Aerosol Composition in Relation to Air Mass Movements in North

Jul 23, 2009 - The elemental composition of aerosol particles has been investigated, as a function of both particle size and time, at a nonurban mount...
0 downloads 0 Views 1MB Size
16

Aerosol Composition in Relation to Air Mass

Downloaded by SWINBURNE UNIV OF TECHNOLOGY on May 25, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch016

Movements in North China

JOHN W. WINCHESTER, MICHAEL DARZI, and ALISTAIR C. D. LESLIE Department of Oceanography, Florida State University, Tallahassee, FL 32306 WANG MINGXING, REN LIXIN, and LÜ WEIXIU Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, People's Republic of China The elemental composition of aerosol particles has been investigated, as a function of both p a r t i ­ cle size and time, at a nonurban mountain location 110 km NE of the city of Beijing in order to deter­ mine relationships of composition with large scale air mass movements. The study period, 16-21 March 1980, was selected so as to follow the end (15 March) of much of the residential space heating by coal combustion i n Beijing, thus reducing a i r pollution, and to precede a season of dust storms and the mon­ soon shift to southerly a i r flow from urbanized eastern China. Earth crustal aerosol and marine aerosol components could be resolved from some pol­ lution aerosol by use of both meteorological and chemical data. Concentrations of the crustal com­ ponent, mainly i n a coarse particle mode (Al, S i , K, Ca, T i , Mn, Fe) but with some fine mode admixture (Zn, Μn), varied i n time. The concentration maxima and minima were approximately synchronous with those of the p a r t i a l pressure of water vapor, P , signi­ fying aerosol concentration changes with a i r masses as they crossed the sampling s i t e . A period of high concentrations of coarse particle Cl corresponded to an incursion of marine a i r . Fine mode S, K, C l , and Pb, also observed, are attributed mainly to a pollu­ tion component formed from coal combustion and other processes i n the Beijing area. H2O

The B e i j i n g a r e a i n n o r t h C h i n a i s w e l l s i t u a t e d f o r i n v e s t i ­ g a t i n g r e l a t i o n s h i p s between t h e e l e m e n t a l c o m p o s i t i o n o f atmos­ p h e r i c p a r t i c u l a t e m a t t e r and a i r mass movements. The m u n i c i p a l i t y of B e i j i n g ( B e i j i n g s h i ) has a p o p u l a t i o n o f 7 m i l l i o n , h a l f o f whom l i v e i n t h e c i t y p r o p e r , and p o l l u t i o n s o u r c e s o f t r a c e g a s e s 0097-6156/81 /0167-0287$05.00/0 © 1981 A m e r i c a n C h e m i c a l Society

Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by SWINBURNE UNIV OF TECHNOLOGY on May 25, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch016

288

ATMOSPHERIC

AEROSOL

and a e r o s o l s a r e numerous. D u r i n g w i n t e r c o a l c o m b u s t i o n f o r space h e a t i n g i s a major p o l l u t i o n source type, but t h i s o f f i c i ­ a l l y ends on 15 M a r c h i n B e i j i n g . Some s t e e l and c h e m i c a l i n d u s ­ t r i e s , l o c a t e d s o u t h w e s t and s o u t h e a s t o f t h e c i t y , p r o d u c e a d d i ­ tional a i r pollution. North of the c i t y the p o p u l a t i o n i s mainly engaged i n a g r i c u l t u r e , and n o r t h o f t h e G r e a t W a l l ( e . g . a t B a d a l i n g 50 km n o r t h o f t h e c e n t e r o f B e i j i n g ) t h e p o p u l a t i o n d e n s i t y i s q u i t e l o w o w i n g t o t h e s t e p p e and d e s e r t l a n d s . The o c e a n l i e s some 100 km e a s t o f t h e c i t y , p e r m i t t i n g i n c u r s i o n s o f m a r i n e a i r . D u r i n g t h e c o l d m o n t h s , a i r f l o w i s m a i n l y f r o m t h e n o r t h and w e s t , b r i n g i n g r e l a t i v e l y c l e a n c o n t i n e n t a l a i r f r o m M o n g o l i a and S i b e ­ r i a over the c i t y . D u r i n g t h e warm m o n t h s , a i r f l o w i s m a i n l y f r o m t h e s o u t h and e a s t , b r i n g i n g warm and humid a i r and h e a v y monsoon r a i n f a l l t o t h e c i t y . On b o t h a s e a s o n a l and a s h o r t e r t e r m b a s i s B e i j i n g e x p e r i e n c e s c o n t r a s t i n g w e a t h e r and a i r f l o w c h a r a c t e r i s t i c s , r e f l e c t e d i n c o n t r a s t i n g atmospheric chemical p r o p e r t i e s and a e r o s o l p a r t i c l e c o m p o s i t i o n . The p r e s e n t i n v e s t i ­ g a t i o n was c o n d u c t e d t o document t h e s e i n a p r e l i m i n a r y way i n o r d e r t o l a y a g r o u n d w o r k f o r f u t u r e more d e t a i l e d s t u d i e s o f r e ­ g i o n a l a e r o s o l c h e m i s t r y and l o n g r a n g e a i r p o l l u t i o n t r a n s p o r t . Meteorological Conditions During Aerosol

