Aerosol Chemistry Resolved by Mass Spectrometry - ACS Publications

Oct 6, 2016 - (MARGA). The MARGA system53 is a commercialized version ..... Mainz; phone: +49 6131 39 25716; e-mail: t.hoffmann@uni- · mainz.de...
0 downloads 0 Views 2MB Size
Article pubs.acs.org/est

Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition Alexander L. Vogel,*,†,# Johannes Schneider,‡ Christina Müller-Tautges,† Gavin J. Phillips,§,∇ Mira L. Pöhlker,∥ Diana Rose,∥,○ Christoph Zuth,† Ulla Makkonen,⊥ Hannele Hakola,⊥ John N. Crowley,§ Meinrat O. Andreae,∥ Ulrich Pöschl,∥ and Thorsten Hoffmann*,† †

Institute for Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany Particle Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany § Air Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany ∥ Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany ⊥ Finnish Meteorological Institute, FI-00560, Helsinki, Finland ‡

S Supporting Information *

ABSTRACT: Aerosol hygroscopic properties were linked to its chemical composition by using complementary online mass spectrometric techniques in a comprehensive chemical characterization study at a rural mountaintop station in central Germany in August 2012. In particular, atmospheric pressure chemical ionization mass spectrometry ((−)APCI-MS) provided measurements of organic acids, organosulfates, and nitrooxy-organosulfates in the particle phase at 1 min time resolution. Offline analysis of filter samples enabled us to determine the molecular composition of signals appearing in the online (−)APCI-MS spectra. Aerosol mass spectrometry (AMS) provided quantitative measurements of total submicrometer organics, nitrate, sulfate, and ammonium. Inorganic sulfate measurements were achieved by semionline ion chromatography and were compared to the AMS total sulfate mass. We found that up to 40% of the total sulfate mass fraction can be covalently bonded to organic molecules. This finding is supported by both on- and offline soft ionization techniques, which confirmed the presence of several organosulfates and nitrooxy-organosulfates in the particle phase. The chemical composition analysis was compared to hygroscopicity measurements derived from a cloud condensation nuclei counter. We observed that the hygroscopicity parameter (κ) that is derived from organic mass fractions determined by AMS measurements may overestimate the observed κ up to 0.2 if a high fraction of sulfate is bonded to organic molecules and little photochemical aging is exhibited.



frequency,8−12 enables a better understanding of chemical transformation processes of ambient aerosol particles. Chemical transformation such as oxidative aging or condensation reactions can alter the aerosols’ chemical composition significantly on short time scales.13 Heterogeneous aging can occur because of reactive uptake of gaseous oxidants14−17 or gas-phase epoxides that can react with sulfuric acid in the condensed phase forming organosulfates.18−20 Other categories of aging are condensational aging due to repartitioning following gas-phase oxidation of semivolatiles21−24 and aging due to condensed-phase chemistry such as oligomerization reactions.25−27 However, the atmospheric implications, such as the overall impact of chemical transformation processes on the

INTRODUCTION One of the major uncertainties in global climate models is the role of aerosol particles and their effect on clouds, complicated by their high spatial and temporal variation throughout the atmosphere.1 The ability of aerosol particles to indirectly influence the radiative budget of the planet by acting as cloud condensation nuclei (CCN) requires insight into their sources, properties, and transformation processes.2,3 It has been shown that throughout the northern hemisphere, the organic fraction of submicrometer particles accounts for 20−90%4 of total mass and that most of the particulate organic compounds are of a secondary nature.5 The highly diverse composition of the aerosol’s organic fraction6 might mask important chemical transformation processes and associated changes of the physicochemical properties of submicrometer particles.7 The application of chemical ionization mass spectrometric techniques, which can resolve the chemical composition of the organic aerosol (OA) fraction at a high measurement © XXXX American Chemical Society

