Ambient Infrared Laser Ablation Mass Spectrometry (AIRLAB-MS) of

Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-0001, United States. ‡ Department of Chemistry, University ...
0 downloads 11 Views 3MB Size
Article pubs.acs.org/ac

Ambient Infrared Laser Ablation Mass Spectrometry (AIRLAB-MS) of Live Plant Tissue with Plume Capture by Continuous Flow Solvent Probe Jeremy T. O’Brien,† Evan R. Williams,*,†,‡ and Hoi-Ying N. Holman*,† †

Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-0001, United States ‡ Department of Chemistry, University of California, Berkeley, California 94720-1460, United States S Supporting Information *

ABSTRACT: A new experimental setup for spatially resolved ambient infrared laser ablation-mass spectrometry (AIRLABMS) that uses an infrared microscope with an infinitycorrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is ∼50%. This transfer efficiency is significantly higher than values reported for similar techniques. Laser desorption does not induce fragmentation of biomolecules in droplets containing bradykinin, leucine enkephalin and myoglobin, but loss of the heme group from myoglobin occurs as a result of the denaturing solution used. An application of AIRLAB-MS to biological materials is demonstrated for tobacco leaves. Chemical components are identified from the spatially resolved mass spectra of the ablated plant material, including nicotine and uridine. The reproducibility of measurements made using AIRLAB-MS on plant material was demonstrated by the ablation of six closely spaced areas (within 2 × 2 mm) on a young tobacco leaf, and the results indicate a standard deviation of 650 in the spectrum of the extract, whereas no ions were observed in this range in the laser ablation experiments. This may be due to the much longer dissolution time used for the solvent extraction compared to laser ablation and the different solvents used. To visualize variations in the relative amount of nicotine for both the John Williams and TLA leaf samples, the color of the circles for each of the ablation areas was selected to correspond to the relative nicotine concentration at that location (Figure 5). The nicotine levels for the TLA leaf, measured with a leucine enkephalin internal standard, were higher than for JW



CONCLUSIONS

Ambient IR laser ablation mass spectrometry (AIRLAB-MS) using an infrared microscope equipped with a reflecting objective and a continuous flow probe was demonstrated. This experimental set up makes possible high efficiency (∼50%) transfer of material from glycerol/methanol droplets to the ESI emitter. The high transfer efficiency relative to reported values for similar techniques is likely because of the combination of front-side laser ablation and the positioning of the probe droplet directly above the laser focus. Although not demonstrated here, this highly efficient laser ablation transfer coupled with an optimized electrospray ion source and modern commercial mass spectrometer should lead to much higher sensitivity. This will make possible analysis of smaller areas enabling significantly higher spatial resolution. The time required for sample ablation, transfer to the mass spectrometer and detection of all ablated material is 2−3 min, which makes 2D imaging of large areas time-consuming. However, the long duration of the nicotine signal (60−75 s) with AIRLAB-MS has the advantage that there is sufficient time to obtain detailed structural analysis for many different ions. Results using AIRLAB-MS on a wild-type and mutant tobacco plant indicate higher nicotine concentrations at the leaf edges and tip relative to the leaf vein and stem, with higher nicotine concentrations for the mutant at all locations except the tip edges. AIRLAB-MS is ideally suited for integrating visible microscopy, IR spectromicroscopy, and spatially resolved mass spectrometry of the same sample. Studies combining IR spectromicroscopy, UV imaging, and ToF-SIMS have been reported for analysis of liver tissue sections using a single sample holder.40,41 Raman and fluorescence microspectroscopy have also been combined with matrix-free MALDI of individual algae cells.42 In these experiments, the sample was transferred between the separate instruments that were used.40−42 An advantage of AIRLAB-MS is that the same infrared microscope and sample stage is used for all of these techniques (visible, IR microscopies, and imaging MS). Visible microscopy and IR spectromicroscopy can provide nondestructive chemical monitoring of living systems under environmentally controlled conditions1,6−11 and the visible/IR imaging can also be used to select cells/areas of interest for “down-stream” detailed chemical analysis using AIRLAB-MS.

