398
STRUCTURE AND FLOW IN SURFACTANT SOLUTIONS
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
Affiliation Index Baker Performance Chemicals, 370 Becton Dickinson, 260 Case Western Reserve University, 239,278 Cavendish Laboratory, 32 Centre National de la Recherche Scientifique, 105,300 Dow Chemical Company, 352 Dow Corning Corporation, 192 Exxon Research and Engineering Company, 288 Helene Curtis, Inc., 153 Indiana University-Purdue University at Indianapolis, 320 International Paper, 370 Nagoya University, 140 North Carolina State University, 229 Oak Ridge National Laboratory, 250 Ohio State University, 370 Osaka University, 129
Technion-Israel Institute of Technology, 105 Technische Universitat Dresden, 181 Texaco, Inc., 167 Universidad de Sevilla, 217 Université Louis Pasteur, 51 University of Bayreuth, 2 University of California-Los Angeles, 288 University of California-Santa Barbara, 86,129,288 University of Connecticut, 380 University of Delaware, 120 University of Essen, 63 University of Groningen, 337 University of Illinois at Chicago, 380 University of Minnesota, 192 University of South Dakota, 239 University of Sydney, 306 University of Tennessee, 250 Westvaco, 229 Worchester Polytechnic Institute, 239
Subject Index A Abelmoschus manihot root extract spinnability, 149 viscoelasticity, 141 Alcohol chain-length effect on viscosity of sodium dodecyl sulfate micellar solutions alcohol partition coefficient, 169-172 experimental procedure, 168-169 long-chain alcohols, 178-179 micellar growth vs. long-chain alcohol addition, 172-175 short-chain alcohols, 175-178 Alcohol partition coefficient, theory, 169-172 Alcohols, micellar-state alteration, 167
Alkyl- and oleyldimethylamine oxides, aqueous NaCl solutions, spinnability, 148 n-Alkyl malonates, spherical and rodlike micelles, 342-345 n-Alkyl phosphates, spherical micelles, 339-341 Alkyldimethylamine oxides, rheological behavior, 13,14-16/ Amphiphilic systems, cryogenic temperature transmission electron microscopic investigations, 105-118 Anionic-cationic systems, critical packing parameter viscoelastic property relationship, 163,164/ Anionic-nonionic surfactant solutions, mixed, 153
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
399
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
INDEX
Anionic surfactants dilute solutions, shear effects, 265,266/267,268/ liquid crystals, shear effects, 270-274,276 Anionic surfactant-nonionic polymer complex, structure, 321-323 Anionic surfactant-polyanion complex, structure, 330 Aqueous NaCl solutions of alkyl- and oleyldimethylamine oxides, spinnability, 148 Aqueous sodium salicylate solutions of tetradecyl- and hexadecyltrimethyl ammonium salicylates, spinnability, 145-147 Aqueous solutions cationic surfactants with aromatic counterions, spinnability, 140-141 hexadecyl- and octadecyldimethylamine oxide, spinnability, 141 tetradecyl- and hexadecyltrimethyl ammonium salicylates, spinnability, 143-145 Aromatic solubilizates, photochemical transformations, 181
Β Bicontinuous cubic phases, ternary, steady-shear behavior, 306-316 Bipolar surfactants, description, 106 «,n-Bis(2-hydroxyethyl)dodecanamidesodium dodecyl sulfate-water system, See Mixed surfactant solutions in normal micelle region
C Carreau's model A parameters, sucrose laurate Newtonian aqueous systems, 220,222-225 β-Casein, interfacial rheology, 381-392
Cationic-anionic systems, critical packing parameter-viscoelastic property relationship, 163,164/ Cationic micelles of dodecyldimethylamine oxide, water-soluble nonionic polymersurfactant aggregate interactions, 339,343/ Cationic surfactants dilute solutions, shear effects, 261,263-266 liquid crystals, shear effects, 267,269/270,271/ quaternary ammonium salt, counterion structure effect on flow birefringence and drag-reduction behavior, 370-378 Cationic surfactant-nonionic polymer complex, structure, 324-325 Cetyltrimethylammonium bromidesodium salicylate-water system micellar formation in flow, 278-286 rheooptical behavior, 129-138 