Received: April 5, 2016 Revised: August 28, 2016 Accepted: September 16, 2016

A

DOI: 10.1021/acs.est.6b01675 Environ. Sci. Technol. XXXX, XXX, XXX−XXX

Article

Environmental Science & Technology

temperature, estimated by CFD calculations) in which particles were vaporized without being deposited on a surface. Reagent ions were produced by corona discharge (−3.3 kV), and the ion mode was set to detect negatively charged ions. A minor flow of nitrogen sheath gas (0.1 SLPM) was added to the ion-source to improve the sensitivity. Mass spectra from 80 to 500 amu were averaged and saved at 1 min frequency. Thermal decomposition of molecules in the particle phase is a potential source of negative and positive artifacts. Therefore, we also conducted offline analysis of PM 2.5 filter samples using an ultrahighperformance liquid chromatography system (Thermo Scientific, Dionex UltiMate 3000) equipped with a Hypersil gold column (C18, 50 × 2.0 mm, 1.9 μm particle size, Thermo Scientific) coupled to a (heated) electrospray ion source on an ultrahighresolution mass spectrometer (UHPLC/(−)ESI-UHRMS, Thermo Scientific, Q-Exactive). The filters (PTFE-coated quartz fiber filters, Pallflex T60A20, Pall Life Science, U.S.) were sampled between 6 and 30 h throughout the campaign. For analysis they were cut into small pieces and extracted using methanol (HPLC grade), and the vial was placed on a vortex shaker for 30 min. Methanol extracts from each filter (1 × 1.5 mL, 2 × 1 mL) were evaporated to dryness, and the residue redissolved in a 10% methanolic solution. The 10 μL portions of the sample were injected and separated by a gradient method with two eluents A and B (A, ultrapure water with 2% acetonitrile and 0.04% formic acid; B, acetonitrile with 2% ultrapure water). The gradient method is described in detail in the companion paper.50 Exemplary chromatograms of authentic standards are shown in Figure S5. A nontarget analysis of the high-resolution data (R = 70 000) was conducted to screen the chromatograms for all signals above a certain threshold value. An elemental composition was assigned to the resulting peak list of the exact masses by XCalibur 2.2 (Thermo Scientific) using the following constraints: #12C, 1−45; #1H, 1−60; #14N, 0−10; #16O, 2−45; #31P, 0−2; #32S, 0−4; and #35Cl, 0−2 and a mass tolerance of less than ±2 ppm (further details are given in the companion paper). Black carbon was measured using a multiangle absorption photometer (MAAP, Thermo Electron Corp., U.S.). Monitor for Aerosols and Gases in Ambient Air (MARGA). The MARGA system53 is a commercialized version of the GRAEGOR analyzer developed by ECN, Netherlands,54,55 and produced by Metrohm Applikon BV, Netherlands. The instrument was deployed inside a ventilated metal cabinet on the roof of the observatory. The air sample was drawn at 1 m3 h−1 through a Teflon-coated PM10 cutoff cyclone and through a short ( 150 nm) (Figure 5A). An average density of 1.5 g/cm3 was assumed to calculate the electrical mobility into the vacuum aerodynamic mobility. The size-resolved ammonium concentrations were calculated from the sulfate and nitrate concentrations under the assumption that the aerosol was fully neutralized.

Figure 5. Time series of (A) aerosol mass fractions determined by AMS within the size bins of 120−150 or 150−180 nm; (B) observed hygroscopicity parameter (κa) at S = 0.11% determined from CCNC measurements and predicted values, κp, from AMS mass fractions using the parametrization of Gunthe et al.;30 (C) biogenic aerosol aging proxy m/z 203/m/z 185 at the temporal resolution of the CCN counter measurements; and (D) fraction of organic bonded sulfate determined from the difference between MARGA and AMS sulfate measurements.

Figure 5B shows the observed hygroscopicity parameter, κa, as derived from the CCNC measurements at S = 0.11% as well as a predicted hygroscopicity parameter, κp. This value was calculated according to the parametrization as described in Gunthe et al.30 using the size-resolved mass fractions of sulfate and organics from AMS measurements and the BC mass fractions from MAAP measurements. The observed and predicted values agree very well between August 13 and August 19 despite a short period on August 14 where the predicted κ-value underestimates the measured κ-value. To investigate the cause of the observed deviation between κa and κp, we show the relative particle aging state by the ratio of the (−)APCI-MS signals m/z 203/m/z 185 (Figure 5C) and the fraction of organic bonded sulfate ( fobSO4) from the difference between MARGA and AMS sulfate measurements (Figure 5D). On August 18, fobSO4 increased to 30%, and coincidently, κp appears larger than κa. During this period, AMS measurements also indicated peak nitrate concentrations of 3 μg/m3, which might suggest that the chemistry of the formation of organonitrates is also linked to the formation of nitrooxyorganosulfates. The largest offset between measured and predicted κ can be observed from August 22 on, which was accompanied by continuously high fobSO4 but also by a low aging state of the organic aerosol. As shown above, the highest fraction of (nitrooxy)-organosulfates was measured by the (−)APCI-MS during the night of August 22. Thus, if the highly hygroscopic sulfate and nitrate are bonded to organic molecules, the resulting total hygroscopicity appears to be lower from what would be derived from AMS measurements. F