Figure 5. Average nicotine abundances measured for laser ablation of three 360 × 360 μm areas of plant tissue from each of the circled areas of John Williams and TLA mutant tobacco leaves. The average integrated nicotine abundance is indicated by the color of the circle. Expansion of the TLA mutant tip shows dark purple spots indicating ablation craters. The small red crosshair is from the mosaic software tool. F

DOI: 10.1021/ac503383p Anal. Chem. XXXX, XXX, XXX−XXX

Article

Analytical Chemistry



(13) Terreno, E.; Delli Castelli, D.; Viale, A.; Aime, S. Chem. Rev. 2010, 110, 3019−3042. (14) Ciobanu, L.; Webb, A. G.; Pennington, C. H. Prog. Nucl. Magn. Reson. Spectrosc. 2003, 42, 69−93. (15) Miller, L. M.; Dumas, P. Biochim. Biophys. Acta, Biomembr. 2006, 1758, 846−857. (16) Palonpon, A. F.; Sodeoka, M.; Fujita, K. Curr. Opin. Chem. Biol. 2013, 17, 708−715. (17) Gierlinger, N.; Schwanninger, M. Int. J. Spectrosc. 2007, 21, 69− 89. (18) Movasaghi, Z.; Rehman, S.; Rehman, I. U. Appl. Spectrosc. Rev. 2007, 42, 493−541. (19) Lippincott-Schwartz, J.; Snapp, E.; Kenworthy, A. Nat. Rev. Mol. Cell Biol. 2001, 2, 444−456. (20) Weiss, S. Science 1999, 283, 1676−1683. (21) Garden, R. W.; Sweedler, J. V. Anal. Chem. 2000, 72, 30−36. (22) Jurchen, J. C.; Rubakhin, S. S.; Sweedler, J. V. J. Am. Soc. Mass Spectrom. 2005, 16, 1654−1659. (23) Reyzer, M. L.; Caprioli, R. M. Curr. Opin. Chem. Biol. 2007, 11, 29−35. (24) Castellino, S.; Groseclose, M. R.; Wagner, D. Bioanalysis 2011, 3, 2427−2441. (25) Cornett, D. S.; Frappier, S. L.; Caprioli, R. M. Anal. Chem. 2008, 80, 5648−5653. (26) Monroe, E. B.; Annangudi, S. R.; Hatcher, N. G.; Gutstein, H. B.; Rubakhin, S. S.; Sweedler, J. V. Proteomics 2008, 8, 3746−3754. (27) Rubakhin, S. S.; Jurchen, J. C.; Monroe, E. B.; Sweedler, J. V. Drug Discovery Today 2005, 10, 823−837. (28) Lanni, E. J.; Rubakhin, S. S.; Sweedler, J. V. J. Proteomics 2012, 75, 5036−5051. (29) McDonnell, L. A.; Heeren, R. M. A. Mass Spectrom. Rev. 2007, 26, 606−643. (30) van Hove, E. R. A.; Smith, D. F.; Heeren, R. M. A. J. Chromatogr. A 2010, 1217, 3946−3954. (31) Boxer, S. G.; Kraft, M. L.; Weber, P. K. In Annual Review of Biophysics; Annual Reviews: Palo Alto, 2009; pp 53−74. (32) Lockyer, N. P.; Vickerman, J. C. Appl. Surf. Sci. 2004, 231, 377− 384. (33) Stolee, J. A.; Vertes, A. Anal. Chem. 2013, 85, 3592−3598. (34) Park, S. G.; Murray, K. K. Rapid Commun. Mass Spectrom. 2013, 27, 1673−1680. (35) Park, S. G.; Murray, K. K. J. Mass Spectrom. 2012, 47, 1322− 1326. (36) Park, S. G.; Murray, K. K. J. Am. Soc. Mass Spectrom. 2011, 22, 1352−1362. (37) Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471−473. (38) Robichaud, G.; Barry, J. A.; Garrard, K. P.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2013, 24, 92−100. (39) Masyuko, R.; Lanni, E. J.; Sweedler, J. V.; Bohn, P. W. Analyst 2013, 138, 1924−1939. (40) Le Naour, F.; Bralet, M. P.; Debois, D.; Sandt, C.; Guettier, C.; Dumas, P.; Brunelle, A.; Laprevote, O. PLoS One 2009, 4, e7408. (41) Petit, V. W.; Refregiers, M.; Guettier, C.; Jamme, F.; Sebanayakam, K.; Brunelle, A.; Laprevote, O.; Dumas, P.; Le Naour, F. Anal. Chem. 2010, 82, 3963−3968. (42) Urban, P. L.; Schmid, T.; Amantonico, A.; Zenobi, R. Anal. Chem. 2011, 83, 1843−1849. (43) Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Gijbels, R. Rapid Commun. Mass Spectrom. 2005, 19, 1017−1024. (44) Roach, P. J.; Laskin, J.; Laskin, A. Analyst 2010, 135, 2233− 2236. (45) Laskin, J.; Heath, B. S.; Roach, P. J.; Cazares, L.; Semmes, O. J. Anal. Chem. 2012, 84, 141−148. (46) Van Berkel, G. J.; Kertesz, V.; Koeplinger, K. A.; Vavrek, M.; Kong, A. N. T. J. Mass Spectrom. 2008, 43, 500−508. (47) Kertesz, V.; Van Berkel, G. J. J. Mass Spectrom. 2010, 45, 252− 260.