Cetyltrimethylammonium 3,5-dichlorobenzoate micelles, flexibility, 250-256 Cetyltrimethylammonium surfactants, production of viscoelastic solutions, 250 Cetyltrimethylammonium tosylate-sodium dodecylbenzenesulfonate rodlike micellar solutions, sheared, structure, See Structure of sheared cetyl trimethylammonium tosylate-sodium dodecylbenzenesulfonate rodlike micellar solutions Chain-length distribution determination, 33 wormlike micelles, 33 Characteristic length, nonionic trisiloxane surfactant solutions, 205 Charge density effect, viscoelastic surfactant solutions, 13,16/17-20 Charged systems with excess salt, rheological behavior, 10-11,12/ Complex fluids distortion under flow, 288-289 microstructure by electron microscopy, 86-101
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
400
STRUCTURE AND FLOW IN SURFACTANT SOLUTIONS
Complex fluids—Continued under flow and confinement advantages X-ray Couette shear cell, 297 X-ray surface forces apparatus, 298 experimental description, 289,290/ importance, 289 synchrotron X-ray scattering spectrometers, 289,290/,291 X-ray Couette shear cell experiments, 291-292,293/ X-ray surface forces apparatus experiments, 292,294-297 Concentration, role in rheology of sucrose ester aqueous systems, 217-227 Concentration-driven microstructure progression large aggregates at midrange surfactant concentrations and above, 209-211 small micelles at low surfactant concentrations, 209 Confinement, structure of complex fluids, 288-298 Cosurfactants definition, 13 rheological behavior, 13,14-16/ Counterion structure effect on flow birefringence and drag-reduction behavior of quaternary ammonium salt cationic surfactants applications, 371 drag-reducing measurement procedure, 371 experimental materials, 372 flow birefringence measurement procedure, 371-372 orientation effect, 375-378 previous studies, 370-371 substituent effect, 372-375 Critical molar ratio, definition, 329 Critical packing parameter determination in mixed surfactant solutions in normal micelle region, 155-156 vs. viscoelastic properties in mixed surfactant solutions in normal micelle region, 160,162/
Cross-link effect, entangled micellar solutions, 40-41 Cryogenic temperature transmission electron microscopy amphiphilic systems chemical formulas of amphiphiles, 106,107/ dimeric surfactants, 110-116 distribution of distances between head groups, 106,108/ experimental procedure, 106-110 poly amphiphiles, 116-118 complex fluid microstructure advantages, 88 applications, 86-87 contrast mechanisms, 94-101 limitations, 88 procedure, 88 rapid freezing procedure, 88-92 weak-phase object approximation, 95-97,98-99/ networks of entangled cylindrical micelles, 3-4 Crystal growth velocity, calculation, 91 Cubic phases characteristics, 306 structural models, 306 ternary bicontinuous, steady-shear behavior, 306-316 Cylindrical micelles description, 2 equilibrium conformation in networks, 4
D Detergency, requirements, 2 Didodecyldimethylammonium bromide cubic phase structure, 307-308 phase diagrams, 307/ steady-shear behavior, 308-316 Diffusion coefficients, viscoelastic surfactant solutions, 19,21/22 Dilute aqueous micellar solutions, factors affecting rheological properties, 181
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
401
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
INDEX
Dilute solutions, shear effects of surfactants, 261-268 Dimeric surfactants, cryogenic temperature transmission electron microscopy of amphiphilic systems, 110-116 Direct interaction effect, mutual and probe diffusion coefficients, 240-242 Distribution function, calculation, 73 Dodecyldimethylamine oxide, nonionic and cationic micelles, 339,343/ Drag reduction, use of viscoelastic surfactant solutions, 353 Drag-reduction behavior of quaternary ammonium salt cationic surfactants, counterion structure effect, 370-378 Dye assemblies, rheological properties, 63-83 Dye solutions, viscosities, 63 Dynamic modulus, entangled micellar solutions, 38-39 Dynamic structure, steady-shear behavior of ternary bicontinuous cubic phases, 314-315 Dynamical properties of wormlike micelles Onsager regime, 60-61 salt concentration effect, 52-53 semidilute regime scaling behavior to dilution, 56-59 stress relaxation function, 54-56 surfactant concentration effect, 52-53
