Chapter 5
Allelopathy Involving Microorganisms Case Histories from the United Kingdom J. M. Lynch
Downloaded by UNIV OF NEW ENGLAND on February 11, 2017 | http://pubs.acs.org Publication Date: January 8, 1987 | doi: 10.1021/bk-1987-0330.ch005
Glasshouse Crops Research Institute, Littlehampton, West Sussex, BN17 6LP, United Kingdom Plant residues can provide substrates for the production of phytotoxic metabolites by soil microorganisms but they can also support the growth of pathogens and other deleterious micro-organisms. This is illustrated by reference to the problems of establishing crops drilled in the presence of straw residues and of decaying weed and grass residues that have been previously killed with herbicides. Short-chain acids accumulate,under anoxic conditions, which favor fermentative metabolism of bacteria. Such phytotoxins may damage the plant directly or predispose plants to infection by pathogens. However, plant residues may also be used as substrates for beneficial micro-organisms to produce plant nutrients, soil conditioners, and plant protection chemicals. There is scope to promote the beneficial microbial effects against the harmful by soil management and by inoculation. M i c r o - o r g a n i s m s produce a v a s t range o f m e t a b o l i t e s t h a t c a n p o t e n t i a l l y i n f l u e n c e p l a n t growth (_1/ 2, 3). T h i s a c t i o n c a n be positive or negative. Pathogens produce a n e g a t i v e e f f e c t b y p r o d u c i n g s p e c i f i c m e t a b o l i t e s o r enzymes. B e n e f i c i a l organisms may a c t d i r e c t l y on the p l a n t by p r o d u c i n g c h e m i c a l s t h a t s t i m u l a t e p l a n t growth o r enhance the uptake o f n u t r i e n t s . Indirect effects o f b e n e f i c i a l organisms i n c l u d e the s u p p r e s s i o n o f harmful organisms and the improvement o f s o i l s t r u c t u r e . T h i s d i v e r s e range o f m i c r o b i a l a c t i v i t i e s f a l l s w i t h i n the phenomenon o f a l l e l o p a t h y a s d e f i n e d by R i c e ( 4 ) . The d e s c r i p t i o n o f t h i s phenomenon i s u s e f u l / b u t the p r o c e s s e s c a n a l s o be d e s c r i b e d under t h e heading o f plant/microbe i n t e r a c t i o n s . Whereas a wide range o f p o t e n t i a l a l l e l o p a t h i c a g e n t s h a s been i d e n t i f i e d from s o i l m i c r o - o r g a n i s m s / i t has seldom been p r o v e n t h a t they a r e o f true e c o l o g i c a l s i g n i f i c a n c e . The minimum n e c e s s a r y c r i t e r i o n f o r t h i s i s t h a t the p r o d u c t s h o u l d o c c u r i n the form and
0097-6156/87/0330-0044$06.00/0 © 1987 A m e r i c a n C h e m i c a l Society
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF NEW ENGLAND on February 11, 2017 | http://pubs.acs.org Publication Date: January 8, 1987 | doi: 10.1021/bk-1987-0330.ch005
5.
LYNCH
Allelopathy
Involving
45
Microorganisms
c o n c e n t r a t i o n that i n f l u e n c e p l a n t growth. To demonstrate t h i s u s u a l l y i n v o l v e s v e r y m i l d e x t r a c t i o n p r o c e d u r e s because/ f o r example/ even m i l d a c i d s o r a l k a l i s can d e p o l y m e r i z e l i g n i n t o y i e l d p h e n o l s t h a t would o t h e r w i s e be i n e r t because i n the p o l y m e r i c state. A n o t h e r f a c t o r r a r e l y c o n s i d e r e d i s the zone o f the r o o t system s u b j e c t e d t o the m i c r o b i a l m e t a b o l i t e . I t i s l i k e l y t h a t the m e t a b o l i t e s w i l l o n l y be formed i n p a r t i c u l a r r e g i o n s o f the s o i l where t h e r e a r e s u i t a b l e s u b s t r a t e s f o r p r o d u c e r m i c r o - o r g a n i s m s and i t i s u n l i k e l y t h a t the e n t i r e r o o t system w i l l come under the influence of a metabolite. F o r example/ a c e t i c a c i d i s a common m i c r o b i a l f e r m e n t a t i o n p r o d u c t o f c e l l u l o s e and i s p h y t o t o x i c (j>/ 6). However/ i n ^ t r e a t i n g a s i n g l e r o o t t i p w i t h a s m a l l c o n c e n t r a t i o n (5 mol m )/ r o o t and s h o o t growth were s t i m u l a t e d . This was n o t o b s e r v e d when a g r e a t e r number o f t i p s were t r e a t e d o r g r e a t e r c o n c e n t r a t i o n s o f the a c i d were used ( T a b l e I ) . Lengths o f r o o t s were more s e n s i t i v e than t i p s t o i n h i b i t o r y c o n c e n t r a t i o n s o f the a c i d . Compensatory growth i n non t r e a t e d r o o t s c o u l d o c c u r i n response t o t r e a t m e n t o f o t h e r p a r t s o f the r o o t s y s t e m .