Sampling

F o r t h i s i n v e s t i g a t i o n a p r o g r a m o f a e r o s o l s a m p l i n g and me­ t e o r o l o g i c a l measurements was p l a n n e d a t a n o n u r b a n s i t e 110 km NE o f t h e c e n t e r o f B e i j i n g , commencing on 9 M a r c h and c o n t i n u i n g u n t i l 3 A p r i l 1980. T h i s p e r i o d i n c l u d e d t h e l a s t week o f t h e o f f i c i a l w i n t e r s p a c e h e a t i n g s e a s o n i n B e i j i n g ( t o 15 M a r c h ) and t h e l a s t 3 weeks o f t h e o f f i c i a l h e a t i n g s e a s o n i n r u r a l a r e a s n o r t h o f t h e G r e a t W a l l ( t o 31 M a r c h ) . The p r e s e n t p a p e r i s b a s e d p r i m a r i l y on measurements made 16 t o 21 M a r c h . The s i t e , an a s t r o ­ n o m i c a l o b s e r v i n g s t a t i o n o f t h e C h i n e s e Academy o f S c i e n c e s n e a r X i n g l o n g , i s l o c a t e d i n a m o u n t a i n o u s a g r i c u l t u r a l a r e a o f t h e Yan Shan r a n g e , l a t i t u d e 40°23'Ν and l o n g i t u d e 117°30 E, a t 960 m e t e r s e l e v a t i o n j u s t e a s t o f t h e b o r d e r b e t w e e n B e i j i n g s h i and H e b e i p r o v i n c e and a b o u t 30 km n o r t h and e a s t o f p a r t s o f t h e G r e a t W a l l . W u l i n g Shan, 2100 m e t e r s e l e v a t i o n and a b o u t 25 km n o r t h o f t h e s i t e , was t h e h i g h e s t p e a k i n t h e v i c i n i t y and c o u l d be c l e a r l y s e e n on some d a y s b u t was o b s c u r e d by r e g i o n a l h a z e on o t h e r d a y s d u r i n g t h e measurement p r o g r a m d e s c r i b e d h e r e . Except f o r a small c o a l b u r n i n g h e a t i n g p l a n t and a k i t c h e n n e a r t h e s i t e , l o c a l a i r p o l l u t i o n s o u r c e s w e r e v i r t u a l l y a b s e n t , and t h e a e r o s o l c h a r a c ­ t e r i s t i c s r e p o r t e d h e r e a r e c o n s i d e r e d t o be e s s e n t i a l l y r e g i o n a l with l i t t l e local influence. M e a s u r e m e n t s made d u r i n g t h e s e c o n d week, 16-21 M a r c h 1980, are e s p e c i a l l y r e l e v a n t to the chemical c h a r a c t e r i z a t i o n of a i r m a s s e s . D u r i n g t h i s p e r i o d m e t e o r o l o g i c a l c o n d i t i o n s c a n be sum­ m a r i z e d as f o l l o w s , b a s e d on w e a t h e r i n f o r m a t i o n f r o m t h e I n s t i t u t e o f A t m o s p h e r i c P h y s i c s and t w i c e d a i l y s u r f a c e and u p p e r l e v e l w e a t h e r maps p u b l i s h e d by t h e J a p a n M e t e o r o l o g i c a l A g e n c y . f

Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by SWINBURNE UNIV OF TECHNOLOGY on May 25, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch016

16.