Ε Elastic force, definition, 304 Elasticity origin, wormlike micelles, 130 Electron microscopy microstructure of complex fluids, 86-101 use to determine information about surfactant microstructure, 86 Elongational thickening, nonequilibrium micelle formation, 282-286 Entangled micellar solutions cross-link effect, 40-41 dynamic modulus, 38-39
Entangled micellar solutions—Continued linear viscoelastic spectra, 35-41 Maxwell time, 38 mean micellar length, 39-40 nonlinear viscoelasticity, 41-47 relaxation function, 35-38 Entanglement network, schematic sketch representation, 4,5/ Equilibrium size, calculation, 304
Fanning friction factor, definition, 354 First normal stress difference calculation, 74-75 nonlinear viscoelasticity, 46 Flexibility of cetyltrimethylammonium 3,5-dichlorobenzoate micelles apparatus, 251 bending rod plots, 251-255 experimental procedure, 251 future work, 257 quantitative estimates of persistence length, 255-256 techniques, 250-251 Flow, structure of complex fluids, 288-298 Flow birefringence behavior of quaternary ammonium salt cationic surfactants, counterion structure effect, 370-378 Flow curves, steady-shear behavior of ternary bicontinuous cubic phases, 314,315/ Flow property control in surfactant solutions via solubilizate photoreactions future research, 190 light-scattering results, 186 micelle size effect, 186-187 microscopic solution structure effect, 187-188,189/ photorheological effects, 182-184 rheological results, 186-189 solubilizate effect, 187-188,189/190 strategy, 184,186 water effect, 187
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
402
STRUCTURE AND FLOW IN SURFACTANT SOLUTIONS
Freeze-fracture diagram, viscoelastic systems with yield value, 25,26/ Freeze-fracture replication of complex fluid microstructure advantages, 88 applications, 86-87 contrast mechanisms, 94-101 etching, 92,94 limitations, 88 mass-thickness contrast, 97,100-101 method, 92,93/ procedure, 88 rapid freezing procedure, 88-92 replication, 94
G Gemini surfactants, description, 106 Goodwin's parameters, sucrose laurate Newtonian aqueous systems, 219
H Hexadecyl- and octadecyldimethylamine oxide, aqueous solutions, spinnability, 141 Hexadecyl- and tetradecyltrimethylammonium salicylates aqueous sodium salicylate solutions, spinnability, 145-147 spinnability, 143-145 High shear phase modeling, nonlinear viscoelasticity, 46-47 Hydrodynamic interaction effect, mutual and probe diffusion coefficients, 240-242
Igepal 530-sodium dodecyl sulfate-water system, critical packing parameterviscoelastic property relationship, 162-163,164/ Incident electron wave function, 94-95
Intensity-intensity temporal correlation function, calculation, 240 Interfacial oscillatory technique, function, 380-381 Interfacial rheology β-casein solutions aging vs. interfacial elasticity, 386,388-389/ bulk concentration vs. interfacial elasticity, 384,385/ vs. interfacial tension, 386,390-391/392 experimental procedure, 381-383 guanidine hydrochloride addition vs. interfacial elasticity, 386,389/ ionic strength vs. interfacial elasticity, 384,387/ pH vs. interfacial elasticity, 384,385/ vs. interfacial tension, 386,390-391/392 solution preparation procedure, 381 temperature vs. interfacial elasticity, 384,386,387/ time vs. interfacial elasticity, 383-386,388 urea addition vs. interfacial elasticity, 386,390/ surfactant solutions, information provided, 380 Interfacial tension, viscoelastic surfactant solutions, 22,23/ Ionic surfactant solutions, optical probe diffusion of surfactant solutions, 243,245/246 Ionic surfactants rheological behavior, 8,9/10 viscoelastic surfactant solutions, 8,9/10 Isotropic solutions, microstructure progression patterns in surfactantwater binary systems, 212,213/ L Light scattering, viscoelastic surfactant solutions, 19,21/