Table
I.
Response o f B a r l e y Root E l o n g a t i o n t o Treatment w i t h 10 mol m
Region
treated
2 cm t i p 2 cm t i p 2 cm s e c t i o n 2 cm s e c t i o n Control*
No. o f roots treated
1 3 1 3 _
Acetic Acid
Mean l e n g t h o f non-treated root + s.e.m.
11.6 15.8 16.5 17.5 11.2
Mean l e n g t h o f treated root + s.e.m.
8.2 9.1 12.9 7.4 12.4
+ 1.7 + 0.2 + 0.5 + 1.3 + 0.7
+ + + + +
1.1 0.6 2.6 0.8 0.7
* Means o f p l a n t s where e i t h e r one o r t h r e e t i p s o r l e n g t h s were t r e a t e d w i t h p l a n t c u l t u r e s o l u t i o n o r where no r o o t s were t r e a t e d . Source: The New
Reproduced w i t h p e r m i s s i o n from K e f . Phytologist.
7.
Copyright
1982
Whereas a l i p h a t i c a c i d s can produce permanent s h o o t and t i l l e r damage/ when the a c i d s a r e removed from the growth medium/ r o o t growth can be promoted (8)/ presumably by compensatory a c t i o n . Q u i t e commonly m i c r o - o r g a n i s m s and t h e i r p r o d u c t s a r e b i o assayed together. When l e a v e s o f Anthoxanthum odoraturn were decomposed a e r o b i c a l l y the t o t a l s u s p e n s i o n c o n t a i n e d g r o w t h i n h i b i t o r y m i c r o - o r g a n i s m s b u t no c e l l - f r e e p h y t o t o x i c m e t a b o l i t e s (Table I I ) . By c o n t r a s t wheat straw degraded a n a e r o b i c a l l y y i e l d e d p h y t o t o x i c m e t a b o l i t e s b u t no g r o w t h - i n h i b i t i n g m i c r o - o r g a n i s m s .
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
46
ALLELOCHEMICALS: ROLE IN AGRICULTURE A N D FORESTRY T a b l e I I . E f f e c t o f M i c r o - o r g a n i s m s and T h e i r M e t a b o l i t e s Formed D u r i n g 14 Days D e c o m p o s i t i o n o f P l a n t R e s i d u e s on Longest Root L e n g t h (mm) o f B a r l e y S e e d l i n g s
Control (distilled water)
Downloaded by UNIV OF NEW ENGLAND on February 11, 2017 | http://pubs.acs.org Publication Date: January 8, 1987 | doi: 10.1021/bk-1987-0330.ch005
Residue
Micro organisms
Total suspension Filtrate
Anthoxanthum l e a v e s / a e r o b i c
75
79
74
59*
Wheat s t r a w / a n a e r o b i c
84
35***
37***
7
Significantly different
r e s u l t s i n d i c a t e d by * * *
Source: Reproduced w i t h p e r m i s s i o n from R e f . M a r t i n u s N i j h o f f Β. V .