WINCHESTER E T AL.

Aerosol

Composition

in

North

China

289

A t m o s p h e r i c c o n d i t i o n s over the s a m p l i n g s i t e were v a r i a b l e , and s e v e r a l d i f f e r e n t a i r masses p a s s e d b y . On 16 M a r c h t h e weath­ e r map o f t h e n o r t h e r n h e m i s p h e r e shows two h i g h p r e s s u r e s , one o v e r L a k e B a i k a l and t h e o t h e r o v e r S o u t h K o r e a , so t h a t t h e sam­ p l i n g s i t e was j u s t i n b e t w e e n ; t h e a i r was c a l m , c l o u d y , and c o n ­ d u c i v e f o r p o l l u t a n t s t o b u i l d up. L a t e r the n o r t h h i g h pressure moved s o u t h w a r d s . By m i d d a y o f 17 M a r c h t h e s a m p l i n g s i t e was d o m i n a t e d by h i g h p r e s s u r e . A t t h a t t i m e a i r f l o w o v e r t h e s i t e was m a i n l y f r o m t h e n o r t h w e s t , t h e w i n d s p e e d was 3 m e t e r s / s e c o n d , and t h e w a t e r v a p o r c o n t e n t was v e r y l o w . The s k y was c l e a r , and v e r t i c a l d i l u t i o n was e f f e c t i v e . A f t e r t h e h i g h p r e s s u r e p a s s e d o v e r , a c y c l o n e was f o r m e d t o the n o r t h w e s t o f t h e s a m p l i n g s i t e , w h i c h c a u s e d s o u t h e a s t e r l y w i n d and b r o u g h t warm and m o i s t m a r i n e a i r t o t h e s i t e f r o m l a t e 17 t o 18 M a r c h . L a t e on 18 M a r c h t h e m a r i n e a i r mass moved b a c k ­ w a r d s b e c a u s e o f s t r o n g n o r t h h i g h p r e s s u r e , and a c o l d f r o n t f o r m e d and p a s s e d o v e r t h e s a m p l i n g s i t e s h o r t l y a f t e r i t s f o r m a ­ t i o n e a r l y i n t h e m o r n i n g o f 19 M a r c h . A f t e r the p a s s i n g of the c o l d f r o n t , t h e r e was a 2-day p e r i o d o f c l e a n c o n t i n e n t a l a i r mass moving over the sampling s i t e . On 21 M a r c h a warm a i r mass moved n o r t h w a r d s a g a i n and c a u s e d snow by m i d n i g h t . Experimental