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
403
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
INDEX
Linear charge density, definition, 326-327 Linear viscoelastic spectroscopy, entangled micellar solutions, 35-41 Liquid-crystalline phase identification, polycrystalline lyotrophic mesophases in cesium n-tetradecanoate-water system, 231-232,233i Liquid crystals, shear effects on surfactants, 267-276 Loss modulus calculation, 70 definition, 4,6 polycrystalline lyotropic mesophase in cesium n-tetradecanoate-water system, 232-237 Lower consolute temperature, concentration effect, 192 Lyotropic lamellar phase composition, 301 orientation diagram, 301 orientation diagram vs. rheological properties, 300-301 orientation states, 300 shear effect, 300 Lyotropic surfactant mesophases applications, 229 characteristics, 229-230
M Magnitude of complex viscosity, calculation, 70 Mass-thickness contrast, freeze-fracture replication of complex fluid microstructure, 97,100-101 Maximum shear stress, relationship to shear modulus, 80 Maxwell material, description, 71-74 Maxwell time, entangled micellar solutions, 38 (Me SiO) SiMe(CH ) (OCH CH ) OH, microstructure and rheology, 192-193 Mean micellar length, entangled micellar solutions, 39-40 3
2
2
3
2
2
12
Metal thickness, calculation, 100-101 Micellar fusion and breakdown, kinetics model, 34-35 Micelles alcohol effect, 167 shape prediction, 105-106 Micelle relaxation time determination, mixed surfactant solutions in normal micelle region, 155 Micelle size effect, flow property control in surfactant solutions via solubilizate photoreactions, 186-187 Microstructure complex fluids by electron microscopy contrast mechanisms in electron micrographs, 94-101 etching procedure, 92,94 experimental procedure, 86 freeze-fracture technique, 92,93/ mass-thickness contrast, 97,100-101 rapid freezing procedure, 88-92 replication procedure, 94 weak-phase object approximation, 95-97,98-99/ nonionic trisiloxane surfactant solutions, 192-213 relationship to rheology of lyotropic lamellar phases, 300-304 Microstructure progression, concentration driven, See Concentration-driven microstructure progression Microstructure progression patterns, surfactant-water binary systems of isotropic solutions, 212,213/ Mixed anionic-nonionic surfactant solutions, 153 Mixed surfactant solutions in normal micelle region critical packing parameter determination, 155-156 vs. viscoelastic properties, 160,162/ experimental procedure, 154-158 generalization of critical packing parameter-viscoelastic property relationship to other systems, 162-165
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
404
STRUCTURE AND FLOW IN SURFACTANT SOLUTIONS
Mixed surfactant solutions in normal micelle region-Continued micelle relaxation time, 155 phase behavior, 158-159 rheology, 159-160,161/ Mutual diffusion coefficient direct and hydrodynamic interaction effects, 240-242 function, 240
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
Ν NaCl solutions of alkyl- and oleyldimethylamine oxides, aqueous, spinnability, 148 Networks of entangled cylindrical micelles, cryogenic temperature transmission electron microscopy, 3-4 Neutron scattering, nonionic trisiloxane surfactant solutions, 202,203/ Newtonian flow systems, photorheological effects, 182-183 Non-Newtonian flow systems, photorheological effects, 184,185/ Nonequilibrium micelle formation in shear and elongational flow elongational thickening, 282-286 experimental procedure, 279-280 previous studies, 278-279 shear thickening, 280-282,283/ sodium salicylate concentration effect, 279 Nonionic micelles dodecyldimethylamine oxide, watersoluble nonionic polymer-surfactant aggregate interactions, 339,343/ water-soluble nonionic polymer-surfactant aggregate interactions, 338-339 Nonionic polymer-anionic surfactant complex, structure, 321-323 Nonionic polymer-cationic surfactant complex, structure, 324-325 Nonionic polymer-nonionic surfactant complex, structure, 325