Straw
9·
6
Ρ < .001; * Ρ ^ N
Copyright
.05
1984
Residues
In the d i r e c t d r i l l i n g ( n o - t i l l s e e d i n g ) p r a c t i c e i n the U n i t e d Kingdom/ s t r a w r e s i d u e s from the p r e c e d i n g c r o p a r e u s u a l l y b u r n t because poor c r o p e s t a b l i s h m e n t and y i e l d s c a n r e s u l t / p a r t i c u l a r l y on heavy s o i l s i n wet y e a r s ( 1 0 ) . S i m i l a r problems can o c c u r i n the c o n s e r v a t i o n t i l l a g e systems o f the P a c i f i c Northwest ( L . F . E l l i o t t and H . - H . Cheng/ t h i s v o l u m e ) . The o l d e r a g r i c u l t u r a l t e x t b o o k s i n d i c a t e t h a t t h i s i s due t o the s t r a w h a v i n g a h i g h C : N r a t i o ( c . 100:1) compared w i t h the decomposer m i c r o - o r g a n i s m s ( c . 5:1) and t h a t Ν o t h e r w i s e a v a i l a b l e to p l a n t s i s immobilized i n t o m i c r o b i a l biomass. It i s quite easy t o demonstrate t h i s e f f e c t i n p o t experiments/ where s e e d l i n g s show o b v i o u s s i g n s o f Ν d e f i c i e n c y i n the p r e s e n c e o f s t r a w . However/ i t i s l i k e l y t h a t i n the f u l l c r o p p i n g season the i m m o b i l i z e d Ν w i l l s u b s e q u e n t l y become a v a i l a b l e t o the c r o p / a l t h o u g h l i t t l e f i r m e x p e r i m e n t a l e v i d e n c e has been o b t a i n e d t o s u p p o r t t h i s h y p o t h e s i s . Indeed Ν i m m o b i l i z e d i n m i c r o b i a l biomass d u r i n g w i n t e r c o u l d p r e v e n t w i n t e r l e a c h i n g and t h e r e f o r e s t r a w c o u l d even be b e n e f i c i a l t o the Ν c y c l e . C e r t a i n l y e x t e n s i v e t r i a l s i n the UK show t h a t a p p l i c a t i o n o f seedbed Ν has l i t t l e o r no b e n e f i c i a l e f f e c t on c r o p p r o d u c t i v i t y compared w i t h normal a p p l i c a t i o n t i m e s . There i s a need f o r f u r t h e r s t u d i e s on t h i s t o p i c . One model l a b o r a t o r y s t u d y has demonstrated t h a t the N - i m m o b i l i z a t i o n p o t e n t i a l i s g r e a t l y r e d u c e d when f e r t i l i z e r Ν i s p l a c e d s e v e r a l c e n t i m e t r e s below the s o i l s u r f a c e ( 1 1 ) . The Ν t i e - u p i s much s m a l l e r when r e s i d u e s a r e l e f t on the s o i l s u r f a c e a s opposed t o b e i n g mixed i n the s o i l . In the USA some e v i d e n c e (12) has been r e p o r t e d f o r Pythium s p p . i n c r e a s i n g a s a consequence o f d i r e c t - d r i l l i n g i n t o s t r a w b u t i n the UK l i t t l e e v i d e n c e has been r e p o r t e d a s y e t f o r pathogens b u i l d i n g - u p on straw/ a l t h o u g h t h i s i s l i k e l y t o v a r y g r e a t l y between l o c a t i o n s and c o n d i t i o n s . Straw i s a f a v o r a b l e s u b s t r a t e f o r p a t h o g e n i c Fusarium s p p . and Pythium s p p . Growth-inhibitory b a c t e r i a may a l s o be a p a r t o f the problem ( L . F . E l l i o t t and H . - H . Cheng, t h i s v o l u m e ) .
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
5.
LYNCH
Allelopathy
Involving
47
Microorganisms
A l l the present evidence p o i n t s t o p h y t o t o x i c s t e a m - v o l a t i l e f a t t y a c i d s / p a r t i c u l a r l y a c e t i c , b e i n g a major m i c r o b i o l o g i c a l f a c t o r r e s p o n s i b l e f o r t h e c r o p damage, and t h e c o n d i t i o n s o f e c o l o g i c a l s i g n i f i c a n c e r e f e r r e d t o e a r l i e r have been s a t i s f i e d . However, the t o x i n i s produced o n l y i n the s t r a w t i s s u e and i t s c o n c e n t r a t i o n d e c l i n e s e x p o n e n t i a l l y w i t h d i s t a n c e from t h e s t r a w (13). A c o r r e l a t i o n o f s o i l a c e t i c a c i d content with p h y t o t o x i c i t y i s therefore n e i t h e r expected n o r found.