ASSOCIATED CONTENT

S Supporting Information *

Experimental details; integrated ion signal for doubly protonated bradykinin from AIRLAB-MS measurements of glycerol droplet as a function of laser power; mass spectra obtained from AIRLAB-MS of glycerol droplets containing leucine enkephalin, bradykinin or myglobin; ion abundance as a function of time for protonated uridine obtained by laser ablation; and positive ion nanospray mass spectrum of John Williams tobacco leaf extract. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. Fax: (510) 486-7152. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work was performed under Berkeley Synchrotron Infrared Structural Biology (BSISB) Program funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research through contracts DEAC0205CH11231. Generous financial support was also provided by the National Science Foundation (Grant CHE-1306720).



REFERENCES

(1) Chen, L.; Holman, H. Y. N.; Hao, Z.; Bechtel, H. A.; Martin, M. C.; Wu, C. B.; Chu, S. Anal. Chem. 2012, 84, 4118−4125. (2) Quinn, K. P.; Sridharan, G. V.; Hayden, R. S.; Kaplan, D. L.; Lee, K.; Georgakoudi, I. Sci. Rep. 2013, 3, 3432. (3) Shrestha, B.; Patt, J. M.; Vertes, A. Anal. Chem. 2011, 83, 2947− 2955. (4) Parsiegla, G.; Shrestha, B.; Carriere, F.; Vertes, A. Anal. Chem. 2012, 84, 34−38. (5) Nemes, P.; Barton, A. A.; Vertes, A. Anal. Chem. 2009, 81, 6668− 6675. (6) Hazen, T. C.; Dubinsky, E. A.; DeSantis, T. Z.; Andersen, G. L.; Piceno, Y. M.; Singh, N.; Jansson, J. K.; Probst, A.; Borglin, S. E.; Fortney, J. L.; Stringfellow, W. T.; Bill, M.; Conrad, M. E.; Tom, L. M.; Chavarria, K. L.; Alusi, T. R.; Lamendella, R.; Joyner, D. C.; Spier, C.; Baelum, J.; Auer, M.; Zemla, M. L.; Chakraborty, R.; Sonnenthal, E. L.; D’Haeseleer, P.; Holman, H. Y. N.; Osman, S.; Lu, Z. M.; Van Nostrand, J. D.; Deng, Y.; Zhou, J. Z.; Mason, O. U. Science 2010, 330, 204−208. (7) Mason, O. U.; Hazen, T. C.; Borglin, S.; Chain, P. S. G.; Dubinsky, E. A.; Fortney, J. L.; Han, J.; Holman, H. Y. N.; Hultman, J.; Lamendella, R.; Mackelprang, R.; Malfatti, S.; Tom, L. M.; Tringe, S. G.; Woyke, T.; Zhou, J. H.; Rubin, E. M.; Jansson, J. K. ISME J. 2012, 6, 1715−1727. (8) Probst, A. J.; Holman, H. Y. N.; DeSantis, T. Z.; Andersen, G. L.; Birarda, G.; Bechtel, H. A.; Piceno, Y. M.; Sonnleitner, M.; Venkateswaran, K.; Moissl-Eichinger, C. ISME J. 2013, 7, 635−651. (9) Stolee, J. A.; Shrestha, B.; Mengistu, G.; Vertes, A. Angew. Chem., Int. Ed. 2012, 51, 10386−10389. (10) Holman, H. Y.; Bechtel, H. A.; Hao, Z.; Martin, M. C. Anal. Chem. 2010, 82, 8757−8765. (11) Holman, H. Y.; Wozei, E.; Lin, Z.; Comolli, L. R.; Ball, D. A.; Borglin, S.; Fields, M. W.; Hazen, T. C.; Downing, K. H. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 12599−12604. (12) Birarda, G.; Holman, E. A.; Fu, S.; Weikel, K.; Hu, P.; Blankenberg, F. G.; Holman, H. Y.; Taylor, A. Biomed. Spectrosc. Imaging 2013, 2, 301−315. G