Nonionic polymer-surfactant aggregate interactions, water soluble, See Water-soluble nonionic polymersurfactant aggregate interactions Nonionic surfactant-nonionic polymer complex, structure, 325 Nonionic surfactant solutions, optical probe diffusion of surfactant solutions, 242-243,244/ Nonionic surfactants dilute solutions, shear effects, 267,268/ liquid crystals, shear effects, 274-275,276/ Nonionic trisiloxane surfactant solutions characteristic length, 205 concentration-driven microstructure progression, 209-211 experimental procedure, 194-196 neutron scattering, 202,203/ progression patterns, 212,213/ pulse-field gradient spin-echo N M R spectroscopy, 206-209 rheology, 196-202 self-diffusion coefficients, 206-209 small-angle X-ray scattering, 202,204/205-206 Nonlinear viscoelasticity first normal stress difference, 46 high shear phase modeling, 46-47 second moment of orientational distribution function, 42-43 shear stress, 43-46 stress tensor, 41-42 Nonsurfactant systems behavior studies, 6,8 zero-shear viscosities, 6,8,9/ Normal stress effect, description, 75
Ο Octadecyl- and hexadecyldimethylamine oxide, aqueous solutions, spinnability, 141
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
405
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
INDEX
Polyamphiphiles, cryogenic temperature transmission electron microscopy of amphiphilic systems, 116-118 Polyanion-anionic surfactant complex, structure, 330 Polycrystalline lyotrophic mesophases in cesium n-tetradecanoate-water system experimental procedure, 230-231 liquid-crystalline phase identification, 231-232,233* phase behavior, 231,232/ rheological measurements, 232-237 Polyelectrolyte-oppositely charged surfactant complex, structure, 325-330 Polymer-micelle association, description, 320 Polymer-surfactant complexes importance of understanding, 320 nonionic polymer-anionic surfactant complex, 321-323 nonionic polymer-cationic surfactant complex, 324-325 nonionic polymer-nonionic surfactant Ρ complex, 325 polyanion-anionic surfactant Packing parameter complex, 330 applications, 106 polyelectrolyte-oppositely charged definition, 105 surfactant complex, 325-330 Persistence length previous studies, 320-321 calculation, 138,255 Polysoaps, description, 106 influencing factors, 2 Probe diffusion coefficient quantitative estimation for direct and hydrodynamic interaction cetyltrimethylammonium effect, 240-242 3,5-dichlorobenzoate micelles, 255-256 function, 240 Phase behavior, polycrystalline lyotrophic Proteins, behavior measurement, 380-381 mesophases in cesium n-tetradecanoatePulse-field gradient spin-echo N M R water system, 231,232/ spectroscopy, nonionic trisiloxane Photochemical transformations, surfactant solutions, 206-209 function, 181 Photoreactions of solubilizates, control of flow properties in surfactant Q solutions, 181-190 Quaternary ammonium salt cationic Photorheological effects surfactants, counterion structure function, 181 effect on flow birefringence and dragNewtonian flow systems, 182-183 reduction behavior, 370-378 non-Newtonian flow systems, 184,185/
Oleyl- and alkyldimethylamine oxides, aqueous NaCl solutions, spinnability, 148 Onsager regime, dynamical properties of wormlike micelles, 60-61 Oppositely charged surfactantpolyelectrolyte complex, structure, 325-330 Optical anisotropy of flexible chains, calculation, 75 Optical probe diffusion of surfactant solutions experimental description, 239 ionic surfactant solutions, 243,245/,246 nonionic surfactant solutions, 242-243,244/ principles, 239-242 viscoelastic liquid effect, 246-247 Optical probe methods, applications, 239
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
406
STRUCTURE AND FLOW IN SURFACTANT SOLUTIONS