Downloaded by UNIV OF NEW ENGLAND on February 11, 2017 | http://pubs.acs.org Publication Date: January 8, 1987 | doi: 10.1021/bk-1987-0330.ch005
Weed R e s i d u e s When dense i n f e s t a t i o n s o f weeds a r e k i l l e d w i t h h e r b i c i d e s , a s i t u a t i o n a n a l o g o u s t o the s t r a w problem c a n o c c u r because a l a r g e amount o f r e a d i l y d e g r a d a b l e s u b s t r a t e becomes a v a i l a b l e t o t h e saprophytic microbial population of s o i l . With h e r b i c i d e s t h a t a r e t r a n s l o c a t e d , such a s g l y p h o s a t e , t h e r e i s a chance t h a t t h e h e r b i c i d e i t s e l f would be r e l e a s e d t o the s o i l , b u t t h i s has n o t been found t o be the case ( 1 4 ) . C e r t a i n l y p h y t o t o x i c a c e t i c , p r o p i o n i c and b u t y r i c a c i d s c a n be produced from t h e couch (quack) grass rhizome. However c r o p damage i s u s u a l l y o b s e r v e d i n d r y (50% water s a t u r a t i o n ) s o i l s and t h i s c o u l d be r e p e a t e d i n g l a s s h o u s e t r i a l s (15). Thus i t appeared u n l i k e l y t h a t t h e n e c e s s a r y a n a e r o b i c c o n d i t i o n s f o r b a c t e r i a l f e r m e n t a t i v e metabolism would n o r m a l l y exist. Dry s o i l s f a v o r the development o f the pathogen Fusarium culmorum (16) and l a r g e p o p u l a t i o n s o f t h i s fungus have been found on decomposing rhizomes o f the weed. However, even under d r y c o n d i t i o n s s m a l l c o n c e n t r a t i o n s o f the o r g a n i c a c i d c a n form and u n l e s s the pathogen p o p u l a t i o n i s v e r y l a r g e the a c i d a p p e a r s t o p r o v i d e a compounding s t r e s s on the h o s t p l a n t ( T a b l e I I I ) .
Table I I I .
E f f e c t o f 5 mM A c e t i c A c i d and Fusarium culmorum on t h e Growth o f B a r l e y S e e d l i n g s
Mean l e n g t h o f f i r s t t h r e e l e a v e s (mm) 12 days a f t e r g e r m i n a t i o n Inoculum d e n s i t y (spores/ml)
7 10
0
S e e d l i n g s t r e a t e d w i t h 5 mM a c e t i c a c i d No a c i d t r e a t m e n t Results with d i f f e r e n t (P < 0.05)
b 120 140
a
letters are significantly
c 98Γ 118
Ζ 10
D
cd 89, 114
~7~ 10°
cd 83 , 78
different
N
Source: Reproduced w i t h p e r m i s s i o n from R e f . Blackwell S c i e n t i f i c Publications Ltd.
17.