DOI: 10.1021/acs.est.6b01675 Environ. Sci. Technol. XXXX, XXX, XXX−XXX

Article

Environmental Science & Technology

the observed gap by possible evaporation artifacts of NH4NO3 in the HTDMA system; however, the observed bias can also be explained by substantial amounts of nitrooxy-organosulfates in the particle phase. These observations imply that chemical reactions between anthropogenic inorganic emissions and biogenic organic emissions can suppress the hydrophilic contribution of purely inorganic sulfate and nitrate when sulfate and nitrate are bonded to organic molecules. Recent work has shown that organosulfates can also form from anthropogenic precursor VOCs, which might have important implications for the physicochemical properties of urban aerosol particles.73 Future studies should aim at analyzing aerosol particles of smaller size for which the chemical composition can be particularly important in determining whether the particles can grow into cloud droplets.

However, the nitrooxy-organosulfate fraction measured by APCI-MS did not always appear to be high when a high fobSO4 was observed (e.g., night of August 23). The reason for that might be the underestimation of the contribution of nitrooxyorganosulfates to the unit-mass signals, especially at low mass concentrations. In Figure 6, the measured κa at S = 0.11% is plotted against the size-resolved organic mass fraction. The (−)APCI-MS



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.6b01675. Animation of the backtrajectories (AVI) Detailed description of AMS and MARGA comparison for sulfate measurements, description of the average molecular weight calculation, figures which are mentioned in the main text, and a table containing the results of the nontarget analysis (PDF)



Figure 6. Effective hygroscopicity parameter, κa, of CCN active particles at S = 0.11% versus size-resolved AMS organic fraction. The size of the data points represents the fraction of organic bonded sulfate, and the color represents the relative extent of the aerosol age (blue, fresh aerosol; red, aged aerosol). The orange and blue lines represent the parametrization of κ derived from forg. The shaded area represents the uncertainty of the forg-derived parametrization.

AUTHOR INFORMATION

Corresponding Authors

*Paul Scherrer Institut, 5232 Villigen, Switzerland; phone: +41 56 310 4395; e-mail: [email protected]. *Duesbergweg 10-14, Johannes Gutenberg-Universität, 55128 Mainz; phone: +49 6131 39 25716; e-mail: t.hoff[email protected].

aging proxy (Figure 5C) and the fraction of sulfate that is bonded to organics (Figure 5D) are now depicted by color- and size-coded data points, respectively. It can clearly be seen that the measured κ agrees with the AMS-dependent parametrization if the fraction of organic bonded sulfate is low and the aerosol is moderately to highly aged (represented by small orange and red points). However, the parametrization is not applicable with decreasing aerosol age (blue and green points) and an increasing fraction of organic bonded sulfate (large points). The observed overestimation of κ by the AMSparametrization can, under certain conditions, be above 0.2 and thus larger than the uncertainty of the measurements. Most of the measurements that show a smaller κ compared to the predicted κ suggest they are affected by both effects that can shift κ to lower values: they are sparsely aged and contain a high fraction of organically bonded sulfate (see also Figure S8). This means that both effects can have a pronounced influence on the aerosol hygroscopicity. However, to quantify the overall impact of aging and organosulfate formation on aerosol hygroscopicity, future chamber studies and field campaigns at different locations are needed. Overall, our observations suggest that the occurrence of ambient levels of (nitrooxy)-organosulfate can affect particle hygroscopicity. We found that under certain atmospheric conditions, the generally accepted linear relationship of κ versus forg is not applicable. Considering other hygroscopicity closure studies, a systematic overprediction of κ derived from AMS measurements has also been described. Wu et al.32 explained

Present Addresses #

A.L.V.: Laboratory for Environmental Chemistry & Laboratory for Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland. ∇ G.J.P.: Department of Natural Sciences, University of Chester, Chester CH2 4NU, U.K. ○ D.R.: Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, 60438 Frankfurt, Germany. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work was supported by the Max Planck Graduate Center together with the Johannes Gutenberg-Universität Mainz (MPGC). The INUIT-TO 2012 field campaign was initiated by the DFG-funded research unit INUIT (FOR 1525). We thank H. Bingemer and University of Frankfurt technicial staff for field site support, F. Drewnick for providing the MoLa, and T. Böttger and S.-L. von der Weiden-Reinmüller for support during the setup of the aerosol inlets and the MoLa.