Rheology control using viscoelastic surfactant solutions aqueous bleach formulation, 362,363/ Relaxation function, entangled micellar drag-reduction activity vs. surfactant solutions, 35-38 concentration, 356,358,359/ Relaxation modulus, calculation, 66,70 experimental materials, 355-356 Retraction, description, 42 Rev Dust absorption of surfactant, Reynolds number, definition, 354 364,366/367 Rheological measurements, polycrystalline reversible thickening process via lyotrophic mesophases in cesium hydrocarbon breaking, 362,363/364 n-tetradecanoate-water system, 232-237 sample preparation, 355-356 Rheological properties spray droplet size control, amphiphilic systems, 105-118 358,361/362 dilute aqueous micellar solutions, test procedures, 354-355 viscosity influencing factors, 181 vs. breaking cycles, 364,365/ rod-shaped micelles and dye assemblies vs. brine, 358,360/ influencing factors, 63-65 vs. surfactant concentration, 356,357/ linear rheological properties vs. temperature, 358,359/ measurement, 66,70-74 Rheooptical behavior of wormlike micellar values, 76-78,79/ nonlinear viscoelastic properties systems measurement, 74-76 behavior values, 78,80-83 under strong flow, 132,134 viscoelastic chromophore solutions, under weak flow, 131-132,133/ experimental procedure, 130-131 65-66,67-69/ persistence length, 138 viscoelastic surfactant solutions, 65,67/ stress-optical coefficient, 135-136 Rheology structural model, 136 β-casein solutions, interfacial, See time dependence of birefringence and Interfacial rheology of β-casein orientational angle, 136,137/138 solutions Rod-shaped micelles, rheological nonionic trisiloxane surfactant properties, 63-83 solutions, 192-213 polycrystalline lyotrophic mesophases in Rod-shaped particles, flow phenomena, 63-65 cesium n-tetradecanoate-water system, Rodlike micellar solutions, sheared cetyl 229-237 trimethylammonium tosylate-sodium relationship to microstructure of dodecylbenzenesulfonate, structure, lyotropic lamellar phases, 300-304 See Structure of sheared cetyl sucrose ester aqueous systems trimethylammonium tosylate-sodium entangled micellar systems, 220-225 experimental procedure, 217-218 dodecylbenzenesulfonate rodlike lamellar liquid-crystalline phases, micellar solutions Rodlike micelles 220-225 n-alkyl malonates, water-soluble nonentangled micellar systems, nonionic polymer-surfactant aggregate 218-220,221/ interactions, 342-345 temperature effect, 225-227
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
R
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
407
INDEX
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
Rodlike micelles—Continued breakdown, water-soluble nonionic polymer-surfactant aggregate interactions, 345-348 formation, 120
Salinity, viscoelastic system behavior effect, 22,25,26/ Salt concentration, role in dynamical properties of wormlike micelles, 52-53 Scaling behavior to dilution, dynamical properties of wormlike micelles, 56-59 Scattering limitations for microstructure determination, 87-88 procedure, 87 Second moment of orientational distribution function, nonlinear viscoelasticity, 42-43 Self-diffusion coefficient, function, 240 Semidilute regime, dynamical properties of wormlike micelles, 54-59 Shampoo composition, 154 importance of viscosity, 153-154 Shape of micelles, prediction, 105-106 Shear effects in surfactant solutions anionic surfactants in dilute solutions, 265,266/267,268/ in liquid crystals, 270-274,276 cationic surfactants in dilute solutions, 261,263-266 in liquid crystals, 267,269/270,271/ nonionic surfactants in dilute solutions, 267,268/ in liquid crystals, 274-275,276/ qualitative evaluation, 261,262/264/ Shear modulus, definition, 3 Shear rate, step change in stress growth measurements, 260-261,262/ Shear rate relaxation at constant applied stress, definition, 316