Procedures

The methods e m p l o y e d i n t h i s i n v e s t i g a t i o n w e r e p r i n c i p a l l y b a s e d on a e r o s o l s a m p l i n g and e l e m e n t a l a n a l y s i s by p a r t i c l e i n ­ duced X - r a y e m i s s i o n , ΡΙΧΕ, as r e v i e w e d by J o h a n s s o n and J o h a n s s o n (1). T h e s e methods a r e d i s c u s s e d w i t h s p e c i f i c r e f e r e n c e t o t h e p r e s e n t s t u d y b y Wang e t a l . ( 2 ) . B e c a u s e o f t h e i n h e r e n t s e n s i ­ t i v i t y o f t h e P I X E method and i t s s u i t a b i l i t y f o r a n a l y s i s o f sam­ p l e s h a v i n g a few mm2 a r e a , P I X E - c o m p a t i b l e a e r o s o l s a m p l e r s w e r e e m p l o y e d . T h e s e w e r e : (1) t i m e s e q u e n c e f i l t e r s a m p l e r s , " s t r e a k ­ e r s " , w h i c h c o l l e c t an a e r o s o l d e p o s i t a s a s t r e a k a l o n g t h e s u r ­ f a c e o f a 0.4 ym p o r e s i z e N u c l e p o r e f i l t e r s t r i p by means o f a c o n t i n u o u s l y m o v i n g s u c k i n g o r i f i c e d r a w i n g a i r a t 0.7 l i t e r / m i n ­ u t e t h r o u g h t h e f i l t e r w h i l e s l i d i n g a l o n g i t s smooth b a c k s i d e ( 3 ) ; and (2) s i n g l e o r i f i c e c a s c a d e i m p a c t o r s w i t h 8 s t a g e s and p a r t i c l e s i z e c u t s ( f o r 1 l i t e r / m i n u t e f l o w r a t e ) a t 0.25, 0.5, 1, 2, 4, 8, and 16 ym a e r o d y n a m i c d i a m e t e r (ymad). (Actual s i z e cuts a r e s l i g h t l y g r e a t e r a t t h e 0.8 l i t e r / m i n u t e f l o w r a t e u s e d h e r e . ) The s t r e a k e r s p r o v i d e up t o 14 days o f s a m p l e s t r e a k (168 mm l o n g ) on a s i n g l e f i l t e r w h i c h c o u l d be a n a l y z e d i n 4-hour t i m e s t e p s u s i n g a 2-mm c o l l i m a t e d p r o t o n beam. The i m p a c t o r s w e r e f a b r i c a t e d f r o m p l a s t i c ( P I X E I n t e r n a t i o n a l , I n c . , T a l l a h a s s e e , F L , U.S.A.) and o p e r a t e d f o r 10 o r 12 h o u r t i m e p e r i o d s t o c o l l e c t 8 p a r t i c l e s i z e f r a c t i o n s on V a s e l i n e o r p a r a f f i n c o a t e d M y l a r f i l m o r , f o r e x h i b i t e d v a r i a b i l i t y w i t h t i m e a t t h e X i n g l o n g s i t e w h i c h c o r r e s p o n d e d t o t h e s u c c e s s i o n o f a i r masses w h i c h passed over the s i t e . F i g u r e 1 shows t h i s v a r i a b i l i t y t o g e t h e r w i t h t h e p a t t e r n s o f c o n c e n t r a t i o n v a r i a b i l i t y o f F e , S, a n d C I c o l l e c t e d by t h e N u c l e p o r e f i l t e r o f t h e s t r e a k e r and d e t e r m i n e d by P I X E . A l s o i n d i c a t e d a r e a p p r o x i m a t e t i m e s o f o c c u r r e n c e o f the d i f f e r e n t a i r masses, i n f e r r e d from b o t h m e t e o r o l o g i c a l con­ d i t i o n s and c h e m i c a l c h a r a c t e r i s t i c s : a p e r i o d o f r a t h e r p o l l u t e d a i r ( P ) o n 16-17 M a r c h , one w i t h m a r i n e a i r m i x e d w i t h c o n t i n e n t a l (M+C) o n 17-18 M a r c h , t h e n c o n t i n e n t a l a i r w i t h some p o l l u t a n t s (C+P) o n 18-19 M a r c h , f o l l o w e d b y r a t h e r u n p o l l u t e d c o n t i n e n t a l a i r (C) o n 20 M a r c h , and f i n a l l y c o n t i n e n t a l a i r w i t h r i s i n g p o l l u ­ t i o n l e v e l s (C+P) o n 21 M a r c h . A l o n g t h e t o p o f F i g u r e 1 a r e g i v e n t h e m i d p o i n t s o f a l t e r n a t i n g 10 a n d 12 h o u r p e r i o d s o f s a m p l e s c o l l e c t e d by cascade impactors, d i s c u s s e d f u r t h e r below. Fe i s r e p r e s e n t a t i v e o f a g r o u p o f e l e m e n t s i n p a r t i c u l a t e matter d e r i v e d l a r g e l y from e a r t h c r u s t m i n e r a l s . I t s trace i n F i g u r e 1 shows t i m e s o f maximum and minimum c o n c e n t r a t i o n s w h i c h u s u a l l y o c c u r w i t h i n a few hours o f a s i m i l a r p a t t e r n i n Ρ ^ Ο · * f we i n t e r p r e t t h e m a j o r v a r i a t i o n s o f P ^ O r e s u l t of a i r mass c h a n g e s , s u c h a s b y f r o n t a l p a s s a g e s , t h e n l a r g e c h a n g e s i n t

o

D

e

t

n

e

Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

WINCHESTER

ET AL.