Copyright
American Chemical Society Library 1155 16th St, N.W. Washington, D.C 20038
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1982
ALLELOCHEMICALS: ROLE IN AGRICULTURE A N D FORESTRY
48
Permanent N e u t r a l
Grassland
I t c a n be d i f f i c u l t t o e s t a b l i s h new g r a s s e s i n t o permanent g r a s s land. T h i s may be an example o f a l l e l o p a t h y and the r e a s o n why some s p e c i e s dominate o l d g r a s s l a n d . Newman (18) p r e p a r e d a r e v i e w on whether a l l e l o p a t h y i s e c o l o g i c a l a d a p t a t i o n o r a c c i d e n t . His r e s e a r c h team a t B r i s t o l U n i v e r s i t y i n v e s t i g a t e d a l l e l o p a t h y w i t h i n permanent g r a s s l a n d u s i n g p o t e x p e r i m e n t s w i t h ' d o n o r or ' t r e a t m e n t and ' r e c e i v e r ' o r ' t e s t ' s p e c i e s o f d i f f e r e n t g r a s s e s (19/ 20/ 21/ 22/ 2 3 ) . These s t u d i e s showed/ f o r example, t h a t the decomposing r o o t s o f Rumex a c e t o s a had the g r e a t e s t i n h i b i t i n g e f f e c t on f o u r s p e c i e s ( T a b l e I V ) . When the n u t r i e n t c o n t e n t o f Loiiurn perenne a s ' t e s t ' s p e c i e s was a n a l y z e d / R^ a c e t o s a r e s i d u e s gave r i s e t o a s i m i l a r Ρ c o n t e n t i n the t e s t s p e c i e s a s the P - d e f i c i e n t s o i l a l o n e ; t h e r e was no s u c h e f f e c t on Ν c o n t e n t ( T a b l e V). They c o n c l u d e d t h a t the a l l e l o p a t h y a c t e d by the r e s i d u e s o f the t r e a t m e n t s p e c i e s f a i l i n g t o make Ρ a v a i l a b l e t o the t e s t s p e c i e s / an e f f e c t which was g r e a t e s t i n wet s o i l . 1
Downloaded by UNIV OF NEW ENGLAND on February 11, 2017 | http://pubs.acs.org Publication Date: January 8, 1987 | doi: 10.1021/bk-1987-0330.ch005
1
T a b l e IV. Dry Weights (mg) o f Shoots o f ' T e s t ' P l a n t s o f G r a s s l a n d S p e c i e s Grown on S o i l s C o n t a i n i n g the Decomposing Roots o f 'Treatment' Species
'Test'
'Treatment'
species
Anthoxanthum odoratum (Ao) L o l i u m perenne (Lp) Plantago l a n c e o l a t a (Pi) Rumex a c e t o s a (Ra) Nil
species
Ao
Lp
Pi
61b 155a 199a 47b 44b
122a 180a 216a 38b 62b
215a 456a 326a 18c 77b
Ra
174a 73ab 41c 17c 103ab
V a l u e s n o t s h a r i n g the same s m a l l l e t t e r s i n each column d i f f e r s i g n i f i c a n t l y (P < 0.05) Source: The New
Reproduced w i t h p e r m i s s i o n from R e f . Phytologist.
24.
Copyright
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1981
5.
LYNCH
Allelopathy
Involving
49
Microorganisms
Table V. N i t r o g e n and Phosphorus i n Shoots o f ' T e s t Plants Grown on S o i l s C o n t a i n i n g the Decomposing Roots o f T r e a t m e n t Species 1
1
1
L o l i u m perenne
Downloaded by UNIV OF NEW ENGLAND on February 11, 2017 | http://pubs.acs.org Publication Date: January 8, 1987 | doi: 10.1021/bk-1987-0330.ch005
•Treatment
1
N%
species
P%
0.217a 0.195a 0.201a 0.140b 0.157b
2.95ab 2.19c 2.39bc 2.51bc 3.22a
Anthoxanthum odoratum L o l i u m perenne Plantago l a n c e o l a t a Rumex a c e t o s a Nil (wet)
V a l u e s n o t s h a r i n g the same s m a l l l e t t e r s i n e a c h column s i g n i f i c a n t l y (P < 0.05) Source: Reproduced w i t h p e r m i s s i o n from R e f . Blackwell S c i e n t i f i c Publications Ltd.
23.
differ
Copyright
1979
In p a r a l l e l s t u d i e s i t was demonstrated t h a t the r h i z o s p h e r e p o p u l a t i o n s of g r a s s l a n d s p e c i e s c o u l d a f f e c t each other/ there b e i n g a l a r g e i n c r e a s e i n f u n g a l biomass ( T a b l e V I ) . The s i g n i f i c a n c e of t h i s observation i s s t i l l unclear. There have been r e l a t i v e l y few q u a n t i t a t i v e s t u d i e s o f m i c r o - o r g a n i s m s on p l a n t r o o t s i n m o n o c u l t u r e l e t a l o n e i n mixed s t a n d s . Such a p p r o a c h e s s h o u l d prove u s e f u l i n a s s e s s i n g the p o t e n t i a l magnitude o f microbial metabolic processes i n a l l e l o p a t h i c i n t e r a c t i o n s .