REFERENCES

(1) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Summary for Policymakers; IPCC, ed.; Cambridge University Press: Cambridge, U.K., 2013.

G

DOI: 10.1021/acs.est.6b01675 Environ. Sci. Technol. XXXX, XXX, XXX−XXX

Article

Environmental Science & Technology

chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3 (2), 133−139. (14) Shilling, J. E.; King, S. M.; Mochida, M.; Worsnop, D. R.; Martin, S. T. Mass spectral evidence that small changes in composition caused by oxidative aging processes alter aerosol CCN properties. J. Phys. Chem. A 2007, 111 (17), 3358−3368. (15) George, I. J.; Vlasenko, A.; Slowik, J. G.; Broekhuizen, K.; Abbatt, J. P. D. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change. Atmos. Chem. Phys. 2007, 7 (16), 4187−4201. (16) Kessler, S. H.; Nah, T.; Daumit, K. E.; Smith, J. D.; Leone, S. R.; Kolb, C. E.; Worsnop, D. R.; Wilson, K. R.; Kroll, J. H. OH-Initiated Heterogeneous Aging of Highly Oxidized Organic Aerosol. J. Phys. Chem. A 2012, 116 (24), 6358−6365. (17) Zeng, G.; Holladay, S.; Langlois, D.; Zhang, Y.; Liu, Y. Kinetics of Heterogeneous Reaction of Ozone with Linoleic Acid and its Dependence on Temperature, Physical State, RH, and Ozone Concentration. J. Phys. Chem. A 2013, 117 (9), 1963−1974. (18) Iinuma, Y.; Muller, C.; Berndt, T.; Boge, O.; Claeys, M.; Herrmann, H. Evidence for the existence of organosulfates from betapinene ozonolysis in ambient secondary organic aerosol. Environ. Sci. Technol. 2007, 41 (19), 6678−6683. (19) Eddingsaas, N. C.; VanderVelde, D. G.; Wennberg, P. O. Kinetics and Products of the Acid-Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy Alcohols. J. Phys. Chem. A 2010, 114 (31), 8106−8113. (20) Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.; Chan, M.; Loza, C. L.; Kwan, A. J.; Hersey, S. P.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H. Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (15), 6640−6645. (21) Robinson, A. L.; Donahue, N. M.; Shrivastava, M. K.; Weitkamp, E. A.; Sage, A. M.; Grieshop, A. P.; Lane, T. E.; Pierce, J. R.; Pandis, S. N. Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 2007, 315 (5816), 1259−1262. (22) Donahue, N. M.; Henry, K. M.; Mentel, T. F.; Kiendler-Scharr, A.; Spindler, C.; Bohn, B.; Brauers, T.; Dorn, H. P.; Fuchs, H.; Tillmann, R.; Wahner, A.; Saathoff, H.; Naumann, K.-H.; Moehler, O.; Leisner, T.; Mueller, L.; Reinnig, M.-C.; Hoffmann, T.; Salo, K.; Hallquist, M.; Frosch, M.; Bilde, M.; Tritscher, T.; Barmet, P.; Praplan, A. P.; DeCarlo, P. F.; Dommen, J.; Prevot, A. S. H.; Baltensperger, U. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (34), 13503−13508. (23) Tkacik, D. S.; Presto, A. A.; Donahue, N. M.; Robinson, A. L. Secondary Organic Aerosol Formation from Intermediate-Volatility Organic Compounds: Cyclic, Linear, and Branched Alkanes. Environ. Sci. Technol. 2012, 46 (16), 8773−8781. (24) Iinuma, Y.; Kahnt, A.; Mutzel, A.; Boege, O.; Herrmann, H. Ozone-Driven Secondary Organic Aerosol Production Chain. Environ. Sci. Technol. 2013, 47 (8), 3639−3647. (25) Kalberer, M.; Paulsen, D.; Sax, M.; Steinbacher, M.; Dommen, J.; Prevot, A. S.; Fisseha, R.; Weingartner, E.; Frankevich, V.; Zenobi, R.; Baltensperger, U. Identification of polymers as major components of atmospheric organic aerosols. Science 2004, 303 (5664), 1659− 1662. (26) Offenberg, J. H.; Kleindienst, T. E.; Jaoui, M.; Lewandowski, M.; Edney, E. O. Thermal properties of secondary organic aerosols. Geophys. Res. Lett. 2006, 33 (3). DOI: 10.1029/2005GL024623. (27) Mü ller, L.; Reinnig, M.-C.; Warnke, J.; Hoffmann, T. Unambiguous identification of esters as oligomers in secondary organic aerosol formed from cyclohexene and cyclohexene/alphapinene ozonolysis. Atmos. Chem. Phys. 2008, 8 (5), 1423−1433. (28) Jayne, J. T.; Leard, D. C.; Zhang, X. F.; Davidovits, P.; Smith, K. A.; Kolb, C. E.; Worsnop, D. R. Worsnop. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 2000, 33 (1−2), 49−70. (29) Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.; Allan, J. D.; Alfarra, M. R.; Zhang, Q.; Onasch, T. B.; Drewnick, F.; Coe, H.; Middlebrook, A. M.; Delia, A.; Williams, L. R.; Trimborn, A. M.;