DOI: 10.1021/ac503383p Anal. Chem. XXXX, XXX, XXX−XXX

Article

Analytical Chemistry (48) Van Berkel, G. J.; Kertesz, V. Rapid Commun. Mass Spectrom. 2013, 27, 1329−1334. (49) Li, Y.; Shrestha, B.; Vertes, A. Anal. Chem. 2007, 79, 523−532. (50) Li, Y.; Shrestha, B.; Vertes, A. Anal. Chem. 2008, 80, 407−420. (51) Shrestha, B.; Nemes, P.; Nazarian, J.; Hathout, Y.; Hoffman, E. P.; Vertes, A. Analyst 2010, 135, 751−758. (52) Peng, I. X.; Loo, R. R. O.; Margalith, E.; Little, M. W.; Loo, J. A. Analyst 2010, 135, 767−772. (53) Shiea, J.; Huang, M. Z.; Hsu, H. J.; Lee, C. Y.; Yuan, C. H.; Beech, I.; Sunner, J. Rapid Commun. Mass Spectrom. 2005, 19, 3701− 3704. (54) Huang, M. Z.; Hsu, H. J.; Lee, L. Y.; Jeng, J. Y.; Shiea, J. T. J. Proteome Res. 2006, 5, 1107−1116. (55) Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2006, 17, 1712−1716. (56) Sampson, J. S.; Murray, K. K.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2009, 20, 667−673. (57) Nemes, P.; Vertes, A. Anal. Chem. 2007, 79, 8098−8106. (58) Ovchinnikova, O. S.; Kertesz, V.; Van Berkel, G. J. Anal. Chem. 2011, 83, 1874−1878. (59) Ovchinnikova, O. S.; Lorenz, M.; Kertesz, V.; Van Berkel, G. J. Anal. Chem. 2013, 85, 10211−10217. (60) Lorenz, M.; Ovchinnikova, O. S.; Van Berkel, G. J. Rapid Commun. Mass Spectrom. 2014, 28, 1312−1320. (61) Apitz, I.; Vogel, A. Appl. Phys. A: Mater. Sci. Process. 2005, 81, 329−338. (62) Nemes, P.; Huang, H. H.; Vertes, A. Phys. Chem. Chem. Phys. 2012, 14, 2501−2507. (63) Bush, M. F.; O’Brien, J. T.; Prell, J. S.; Saykally, R. J.; Williams, E. R. J. Am. Chem. Soc. 2007, 129, 1612−1622. (64) Earth Sciences Division. http://esd.lbl.gov/about/staff/ christerjansson/folium.html (accessed April 30, 2014). (65) ARPA-E: Changing What’s Possible. http://arpa-e.energy.gov/ (accessed April 30, 2014). (66) Bombarely, A.; Menda, N.; Tecle, I. Y.; Buels, R. M.; Strickler, S.; Fischer-York, T.; Pujar, A.; Leto, J.; Gosselin, J.; Mueller, L. A. Nucleic Acids Res. 2011, 39, D1149−D1155. (67) Jassbi, A. R.; Zamanizadehnajari, S.; Kessler, D.; Baldwin, I. T. Z. Naturforsch., B: J. Chem. Sci. 2006, 61, 1138−1142. (68) Polle, J. E. W.; Kanakagiri, S. D.; Melis, A. Planta 2003, 217, 49−59.

H

DOI: 10.1021/ac503383p Anal. Chem. XXXX, XXX, XXX−XXX