a i s t h e p a r t i c l e
=
3
6
n E
*s
radius.
Combining equations
sep
(3)
and
(4),
( 5 )
3
8π
3
E q u a t i o n (5) shows t h a t energy of s e p a r a t i o n , E
g e
p,
i s d i r e c t l y p r o p o r t i o n a l to the needed t o separate the f l o e s .
E
g
may be e q u a t e d t o t h e f r e e e n e r g y minimum, G , i n the f r e e e n e r g y - d i s t a n c e c u r v e i n t h e p r e s e n c e o f f r e e p o l y m e r . j(i± may be e s t i m a t e d u s i n g t h e t h e o r y o f V i n c e n t e t a l ( 8 ) ; t h e d e t a i l s of the c a l c u l a t i o n s are given i n the Appendix. Fig. 6 shows t h e v a r i a t i o n o f G . ( i n kT u n i t s ) w i t h φ f o r the mm ρ t h r e e PEO m o l e c u l a r w e i g h t s u s e d . It i s clear that G.^ m i n
G
n
m
Λ
3
increases with G
min
i
with
φρ n
c
r
e
increase
nun in φ
(see F i g s . 3 and a
s
e
s
with
, thus e x p l a i n i n g the
4?.
M o r e o v e r , a t any
i n c r e a s e of M , w
increase
given
thus e x p l a i n i n g
φ , ρ
the
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
in
2.
increase
in
with
concentration. In p r i n c i p l e ,
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
G
v
a
l
u
e
23
Stabilization of Aqueous Suspensions
HEATH ET AL.
increase of
at a given free
i t i s p o s s i b l e t o c a l c u l a t e τg
polymer
from
the
s
min g i v e n i n F i g . 6, u s i n g e q u a t i o n ( 5 ) . I f the f l o e s a r e assumed t o be c l o s e - p a c k e d s t r u c t u r e s , t h e n η must be between 8 ( r a n d o m - c l o s e p a c k i n g ) a n d 12 ( h e x a g o n a l c l o s e - p a c k i n g ) . However, e q u a t i o n (5) i s b a s e d on a m o n o d i s p e r s e s u s p e n s i o n . With a suspension c o n t a i n i n g a d i s t r i b u t i o n of p a r t i c l e s i z e s , one c a n n o t r e p l a c e a by t h e a v e r a g e p a r t i c l e s i z e , s i n c e t h e number o f c o n t a c t p o i n t s Ν i n a f l o e i s g r e a t e r t h a n t h a t c a l c u l a t e d u s i n g an a v e r a g e p a r t i c l e s i z e . With a p o l y d i s p e r s e s u s p e n s i o n i t i s d i f f i c u l t t o c a l c u l a t e t h e number o f c o n t a c t s w i t h o u t knowledge o f the e x a c t p a r t i c l e s i z e d i s t r i b u t i o n . Since t h i s was n o t a v a i l a b l e i n t h e p r e s e n t s y s t e m , no a t t e m p t was made to calculate ( a n d h e n c e compare i t w i t h t h e e x p e r i m e n t a l value). However, t h e t r e n d i n ρ"Φρ c o r r e l a t e s very w e l l with the i ^ p curves thus c o n f i r m i n g the v a l i d i t y of the model u s e d t o e s t i m a t e G . . mi η τ
G
m
n
S e d i m e n t h e i g h t and r e d i s p e r s i o n The r e s u l t s o f t h e s e d i m e n t h e i g h t a n d r e d i s p e r s i o n e x p e r i m e n t s ( F i g . 5) a r e c o n s i s t e n t w i t h t h e m o d e l o f weak f l o c c u l a t i o n and t h e r h e o l o g i c a l d a t a d e s c r i b e d above. I n t h e a b s e n c e o f any a d d e d f r e e p o l y m e r , t h e d i s p e r s i o n i s c o l l o i d a l l y s t a b l e a n d any s e p a r a t i o n as a r e s u l t o f sedimentation leaves a t u r b i d supernatant of c o l l o i d a l l y s t a b l e particles. The s e d i m e n t f o r m e d i s h a r d ( i n t e c h n i c a l t e r m s a " c l a y " ) a s a r e s u l t o f t h e d e n s e p a c k i n g o f t h e p a r t i c l e s . The l a t t e r w h i c h s e d i m e n t u n d e r g r a v i t y a r e a b l e t o move p a s t e a c h o t h e r (as a r e s u l t o f t h e s t r o n g r e p u l s i v e f o r c e between t h e p a