(2) Andreae, M. O.; Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 2008, 89 (1−2), 13−41. (3) Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N. M.; George, C.; Goldstein, A. H.; Hamilton, J. F.; Herrmann, H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M. E.; Jimenez, J. L.; Kiendler-Scharr, A.; Maenhaut, W.; McFiggans, G.; Mentel, T. F.; Monod, A.; Prevot, A. S. H.; Seinfeld, J. H.; Surratt, J. D.; Szmigielski, R.; Wildt, J. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9 (14), 5155−5236. (4) Zhang, Q.; Jimenez, J. L.; Canagaratna, M. R.; Allan, J. D.; Coe, H.; Ulbrich, I.; Alfarra, M. R.; Takami, A.; Middlebrook, A. M.; Sun, Y. L.; Dzepina, K.; Dunlea, E.; Docherty, K.; DeCarlo, P. F.; Salcedo, D.; Onasch, T.; Jayne, J. T.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Takegawa, N.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Williams, P.; Bower, K.; Bahreini, R.; Cottrell, L.; Griffin, R. J.; Rautiainen, J.; Sun, J. Y.; Zhang, Y. M.; Worsnop, D. R. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34 (13). DOI: 10.1029/ 2007GL029979. (5) Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; Dunlea, E. J.; Huffman, J. A.; Onasch, T. B.; Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, R.; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.; Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.; Williams, L. R.; Wood, E. C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, U.; Worsnop, D. R. Evolution of Organic Aerosols in the Atmosphere. Science 2009, 326 (5959), 1525−1529. (6) Goldstein, A. H.; Galbally, I. E. Known and unexplored organic constituents in the earth’s atmosphere. Environ. Sci. Technol. 2007, 41 (5), 1514−1521. (7) Farmer, D. K.; Cappa, C. D.; Kreidenweis, S. M. Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chem. Rev. 2015, 115 (10), 4199−4217. (8) Brüggemann, M.; Karu, E.; Stelzer, T.; Hoffmann, T. Real-Time Analysis of Ambient Organic Aerosols Using Aerosol Flowing Atmospheric-Pressure Afterglow Mass Spectrometry (AeroFAPAMS). Environ. Sci. Technol. 2015, 49 (9), 5571−5578. (9) Vogel, A. L.; Aijala, M.; Brueggemann, M.; Ehn, M.; Junninen, H.; Petaja, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids concentrated bulk aerosol - a laboratory and field study. Atmos. Meas. Tech. 2013, 6 (2), 431−443. (10) Nah, T.; Chan, M.; Leone, S. R.; Wilson, K. R. Real Time in Situ Chemical Characterization of Submicrometer Organic Particles Using Direct Analysis in Real Time-Mass Spectrometry. Anal. Chem. 2013, 85 (4), 2087−2095. (11) Eichler, P.; Mueller, M.; D’Anna, B.; Wisthaler, A. A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter. Atmos. Meas. Tech. 2015, 8 (3), 1353−1360. (12) Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, T. F.; Lutz, A.; Hallquist, M.; Worsnop, D.; Thornton, J. A. A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos. Meas. Tech. 2014, 7 (4), 983−1001. (13) Kroll, J. H.; Donahue, N. M.; Jimenez, J. L.; Kessler, S. H.; Canagaratna, M. R.; Wilson, K. R.; Altieri, K. E.; Mazzoleni, L. R.; Wozniak, A. S.; Bluhm, H.; Mysak, E. R.; Smith, J. D.; Kolb, C. E.; Worsnop, D. R. Carbon oxidation state as a metric for describing the H