Aerosol

Composition

IMPACTOR

SAMPLE

in

North

China

291

NUMBER

Downloaded by SWINBURNE UNIV OF TECHNOLOGY on May 25, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch016

ττπχττττ 3132

3334

35" 36

3738

DATE, Figure

1.

Water

vapor

centrations

pressure

(Ph o 2

(ng/m ) measured 3

39" 40

MARCH in mbars)

4h 42

43" 44

45" 46

47" 48

1980 and aerosol

using streaker sampler at

Fe, S, and CI

con­

Xinglong.

Approximate times of polluted (P), continental (C), and marine (M) air masses are indi­ cated based on synoptic weather maps and consistent with aerosol composition measure­ ments. Times of impactor samples, taken in duplicate concurrently with the streaker, are indicated at the top as midpoints of alternating 10- and 12-h sampling periods.

Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

ATMOSPHERIC

292

t h e c r u s t a l a e r o s o l c o n c e n t r a t i o n s may a l s o r e p r e s e n t c h a n g e s i n r e l a t i v e l y l a r g e s c a l e a i r mass c o m p o s i t i o n c h a r a c t e r i s t i c s . We r e g a r d t h e c a l i b r a t i o n o f s t r e a k e r t i m i n g t o b e a c c u r a t e t o 0.5-1 t i m e s t e p (2-4 h o u r s ) . S i n c e some o f t h e t i m e d i f f e r e n c e s b e t w e e n c o r r e s p o n d i n g f e a t u r e s o f t h e F e and P ^ O c e s a r e greater than t h i s u n c e r t a i n t y , t h e r e may be s m a l l b u t r e a l d i f f e r e n c e s i n a r r i v a l t i m e s o f t h e s e c o n s t i t u e n t s o f s u c c e s s i v e a i r masses a t t h e sampling s i t e . S o c c u r s g e n e r a l l y a t a r o u n d 2000 ng/m^ ( h i g h e r o n 16 M a r c h ) and w i t h a p a t t e r n o f v a r i a b i l i t y u n l i k e t h a t o f F e . We b e l i e v e t h a t a e r o s o l S h e r e i s m a i n l y a n a i r p o l l u t a n t and t h a t i t s c o n c e n t r a t i o n v a r i a t i o n s a r e governed by s e v e r a l f a c t o r s . These i n c l u d e g a s e o u s SO2 c o n c e n t r a t i o n s , t h e r a t e o f g a s - t o - p a r t i c l e c o n v e r s i o n d u r i n g t r a n s p o r t , and a t m o s p h e r i c m i x i n g p r o c e s s e s . The h i g h e r i n i t i a l c o n c e n t r a t i o n s may be a t t r i b u t e d i n p a r t t o h i g h e r SO2 p o l l u t i o n s o u r c e s t r e n g t h s on 15 M a r c h , t h e l a s t day p e r m i t t e d f o r much o f t h e r e s i d e n t i a l s p a c e h e a t i n g b y c o a l c o m b u s t i o n i n B e i j i n g , b u t s u b s e q u e n t a i r p o l l u t i o n b y SO2 f r o m o t h e r u t i l i z a t i o n of coal i n t h i s part of north China s t i l l maintains aerosol S l e v e l s f a r above n a t u r a l c o n t i n e n t a l l e v e l s . Thus, a e r o s o l S cann o t be c o n s i d e r e d a s c h a r a c t e r i s t i c o f a i r mass c o m p o s i t i o n i n t h e same s e n s e a s c a n a e r o s o l F e . C I was g e n e r a l l y f o u n d o n t h e N u c l e p o r e f i l t e r o f t h e s t r e a k e r s a m p l e r a t l e v e l s v e r y much l o w e r t h a n i n c a s c a d e i m p a c t o r s operated c o n c u r r e n t l y . This r e s u l t , discussed f u r t h e r below, i s a t t r i b u t e d t o v o l a t i l i t y o f C I on t h e f i l t e r , s u c h a s by c h e m i c a l r e a c t i o n w i t h a c i d i c o r o t h e r r e a c t i v e a g e n t s drawn t h r o u g h t h e filter. The c a s c a d e i m p a c t o r s s h o u l d h a v e much l e s s t e n d e n c y f o r such v o l a t i l i z a t i o n , owing t o t h e a i r p a s s i n g b y , r a t h e r than t h r o u g h , t h e i m p a c t i o n s u r f a c e s w h i c h c o l l e c t p a r t i c l e s down t o a b o u t 0.25 ymad. T h e r e f o r e , t h e p a t t e r n o f C I v a r i a b i l i t y i s u s u a l l y n o t t o be i n t e r p r e t e d as r e p r e s e n t i n g o n l y changes i n aeros o l C I c o n c e n t r a t i o n i n t h e atmosphere b u t i n s t e a d as t h e r e s u l t a n t o f b o t h t h e c o n c e n t r a t i o n i n a i r and c h e m i c a l r e a c t i v i t y on t h e filter. T h i s may b e e s p e c i a l l y t r u e when s a m p l i n g p o l l u t e d a t m o s pheres w h i c h c o n t a i n s u l f u r i c a c i d and o t h e r r e a c t i v e s u b s t a n c e s . However, i n one p a r t o f t h e r e c o r d o f F i g u r e 1, 17-18 M a r c h , C I c o n c e n t r a t i o n s on t h e s t r e a k e r f i l t e r w e r e u n u s u a l l y h i g h a n d n o t l o w e r t h a n C I c o n c e n t r a t i o n s made b y s i m u l t a n e o u s i m p a c t o r measurements. T h i s p e r i o d c o r r e s p o n d s t o an i n c u r s i o n o f marine a i r from t h e e a s t w h i c h was a l s o i n f e r r e d f r o m m e t e o r o l o g i c a l d a t a . C o n c e n t r a t i o n s o f t h e e l e m e n t s S i , A l , K, C a , and T i v a r i e d i n time w i t h p a t t e r n s n e a r l y i d e n t i c a l t o that of Fe. Figure 2 shows t h a t t h e i r r a t i o s t o Fe a r e q u i t e i n v a r i a n t a n d c l o s e t o t h e a v e r a g e v a l u e s f o r e a r t h c r u s t m a t e r i a l s g i v e n by Mason ( 6 ) . The r a t i o Ca/Fe f l u c t u a t e s s l i g h t l y , and T i / F e a v e r a g e s somewhat h i g h e r on 20-21 M a r c h t h a n p r e v i o u s l y , b u t p r i n c i p a l l y a t e r r e s t r i a l dust source f o r a l l s i x elements i s considered l i k e l y i n t h e s e s a m p l e s . F o r Mn a n d Z n , h o w e v e r , s t r a i g h t f o r w a r d d i s p e r s i o n of t e r r e s t r i a l dust i s not the only s i g n i f i c a n t source process. t r a