r t i c l e s ) forming a close-packed sediment r e q u i r i n g a l a r g e number o f r e v o l u t i o n s f o r r e s u s p e n s i o n . On a d d i t i o n o f f r e e p o l y m e r , t h e s e d i m e n t h e i g h t i n i t i a l l y d e c r e a s e s and t h e n r e a c h e s a minimum. T h i s i s a c c o m p a n i e d by t h e f o r m a t i o n o f c l e a r supernatant l i q u i d i n d i c a t i v e of p a r t i c l e f l o c c u l a t i o n . Under t h e s e c o n d i t i o n s , t h e weakly f l o c c u l a t e d sediment i s easy t o redisperse. However, w i t h f u r t h e r i n c r e a s e i n f r e e p o l y m e r c o n c e n t r a t i o n , t h e e x t e n t of f l o c c u l a t i o n i n c r e a s e s and t h e y i e l d v a l u e i n c r e a s e s . T h i s i s a c c o m p a n i e d by an i n c r e a s e i n s e d i m e n t h e i g h t a n d t h e s e d i m e n t becomes more d i f f i c u l t t o r e d i s p e r s e as a r e s u l t of the i n c r e a s e i n v i s c o s i t y . Thus, the sediment h e i g h t and r e d i s p e r s i o n e x p e r i m e n t s a r e c o n s i s t e n t w i t h the r h e o l o g i c a l results. Conclusions H i g h l y d e f l o c c u l a t e d c o n c e n t r a t e d s u s p e n s i o n s c a n be o b t a i n e d u s i n g b l o c k o r g r a f t c o p o l y m e r s c o n s i s t i n g o f an i n s o l u b l e component h a v i n g a h i g h a f f i n i t y t o t h e p a r t i c l e s u r f a c e a n d s o l u b l e c h a i n s ( s t r o n g l y s o l v a t e d by t h e medium) w h i c h p r o v i d e the s t a b i l i s i n g moiety. These s t e r i c a l l y s t a b i l i s e d suspensions
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
ADVANCES IN PESTICIDE FORMULATION TECHNOLOGY
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
24
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
2.
HEATH ET
25
Stabilization of Aqueous Suspensions
AL.
c a n be w e a k l y f l o c c u l a t e d by t h e a d d i t i o n o f f r e e n o n - a d s o r b i n g p o l y m e r , above a c r i t i c a l c o n c e n t r a t i o n w h i c h d e p e n d s on t h e m o l e c u l a r weight of the f r e e polymer. These weakly f l o c c u l a t e d s t r u c t u r e s a r e e a s y t o r e d i s p e r s e and, t h e r e f o r e , t h e phenomenon may be u s e d t o p r e v e n t c l a y i n g .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
Acknowledgements M o s t o f t h e e x p e r i m e n t work d e s c r i b e d i n t h i s p a p e r has b e e n c a r r i e d o u t by Mr R R a j a r a m ( B r u n e i U n i v e r s i t y ) d u r i n g a s i x month i n d u s t r i a l t r a i n i n g p e r i o d a t J e a l o t t ' s H i l l . The a u t h o r s a r e a l s o i n d e b t e d t o Mr S D o u g l a s f o r c a r r y i n g o u t t h e a d s o r p t i o n isotherms. We a r e g r a t e f u l t o Mr F W a i t e o f I C I P a i n t s D i v i s i o n f o r v a l u a b l e s u g g e s t i o n s and s t i m u l a t i n g d i s c u s s i o n s d u r i n g t h e course of t h i s study. We a r e a l s o g r a t e f u l t o Dr Β V i n c e n t f o r m a k i n g v a l u a b l e comments. Appendix Basic equations f o r c a l c u l a t i o n of f r e e energy-distance curves V i n c e n t e t a l (8) showed t h a t t h e n e t f r e e e n e r g y b a l a n c e i n v o l v e d i n d i s p l a c i n g c o i l s i n t o b u l k s o l u t i o n on o v e r l a p p i n g t h e s h e a t h on t h e i r a p p r o a c h i n g p a r t i c l e s may be a p p r o x i m a t e d by,
G
m
l
G
+
mix
s
1/2l J
A
2 (
t h e Hamaker c o n s t a n t s
of the pure
i
x
)
polymer
respectively.