DOI: 10.1021/acs.est.6b01675 Environ. Sci. Technol. XXXX, XXX, XXX−XXX

Article

Environmental Science & Technology Northway, M. J.; DeCarlo, P. F.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 2007, 26 (2), 185−222. (30) Gunthe, S. S.; Rose, D.; Su, H.; Garland, R. M.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Kuwata, M.; Takegawa, N.; Kondo, Y.; Hu, M.; Shao, M.; Zhu, T.; Andreae, M. O.; Poeschl, U. Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chem. Phys. 2011, 11 (21), 11023− 11039. (31) Rose, D.; Gunthe, S. S.; Su, H.; Garland, R. M.; Yang, H.; Berghof, M.; Cheng, Y. F.; Wehner, B.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Hu, M.; Zhang, Y.; Andreae, M. O.; Poeschl, U. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China -Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles. Atmos. Chem. Phys. 2011, 11 (6), 2817−2836. (32) Wu, Z. J.; Poulain, L.; Henning, S.; Dieckmann, K.; Birmili, W.; Merkel, M.; van Pinxteren, D.; Spindler, G.; Mueller, K.; Stratmann, F.; Herrmann, H.; Wiedensohler, A. Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign. Atmos. Chem. Phys. 2013, 13 (16), 7983−7996. (33) Wiedensohler, A.; Cheng, Y. F.; Nowak, A.; Wehner, B.; Achtert, P.; Berghof, M.; Birmili, W.; Wu, Z. J.; Hu, M.; Zhu, T.; Takegawa, N.; Kita, K.; Kondo, Y.; Lou, S. R.; Hofzumahaus, A.; Holland, F.; Wahner, A.; Gunthe, S. S.; Rose, D.; Su, H.; Poeschl, U. Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China. J. Geophys. Res. 2009, 114. DOI: 10.1029/2008JD010884. (34) Dusek, U.; Frank, G. P.; Curtius, J.; Drewnick, F.; Schneider, J.; Kuerten, A.; Rose, D.; Andreae, M. O.; Borrmann, S.; Poeschl, U. Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophys. Res. Lett. 2010, 37. DOI: 10.1029/2009GL040930. (35) Asmi, E.; Freney, E.; Hervo, M.; Picard, D.; Rose, C.; Colomb, A.; Sellegri, K. Aerosol cloud activation in summer and winter at puyde-Dome high altitude site in France. Atmos. Chem. Phys. 2012, 12 (23), 11589−11607. (36) Liggio, J.; Li, S.-M. Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols. Geophys. Res. Lett. 2006, 33 (13). DOI: 10.1029/2006GL026079. (37) Farmer, D. K.; Matsunaga, A.; Docherty, K. S.; Surratt, J. D.; Seinfeld, J. H.; Ziemann, P. J.; Jimenez, J. L. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (15), 6670−6675. (38) Chang, R. Y.-W.; Slowik, J. G.; Shantz, N. C.; Vlasenko, A.; Liggio, J.; Sjostedt, S. J.; Leaitch, W. R.; Abbatt, J. P. D. The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation. Atmos. Chem. Phys. 2010, 10 (11), 5047− 5064. (39) Lambe, A. T.; Onasch, T. B.; Massoli, P.; Croasdale, D. R.; Wright, J. P.; Ahern, A. T.; Williams, L. R.; Worsnop, D. R.; Brune, W. H.; Davidovits, P. Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmos. Chem. Phys. 2011, 11 (17), 8913−8928. (40) Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Ruiz, L. H.; Fortner, E.; Williams, L. R.; Wilson, K. R.; Surratt, J. D.; Donahue, N. M.; Jayne, J. T.; Worsnop, D. R. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmos. Chem. Phys. 2015, 15 (1), 253−272. (41) Romero, F.; Oehme, M. Organosulfates - A new component of humic-like substances in atmospheric aerosols? J. Atmos. Chem. 2005, 52 (3), 283−294.