Downloaded by SWINBURNE UNIV OF TECHNOLOGY on May 25, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch016

AEROSOL

Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

WINCHESTER

E T AL.

10 5

Aerosol

1

-ι k*-

.

Si/Fe

Downloaded by SWINBURNE UNIV OF TECHNOLOGY on May 25, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch016

1

.

1

"- .

* ^

Al/Fe σ—°-s

q

0

in

1

·""* δ

North

.

293

China

ρ

* .

οο

°—

ο

I L

1

_ . » ·

w

2

Composition

·. " ° °

^

Q

0

°

.

ο

K/Fe

ρ ο

· ·

.

0.5 Ca/Fe

0.5 < en 0.2 •

Ti/Fe

0.1 0.05

Mn/Fe ο ο

0.02 0.1 0.05

XINGLONG

AEROSOL

Zn/Fe

·

· .

0.02 0.01

17

18 DATE,

Figure

2.

Weight

ratios of elements

_L

MARCH

19

20

whose concentrations

(Figure

21

1980

varied

similarly

to

Fe

1).

Average ratios for Si, Al, K, Ca, and Ti to Fe approximate earth crust ratios, indicated by arrows at left. These elements occur mainly in coarse particles (Figures 3 and 4). The Mn/Fe ratio is somewhat greater and Zn/Fe is 20 times greater than earth crust ratios. These two elements have appreciable fine-mode concentrations (Figure 4). All 8 elements may occur characteristically in continental air masses.

Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

294

ATMOSPHERIC

AEROSOL

F i g u r e 2 i n d i c a t e s Mn/Fe t o be somewhat above t h e c r u s t a l r a t i o t h r o u g h 19 M a r c h , and t h e r e a f t e r a marked i n c r e a s e i s s e e n . The a e r o s o l r a t i o Zn/Fe a v e r a g e s a b o u t 20 t i m e s g r e a t e r t h a n i n t h e e a r t h c r u s t (somewhat g r e a t e r on 20-21 M a r c h ) , s h o w i n g " a n o m a l o u s a t m o s p h e r i c e n r i c h m e n t o f Zn f i r s t r e c o g n i z e d by Rahn ( 7 ) . Since p a r t i c l e s i z e d i s t r i b u t i o n m e a s u r e m e n t s , d i s c u s s e d b e l o w , show s u b s t a n t i a l f i n e p a r t i c l e c o n c e n t r a t i o n s o f b o t h Zn and Mn, t h e p r o c e s s e s f o r t h e i r t r a n s f e r t o t h e a t m o s p h e r e must be d i f f e r e n t f r o m t h o s e f o r t h e o t h e r s i x e l e m e n t s o f F i g u r e 2. However, t h e i r c o n c e n t r a t i o n v a r i a t i o n s i n t i m e s t i l l r e s e m b l e t h o s e o f Fe shown i n F i g u r e 1 and t h e r e f o r e t h e s e e l e m e n t s may a l s o be r e l a t i v e l y l a r g e s c a l e c h a r a c t e r i s t i c s of a i r masses, i n c o n t r a s t to S where r e g i o n a l p o l l u t i o n s o u r c e s and a e r o s o l f o r m a t i o n p r o c e s s e s must be important. The a v e r a g e p a r t i c l e s i z e d i s t r i b u t i o n s f o r f o u r p r e d o m i n a n t l y c r u s t a l e l e m e n t s , A l , S i , Ca, and T i , a r e shown i n F i g u r e 3. They a r e e s s e n t i a l l y i d e n t i c a l . I t s h o u l d be p o i n t e d o u t t h a t t h e down­ t u r n o f t h e r e l a t i v e c o n c e n t r a t i o n s above 8 ymad ( i m p a c t o r s t a g e 6) i s the combined r e s u l t of the a c t u a l d i s t r i b u t i o n of p a r t i c l e s i z e s i n t h e a t m o s p h e r e and t h e e f f i c i e n c y w i t h w h i c h t h e s e v e r y c o a r s e p a r t i c l e s c a n e n t e r (upward) i n t o t h e c a s c a d e i m p a c t o r . This ef­ f i c i e n c y must d e c r e a s e w i t h i n c r e a s i n g p a r t i c l e s i z e and g e n e r a l l y depend on i n l e t d e s i g n and w i n d s p e e d . N e v e r t h e l e s s , i t i s i m p o r ­ t a n t to note here t h a t the p a t t e r n s of the f o u r elements a r e s i m i ­ l a r , i m p l y i n g a common a e r o s o l s o u r c e . F i g u r e 4 p r e s e n t s p a r t i c l e s i z e d i s t r i b u t i o n s f o r s i x elements w h i c h d i f f e r among t h e m s e l v e s and a l s o f r o m t h o s e i n F i g u r e 3. Somewhat s u b j e c t i v e l y , we may i d e n t i f y t h r e e p a t t e r n s i n t h e s e d i s ­ t r i b u t i o n s : (a) A c o a r s e mode, t y p i f i e d by Ca and t h e o t h e r e l e ­ ments o f F i g u r e 3, w h i c h may r e p r e s e n t a t e r r e s t r i a l d u s t o r i g i n . T h i s mode c a n a c c o u n t f o r c o a r s e p a r t i c l e c o n c e n t r a t i o n s o b s e r v e d f o r F e , K, Mn, and S. (b) A f i n e mode w i t h somewhat g r e a t e r c o n ­ c e n t r a t i o n s i n t h e 0.5-1 ymad f r a c t i o n t h a n i n 1-2 ymad p a r t i c l e s . The amounts i n t h i s