Shear stress definition, 4,6 nonlinear viscoelasticity, 43-46 Shear stress growth coefficient, calculation, 80,82-83/ Shear thickening, nonequilibrium micelle formation, 280-282,283/ Sinusoidal interaction potential, 313 Small-angle neutron scattering theory, structure of sheared cetyltrimethylammonium tosylate-sodium dodecylbenzenesulfonate rodlike micellar solutions, 121,122/ 123-124 Small-angle X-ray scattering, nonionic trisiloxane surfactant solutions, 202,204/205-206 Sodium dodecylbenzenesulfonate-cetyltrimethylammonium tosylate rodlike micellar solutions, sheared, structure, See Structure of sheared cetyltrimethylammonium tosylate-sodium dodecylbenzenesulfonate rodlike micellar solutions Sodium dodecyl sulfate-n,n-bis(2-hydroxyethyl)dodecanamide-water system, See Mixed surfactant solutions in normal micelle region Sodium dodecyl sulfate-Igepal 530-water system, critical packing parameter-viscoelastic property relationship, 162-163,164/ Sodium dodecyl sulfate micellar solutions, alcohol chain-length effect on viscosity, 167-179 Sodium salicylate-cetyltrimethylammonium bromide-water system, micellar formation in flow, 278-286 Sodium salicylate concentration effect, nonequilibrium micelle formation in shear and elongational flow, 279 Sodium salicylate solutions of tetradecyland hexadecyltrimethylammonium salicylates, aqueous, spinnability, 145-147
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
408
STRUCTURE AND FLOW IN SURFACTANT SOLUTIONS
Solubilizate effect, flow property control in surfactant solutions via solubilizate photoreactions, 187-188,189/, 190 Specific viscosity, calculation, 218 Spherical micelles n-alkyl malonates, water-soluble nonionic polymer-surfactant aggregate interactions, 342-345 n-alkyl phosphates, water-soluble nonionic polymer-surfactant aggregate interactions, 339-341 Spinnability description, 140 viscoelastic surfactant solutions and molecular assembly formation aqueous NaCl solutions of alkyl- and oleyldimethylamine oxides, 148 aqueous sodium salicylate solutions of tetradecyl- and hexadecyltrimethylammonium salicylates, 145-147 aqueous solutions of tetradecyl- and hexyltrimethylammonium salicylates, 143-145 comparison to polymers, 149 experimental description, 140 measurement, 141-143 types of viscoelasticity, 150-151 Spinnable liquids, properties, 140 Spurt effect, description, 44 Steady-shear behavior of ternary bicontinuous cubic phases compositions, 309 dynamic structure, 314-315 experimental procedure, 308-309 flow curves, 314,315/ stress relaxation, 315-316 yield stresses, 309-316 Steady-state value first normal stress coefficient, calculation, 75 flow birefringence, 74-75 Storage modulus calculation, 70 definition, 4,6
Storage modulus—Continued polycrystalline lyotropic mesophase in cesium n-tetradecanoate-water system, 232-237 Stress growth characteristics, examples, 261,262/ Stress optical coefficient, calculation, 75,135-136 Stress optical law, description, 74-75 Stress relaxation, steady-shear behavior of ternary bicontinuous cubic phases, 315-316 Stress relaxation function, dynamical properties of wormlike micelles, 54-56 Stress tensor, nonlinear viscoelasticity, 41^2 Structure complex fluids under flow and confinement, 288-298 sheared cetyltrimethylammonium tosylate-sodium dodecylbenzenesulfonate rodlike micellar solutions experimental procedure, 124 phase diagram of viscoelastic behavior, 120,122/ rotational diffusion coefficients vs. shear rate, 136 scattering vs. flow direction, 126,127/ vs. shear rate, 124,125/126 small-angle scattering theory, 121,122/123-124 Sublimation rate, calculation, 92,94 Sucrose ester aqueous systems, rheology, 217-227 Sucrose esters applications, 217 formation of micellar and liquid-crystalline phases, 217 Surfactants rheological behavior, 260 shapes of micelles formed, 105 viscoelastic properties, 2
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
409
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
INDEX