(42) Reemtsma, T.; These, A.; Venkatachari, P.; Xia, X.; Hopke, P. K.; Springer, A.; Linscheid, M. Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2006, 78 (24), 8299−8304. (43) Surratt, J. D.; Kroll, J. H.; Kleindienst, T. E.; Edney, E. O.; Claeys, M.; Sorooshian, A.; Ng, N. L.; Offenberg, J. H.; Lewandowski, M.; Jaoui, M.; Flagan, R. C.; Seinfeld, J. H. Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41 (2), 517− 527. (44) Surratt, J. D.; Gomez-Gonzalez, Y.; Chan, A. W. H.; Vermeylen, R.; Shahgholi, M.; Kleindienst, T. E.; Edney, E. O.; Offenberg, J. H.; Lewandowski, M.; Jaoui, M.; Maenhaut, W.; Claeys, M.; Flagan, R. C.; Seinfeld, J. H. Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 2008, 112 (36), 8345−8378. (45) Kristensen, K.; Glasius, M. Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring. Atmos. Environ. 2011, 45 (27), 4546−4556. (46) Gomez-Gonzalez, Y.; Wang, W.; Vermeylen, R.; Chi, X.; Neirynck, J.; Janssens, I. A.; Maenhaut, W.; Claeys, M. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol. Atmos. Chem. Phys. 2012, 12 (1), 125−138. (47) Kristensen, K.; Bilde, M.; Aalto, P. P.; Petäjä, T.; Glasius, M. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts. Atmos. Environ. 2016, 130, 36−53. (48) Tolocka, M. P.; Turpin, B. Contribution of Organosulfur Compounds to Organic Aerosol Mass. Environ. Sci. Technol. 2012, 46 (15), 7978−7983. (49) Lukacs, H.; Gelencser, A.; Hoffer, A.; Kiss, G.; Horvath, K.; Hartyani, Z. Quantitative assessment of organosulfates in sizesegregated rural fine aerosol. Atmos. Chem. Phys. 2009, 9 (1), 231− 238. (50) Vogel, A. L.; Schneider, J.; Müller-Tautges, C.; Klimach, T.; Hoffmann, T. Aerosol Chemistry Resolved by Mass Spectrometry: Insights into Particle Growth after Ambient New Particle Formation. Environ. Sci. Technol. 2016, DOI: 10.1021/acs.est.6b01673. (51) Drewnick, F.; Hings, S. S.; DeCarlo, P.; Jayne, J. T.; Gonin, M.; Fuhrer, K.; Weimer, S.; Jimenez, J. L.; Demerjian, K. L.; Borrmann, S.; Worsnop, D. R. Worsnop. A new time-of-flight aerosol mass spectrometer (TOF-AMS) - Instrument description and first field deployment. Aerosol Sci. Technol. 2005, 39 (7), 637−658. (52) Geller, M. D.; Biswas, S.; Fine, P. A.; Sioutas, C. A new compact aerosol concentrator for use in conjunction with low flow-rate continuous aerosol instrumentation. J. Aerosol Sci. 2005, 36 (8), 1006− 1022. (53) Rumsey, I. C.; Cowen, K. A.; Walker, J. T.; Kelly, T. J.; Hanft, E. A.; Mishoe, K.; Rogers, C.; Proost, R.; Beachley, G. M.; Lear, G.; Frelink, T.; Otjes, R. P. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semicontinuous method for soluble compounds. Atmos. Chem. Phys. 2014, 14, 5639−5658. (54) ten Brink, H.; Otjes, R.; Jongejan, P.; Kos, G. Monitoring of the ratio of nitrate to sulphate in size-segregated submicron aerosol in the Netherlands. Atmos. Res. 2009, 92 (2), 270−276. (55) Thomas, R. M.; Trebs, I.; Otjes, R.; Jongejan, P. A. C.; ten Brink, H.; Phillips, G.; Kortner, M.; Meixner, F. X.; Nemitz, E. An Automated Analyzer to Measure Surf ace-Atmosphere Exchange Fluxes of Water Soluble Inorganic Aerosol Compounds and Reactive Trace Gases. Environ. Sci. Technol. 2009, 43 (5), 1412−1418. (56) Phillips, G. J.; Makkonen, U.; Schuster, G.; Sobanski, N.; Hakola, H.; Crowley, J. N. The detection of nocturnal N2O5 as HNO3 by alkali- and aqueous-denuder techniques. Atmos. Meas. Tech. 2013, 6 (2), 231−237. I