f o r the
e x t e n s i o n of F l o r y
calculation 1
s theory
P
of G ? , V i n c e n t x
(17)
f o r two
e t a l (8) u s e d
interacting
chains
an
in
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
solution, i e .
+ 1
2
[2 < s >
3 / 2
V
iSl
3 q
(1/3
- X ) 2
exp
- |î
(x)
where r i s t h e c r o s s - s e c t i o n a l a r e a o f t h e f r e e p o l y m e r c o i l a n d ν i s t h e segment d e n s i t y a t t h e c e n t r e o f t h e p o l y m e r c o i l ,
Μ
Γ
v
L
3 2
s 2
< >
Π3/2 1
(xi)
-
The G - d i s t a n c e c u r v e s were e s t a b l i s h e d u s i n g t h e a b o v e e q u a t i o n s . The v a l u e s o f t h e v a r i o u s p a r a m e t e r s u s e d i n t h e s e t o t
β
&
c a l c u l a t i o n s a r e as f o l l o w s : a 500nm/S = 5.0nm, φ = 0.15, A / ) a r e 5.52, 7.59 a n d 12.90 nm f o r PEO w i t h M o f 20,000, 35,000 a n d 90,000 r e s p e c t i v e l y . From t h e s e e n e r g y - d i s t a n c e c u r v e s , t h e values of G . ( = E^) were e s t a b l i s h e d , mm sep ρ
2
1
2
S
2
m
Literature Cited 1. 2. 3. 4. 5.
Tadros, Th. F., Adv. Colloid Interface Sci. 12, 141 (1980). Tadros, Th. F., in "The Effects of Polymers on Dispersion Properties" Editor, Tadros, Th. F. Academic Press, London (1982) pp. 1-39. Heath, D. and Tadros, Th. F., Disc. Faraday Soc. (1983) in press. Baleaux, B. C. R. Hebd. Seances Acad. Sci. Ser C, 274, 1617 (1975). Tadros Th. F. and Vincent, B. J. Phys. Chem., 80, 1575 (1980).
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
A D V A N C E S IN PESTICIDE F O R M U L A T I O N T E C H N O L O G Y
28
6.
18.
T. J. Dougherty, Ph. D. Thesis, Case Institute of Technology (1959). Krieger, I.M.Advan. Colloid Interface Sci., 3, 111 (1972). Vincent, B. Luckham P.F. and Waite, F. J. Colloid Interface Sci., 73, 508 (1980). Stockmayer W.H. and Fixman M., J. Polymer Sci. C,1,137 (1963). Asakura S. and Oosawa F., J. Chem. Phys., 22, 1255 (1954). Vrij Α., Pure Appl. Chem., 48, 471 (1976). Feigin R.I. and Napper D.H., J. Colloid Interface Sci., 74, 567 (1980); 75, 525.(1980); D.H. Napper in "The Effect of Polymers on Dispersion Stability, ed. Th.F.Tadros (Academic Press, London, (1982) pp. 199206. Luckham P.F., Vincent B. and Tadros Th.F., Colloids and Surfaces, 6, 101 (1983). Gillespie T., J. Colloid Sci., 15, 219 (1960). Smitham J.B., Evans R. and Napper D.H., J. Chem. Soc. Faraday Trans 1, 72, 2425 (1976). Vincent B., J. Colloid Interface Sci., 42, 270 (1977). Flory P.J., "Principles of Polymer Chemistry" Cornell University Press, (1953),p. 535. Greig, B. and Tadros, Th.F., to be published.
RECEIVED
February 9,
7. 8. 9. 10.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 5, 1984 | doi: 10.1021/bk-1984-0254.ch002
11. 12.
13. 14. 15. 16. 17.
1984
Scher; Advances in Pesticide Formulation Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1984.