Table VI. B a c t e r i a l Cover and Fungal Mycelium Length on Root S u r f a c e s o f L o l i u m perenne (Lp) and P l a n t a g o l a n c e o l a t a (Pi)
B a c t e r i a l cover (%)
Separate Together
Lp
Pi
4.3 6.3
5.6 5.8
Fungi (mm mm" )
Mean p l a n t w e i g h t (g)
2
Lp
Pi
Lp
Pi
0.7 2.1
1.8 2.9
0.71 1.01
0.69 0.69
S o u r c e : Reproduced w i t h p e r m i s s i o n from R e f . Macmillan Journals L t d .
19·
Copyright
1974
Reseeding O l d G r a s s l a n d When g r a s s l a n d becomes u n p r o d u c t i v e because o f p o o r s p e c i e s c o m p o s i t i o n / the o l d sward c a n be k i l l e d o f f w i t h h e r b i c i d e and new g r a s s e s r e s e e d e d by d i r e c t - d r i l l i n g i n t o the t r e a t e d s w a r d . This
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
ALLELOCHEMICALS: ROLE IN AGRICULTURE A N D FORESTRY
50
Downloaded by UNIV OF NEW ENGLAND on February 11, 2017 | http://pubs.acs.org Publication Date: January 8, 1987 | doi: 10.1021/bk-1987-0330.ch005
p r e s e n t s a s i t u a t i o n o f m i c r o b i a l d e c o m p o s i t i o n which i s a n a l o g o u s t o the d e c o m p o s i t i o n o f s t r a w and weed r e s i d u e s . Shoots o f a range o f g r a s s s p e c i e s were t o x i c t o o t h e r g r a s s e s and c l o v e r when decomposed a n a e r o b i c a l l y ( T a b l e V I I ) . The photot o x i c i t y seemed t o be caused by o r g a n i c a c i d s and was l e s s a f t e r 20 days o f d e c o m p o s i t i o n than a f t e r 1 0 . F e s t u c a r u b r a , A g r o s t i s s t o l o n i f e r a / and A l o p e c u r u s p r a t e n s i s r e s i d u e s were the most t o x i c ; which t o an e x t e n t i s c o n s i s t e n t w i t h f i e l d o b s e r v a t i o n s t h a t r e s i d u e s o f the former two s p e c i e s a r e p a r t i c u l a r l y d i f f i c u l t t o seed i n t o . When the s h o o t s were decomposed a e r o b i c a l l y , some were t o x i c a f t e r 10 days b u t t h i s t o x i c i t y d i s a p p e a r e d a f t e r 20 days when some r e s i d u e s c o u l d s t i m u l a t e p l a n t growth ( T a b l e VII).
T a b l e VII.
E f f e c t o f S o l u t i o n s Produced a f t e r 10 Days D e c o m p o s i t i o n o f P l a n t R e s i d u e s on Root E x t e n s i o n
Root e x t e n s i o n o f
Residue
Alopecurus myosuroides
Fr
Hi
Lp
test species
Poa annua
Pt
(mm)
Trifolium repens
(a) Aerobic Agrostis stolonifera Alopecurus p r a t e n s i s Anthoxanthum odoraturn Festuca rubra (Fr) H o l c u s l a n a t u s (Hi) L o l i u m perenne (Lp) Poa t r i v i a l i s (Pt) Control
13 13 13 13 13 11 11 11
7 6 7 11 6 6 6 6
11 10 10 10 9 10 11 11
28 35 25 28 25 24 26 30
8 9 10 10 9 10 11 8
4 5 6 7 3 6 7 5
38 42 34 30 32 24 32 46
(b) Anaerobic Agrostis stolonifera Alopecurus p r a t e n s i s Anthoxanthum odoratum Festuca rubra (Fr) Holcus l a n a t u s ( H i ) L o l i u m perenne (Lp) Poa t r i v i a l i s (Pt) Control
0 0 15 0 15 6 11 10
0 5 7 0 9 8 4 7
3 0 14 4 21 10 7 10
9 3 25 5 36 26 16 32
5 0 10 0 12 10 7 10
0 0 6 0 11 7 3 5
2 0 33 0 37 22 21 48
C o n t r o l c o n t a i n e d s o i l and water o n l y Source: The New
Reproduced w i t h p e r m i s s i o n from R e f . Phytologist.