DOI: 10.1021/acs.est.6b01675 Environ. Sci. Technol. XXXX, XXX, XXX−XXX

Article

Environmental Science & Technology (57) Roberts, G. C.; Nenes, A. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol. 2005, 39 (3), 206−221. (58) Frank, G. P.; Dusek, U.; Andreae, M. O. Technical note: A method for measuring size-resolved CCN in the atmosphere. Atmos. Chem. Phys. Discuss. 2006, 6 (3), 4879−4895. (59) Rose, D.; Gunthe, S. S.; Mikhailov, E.; Frank, G. P.; Dusek, U.; Andreae, M. O.; Pöschl, U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMTCCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 2008, 8 (5), 1153−1179. (60) Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M. O.; Poeschl, U. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos. Chem. Phys. 2010, 10 (7), 3365−3383. (61) Petters, M. D.; Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7 (8), 1961−1971. (62) Pöschl, U.; Rose, D.; Andreae, M. O. Climatologies of cloudrelated aerosols: Part 2: Particle hygroscopicity and cloud condensation nucleus activity. In Clouds in the perturbed climate system: Their relationship to energy balance, atmospheric dynamics, and precipitation; Heintzenberg, J., Charlson, R. J., Eds.; MIT Press: Cambridge, Mass, 2009; pp 57−72. (63) Rosenberg, E. The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis. Journal of Chromatography a 2003, 1000 (1−2), 841−889. (64) Lin, P.; Yu, J. Z.; Engling, G.; Kalberer, M. Organosulfates in Humic-like Substance Fraction Isolated from Aerosols at Seven Locations in East Asia: A Study by Ultra-High-Resolution Mass Spectrometry. Environ. Sci. Technol. 2012, 46 (24), 13118−13127. (65) Hatch, L. E.; Creamean, J. M.; Ault, A. P.; Surratt, J. D.; Chan, M. N.; Seinfeld, J. H.; Edgerton, E. S.; Su, Y.; Prather, K. A. Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry - Part 1: Single Particle Atmospheric Observations in Atlanta. Environ. Sci. Technol. 2011, 45 (12), 5105−5111. (66) He, Q.-F.; Ding, X.; Wang, X.-M.; Yu, J.-Z.; Fu, X.-X.; Liu, T.-Y.; Zhang, Z.; Xue, J.; Chen, D.-H.; Zhong, L.-J.; Donahue, N. M. Organosulfates from Pinene and Isoprene over the Pearl River Delta, South China: Seasonal Variation and Implication in Formation Mechanisms. Environ. Sci. Technol. 2014, 48 (16), 9236−9245. (67) Szmigielski, R.; Surratt, J. D.; Gomez-Gonzalez, Y.; van der Veken, P.; Kourtchev, I.; Vermeylen, R.; Blockhuys, F.; Jaoui, M.; Kleindienst, T. E.; Lewandowski, M.; Offenberg, J. H.; Edney, E. O.; Seinfeld, J. H.; Maenhaut, W.; Claeys, M. 3-Methyl-1,2,3-butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol. Geophys. Res. Lett. 2007, 34 (24). DOI: 10.1029/ 2007GL031338. (68) Yasmeen, F.; Vermeylen, R.; Maurin, N.; Perraudin, E.; Doussin, J.-F.; Claeys, M. Characterisation of tracers for aging of alpha-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionisation mass spectrometry. Environ. Chem. 2012, 9 (3), 236−246. (69) Minerath, E. C.; Casale, M. T.; Elrod, M. J. Kinetics feasibility study of alcohol sulfate esterification reactions in tropospheric aerosols. Environ. Sci. Technol. 2008, 42 (12), 4410−4415. (70) Iinuma, Y.; Boege, O.; Kahnt, A.; Herrmann, H. Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides. Phys. Chem. Chem. Phys. 2009, 11 (36), 7985−7997. (71) Minerath, E. C.; Elrod, M. J. Assessing the Potential for Diol and Hydroxy Sulfate Ester Formation from the Reaction of Epoxides in Tropospheric Aerosols. Environ. Sci. Technol. 2009, 43 (5), 1386− 1392.

(72) Müller, L.; Reinnig, M.-C.; Naumann, K. H.; Saathoff, H.; Mentel, T. F.; Donahue, N. M.; Hoffmann, T. Formation of 3-methyl1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid a mass spectrometric study of SOA aging. Atmos. Chem. Phys. 2012, 12 (3), 1483−1496. (73) Riva, M.; Tomaz, S.; Cui, T.; Lin, Y.-H.; Perraudin, E.; Gold, A.; Stone, E. A.; Villenave, E.; Surratt, J. D. Evidence for an Unrecognized Secondary Anthropogenic Source of Organosulfates and Sulfonates: Gas-Phase Oxidation of Polycyclic Aromatic Hydrocarbons in the Presence of Sulfate Aerosol. Environ. Sci. Technol. 2015, 49 (11), 6654−6664.

J

DOI: 10.1021/acs.est.6b01675 Environ. Sci. Technol. XXXX, XXX, XXX−XXX