Surfactant aggregate-water-soluble polymer interactions, See Water-soluble nonionic polymer-surfactant aggregate interactions Surfactant concentration, role in dynamical properties of wormlike micelles, 52-53 Surfactant microstructure, study techniques, 86-87 Surfactant obstruction factor, definition, 206-207 Surfactant-polymer complexes, See Polymer-surfactant complexes Surfactant solutions control of flow properties via solubilizate photoreactions, 181-190 shear effects, 260-276 viscoelastic, See Viscoelastic surfactant solutions viscosities, 63 with globular micelles viscosity, 3 volume fraction, 3 Surfactant-water binary systems of isotropic solutions, microstructure progression patterns, 212,213/ Τ Temperature effect, rheology of sucrose ester aqueous systems, 225-227 Ternary bicontinuous cubic phases, steady shear behavior, 306-316 Tetradecyl- and hexadecyltrimethyl ammonium salicylates aqueous solutions, spinnability, 143-145 aqueous sodium solutions, spinnability, 145-147 Theoretical modeling of viscoelastic phases linear viscoelastic spectra, 35—41 nonlinear viscoelasticity, 41—47 wormlike micelles, 32-35 Theoretical models, viscoelastic surfactant solutions, 25,27-29
Thixotropic loop measurements, qualitative evaluation of shear effects, 261,262/264/ Time-resolved fluorescence quenching of amphiphilic systems dimeric surfactants, 110-116 experimental procedure, 109 polyamphiphiles, 116-118 Triton X-100, optical probe diffusion of surfactant solutions, 242-243,244/
V Viscoelastic liquid effect, optical probe diffusion of surfactant solutions, 246-247 Viscoelastic properties, correlation with critical packing parameter for mixed surfactant solutions in normal micelle region, 153-165 Viscoelastic surfactant solutions alkyldimethylamine oxides and cosurfactants, 13,14-16/ applications as rheology control agents, 353-361 association structures, 352-353 charge density effect, 13,16/17-20 charged systems with excess salt, 10-11,12/ diffusion coefficients, 19,21/22 experimental objective, 352 in normal micelle region, composition, 154 interfacial tension, 22,23/ ionic surfactants, 8,9/10 light scattering, 19,21/ rheological behavior, 6,7/ structures, 354,357/ systems with yield value, 22-26 theoretical models, 25,27-29 use in drag reduction, 353 viscosities, 19 zwitterionic systems, 11,12/14/
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
Downloaded by 80.82.77.83 on May 29, 2018 | https://pubs.acs.org Publication Date: December 9, 1994 | doi: 10.1021/bk-1994-0578.ix002
410
STRUCTURE AND FLOW IN SURFACTANT SOLUTIONS
Viscoelastic systems surfactants used in preparation, 2-3 with yield value freeze-fracture diagram, 25,26/ rheological values, 22-26 Viscoelasticity, types, 150-151 Viscosity cetylpyridinium chloride vs. sodium salicylate concentration, 4,5/ influencing factors, 3 sodium dodecyl sulfate micellar solutions, alcohol chain-length effect, 167-179 surfactant solutions with globular micelles, 3 Viscous force, definition, 304 Volume fraction, surfactant solutions with globular micelles, 3
W Water effect, flow property control in surfactant solutions via solubilizate photoreactions, 187 Water-soluble nonionic polymersurfactant aggregate interactions breakdown of rodlike micelles, 345-348 experimental procedure, 338 importance, 337 nonionic and cationic micelles of dodecyldimethylamine oxide, 339,343/ nonionic micelles, 338-339 previous studies, 337-338 spherical and rodlike micelles of n-alkyl malonates, 342-345 spherical micelles of n-alkyl phosphates, 339-341 surfactant structure effect, 337 Weak-phase object approximation, cryogenic temperature transmission electron microscopy of complex fluid microstructure, 95-97,98-99/
Weissenberg effect, description, 75 Wormlike micellar systems, rheooptical behavior, 129-138 Wormlike micelles chain-length distribution, 33 characteristics, 32-33 dynamical properties, 51-61 elasticity origin, 130 reptation theory model application, 51-52 reversibility of aggregation process, 34-35 surfactant vs. behavior, 129-130
X X-ray Couette shear cell spectrometer advantages, 297 apparatus, 289,290/291 experimental procedure, 291-292,293/ X-ray surface forces apparatus advantages, 298 apparatus, 291 experimental procedure, 292,294-297
Y Yield stress definition, 313 steady-shear behavior of ternary bicontinuous cubic phases, 309-316 Yield value, viscoelastic systems, 22-26
Ζ
Zero shear viscosity, definition, 3 Zwitterionic systems, rheological behavior, 11,12/14/
Herb and Prud'homme; Structure and Flow in Surfactant Solutions ACS Symposium Series; American Chemical Society: Washington, DC, 1994.