24.
Copyright
1981
Even though t o x i n s c o u l d a t l e a s t i n p a r t be i n v o l v e d , F u s a r i u m culmorum a g a i n seemed t o be r e s p o n s i b l e f o r the damage ^25). Whereas the f u n g i c i d e s carbendazim and d r a z o x o l o n were e f f e c t i v e i n c o n t r o l l i n g the d i s e a s e , c a l c i u m p e r o x i d e was a l s o e f f e c t i v e (26). T h i s compound had the added advantage o f r e l e a s i n g a l k a l i t o
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
5.
LYNCH
Allelopathy
Involving
51
Microorganisms
n e u t r a l i s e o r g a n i c a c i d t o x i n s and oxygen t o m i n i m i z e o r g a n i c formation (27).
Downloaded by UNIV OF NEW ENGLAND on February 11, 2017 | http://pubs.acs.org Publication Date: January 8, 1987 | doi: 10.1021/bk-1987-0330.ch005
C o n c l u s i o n : The Scope f o r S o i l
acid
Biotechnology
The p o t e n t i a l o f m a n i p u l a t i n g s o i l m i c r o - o r g a n i s m s / e s p e c i a l l y f o r the u t i l i z a t i o n o f c r o p r e s i d u e s , has been o u t l i n e d ( 2 8 ) . F o r example, a c c e l e r a t i n g s t r a w breakdown c a n reduce the "time p e r i o d i n which o r g a n i c a c i d t o x i n s a r e produced ( 2 9 ) . By i n o c u l a t i n g s t r a w w i t h a c o n s o r t i u m o f a c e l l u l o l y t i c fungus and a n a n a e r o b i c N ^ f i x i n g b a c t e r i u m i n the l a b o r a t o r y , s t r a w breakdown has been a c c e l e r a t e d and the r e s u l t i n g r e s i d u e i s e n r i c h e d i n Ν ( T a b l e V I I I ) . In o t h e r s i m i l a r a s s o c i a t i o n s the c e l l u l o l y t i c fungus has b i o c o n t r o l p o t e n t i a l a g a i n s t r o o t d i s e a s e , and a s s o c i a t e d p o l y s a c c h a r i d e p r o d u c i n g b a c t e r i a c a n a s s i s t w i t h the s t a b i l i z a t i o n o f s o i l s t r u c t u r e (211). I f such approaches c o u l d be c a r r i e d t o p r a c t i c e i n the f i e l d , a new e r a o f m a n i p u l a t i v e a l l e l o p a t h y would emerge. This presents a great challenge f o r s o i l biotechnologists but w i l l c e r t a i n l y n o t be r e a l i s e d u n t i l the e c o l o g i c a l a s p e c t s o f a l l e l o pathy a r e c l e a r l y understood.
Table V I I I .
D e c o m p o s i t i o n o f N o n - S t e r i l e Straw C o n t a i n e d i n G l a s s Columns a t 25°C f o r 8 Weeks
Ν gain
Treatment
Non-inoculated Pénicillium corylophilum + C l o s t r i d i u m butyricum
Decomposition r a t e c o n s t a n t , k (d~ )
Per g straw lost
(mg)
Per g original straw
0.0096
8.8
2.8
0.0139
11.5
5.0
Source: Reproduced w i t h p e r m i s s i o n from R e f . 30. Society f o r General Microbiology.
Copyright
1983
Acknowledgments The comments o f Dr L . F . E l l i o t t and Dr E . I . Newman a r e much appreciated. P e r m i s s i o n s t o p u b l i s h d a t a i n the t a b l e s i s a s f o l l o w s : The New P h y t o l o g i s t T r u s t ( T a b l e s I , IV and V I I ) , M a r t i n u s N i j h o f f (Table I I ) , Blackwell S c i e n t i f i c P u b l i c a t i o n s (Tables I I I and V ) , M a c m i l l a n J o u r n a l s ( T a b l e VI) and S o c i e t y f o r G e n e r a l M i c r o b i o l o g y (Table V I I I ) .
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
52
ALLELOCHEMICALS: ROLE IN AGRICULTURE AND FORESTRY
Literature Cited 1. 2. 3. 4.
Downloaded by UNIV OF NEW ENGLAND on February 11, 2017 | http://pubs.acs.org Publication Date: January 8, 1987 | doi: 10.1021/bk-1987-0330.ch005
5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.
Lynch, J.M. CRC Crit. Rev. Microbiol. 1976, 5, 67-107. Lynch, J.M. In "Soil Organic Matter and Biological Activity"; Vaughan, D.; Malcolm, R.E., Eds.; Martinus Nijhoff: The Hague, 1985; pp. 151-74. McCalla, T.M.: Norstadt, F.A. Agric. Ehviron. 1974, 1, 153-74. Rice, E.L. "Allelopathy"; Academic: Orlando, 1984, 2nd edition. Lynch, J.M. J . Appl. Bact. 1977, 42, 81-7. lang, C.S.; Waiss, A.C. J . Chem. Ecol. 1978, 4, 225-32. Gussin, E.J.; Lynch, J.M. New Phytol. 1982, 92, 345-8. Cochran, V.L.; Bikfasy, D.; Elliott, L.F.; Rapendick, R.I. Plant Soil 1983, 74, 369-77. Chapman, S.J.; Lynch, J.M. Plant Soil 1984, 74, 457-9. Lynch, J.M.; Ellis, F.B.; Harper, S.H.T.; Christian, D.G. Agric. Environ. 1980, 5, 321-8. Cochran, V.L.; Elliott, L.F.; Bapendick, R.I. Soil Sci. Soc. Amer. S. 1980, 44, 978-82. Cook, R.J.; Sitton, J.W.; Waldher, J.T. Plant Disease 1980, 64, 102-3. Lynch, J.M.; Gunn, K.B.; Ranting, L.M. Plant Soil 1980, 56, 93-8. Penn, D.J.; Lynch, J.M. New Phytol. 1982, 90, 51-5. Penn, D.J.; Lynch, J.M. J . Appl. Ecol. 1981, 18, 669-74. Papendick, R.J.; Cook, R.J. Phytopathology 1974, 64, 358-63. Penn, D.J.; Lynch, J.M. Plant Pathol. 1982, 31, 39-43. Newman, E.I. "Biochemical Aspects of Animal and Plant CoEvolution"; Barbourne, J.B., Ed.; Academic: London, 1978, pp. 327-42. Christie, P.; Newman, E.I.; Campbell, R. Nature (Lond.) 1974, 250, 570-1. Newman, E.I.; Rovira, A.D. J . Ecol. 1975, 63, 727-37. Newman, E.I.; Miller, M.H. J . Ecol. 1977, 65, 399-411. Newbery, D.McC.; Newman, E.I. Oecologia (Berl.) 1978, 33, 361-80. Newbery, D.McC. J . Appl. Ecol. 1979, 16, 613-22. Gussin, E.J.; Lynch, J.M. New Phytol. 1981, 89, 449-57. Gussin, E.J.; Lynch, J.M. J . Gen. Microbiol. 1983, 129, 271-5. Gussin, E.J.; Lynch, J.M. Trans. Brit. Mycol. Soc. 1983, 81, 426-9. Lynch, J.M.; Harper, S.H.T.; Sladdin, M. Curr. Microbiol. 1981, 5, 27-30. Lynch, J.M. "Soil Biotechnology. Microbiological Factors in Crop Productivity", Blackwell Scientific Publications: Oxford, 1983. Lynch, J.M.; Elliott, L.F. Soil Biol. Biochem. 1983, 15, 221-2. Lynch, J.M.; Harper, S.H.T. J . Gen. Microbiol. 1983, 129, 251-3. Lynch, J.M.; Harper, S.H.T. Phil. Trans. R. Soc. Lond. 1985, B310, 221-6.
RECEIVED
June
20,1986
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.