An Overview of Sugars in Urethanes - ACS Symposium Series (ACS

Jul 23, 2009 - DOI: 10.1021/bk-1977-0041.ch017. ACS Symposium Series , Vol. 41. ISBN13: 9780841202900eISBN: 9780841203273. Publication Date ...
0 downloads 0 Views 2MB Size
17 An Overview of Sugars in Urethanes

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

K. C. FRISCH and J. E. KRESTA Polymer Institute, University of Detroit, 4001 W. McNichols Rd., Detroit, Mich. 48221

Polyurethanes, or urethanes as they are generally r e f e r r e d t o i n i n d u s t r y , a r e among t h e f a s t e s t g r o w i n g polymers i n t h ew o r l d . H i s t o r i c a l l y , u r e t h a n e s were f i r s t d e v e l o p e d i n t h e l a b o r a t o r i e s o f t h e I.G. F a r b e n i n d u s t r i e i n Germany i n t h e n i n e t e e n t h i r t i e s u n d e r t h e l e a d e r s h i p o f P r o f e s s o r O t t o B a y e r , a n d i t was n o t u n t i l the l a t e f i f t i e s that urethanes gained s i g n i f i c a n t i n d u s t r i a l importance i n t h e United States. I ti s the more r e m a r k a b l e t h a t u r e t h a n e s g r e w i n t h i s c o u n t r y f r o m 8 m i l l i o n p o u n d s i n 1 9 5 6 t o a b o u t 1.4 - 1.5 b i l l i o n pounds i n 1975 ( 1 - 3 ) . I n order t o understand the continued r a p i d growth and commercial acceptance of urethanes i n t h e v a r i o u s markets, one hast o r e a l i z e t h a t u r e t h a n e s a r e p r o b a b l y t h e most v e r s a t i l e c l a s s o f polymers. The p r i n c i p a l method o f m a n u f a c t u r e h a s been t h e r e a c t i o n o f h y d r o x y l - t e r m i n a t e d p o l y e t h e r s o r p o l y e s t e r s (commonly r e f e r r e d t o a s p o l y o l s ) w i t h d i or p o l y i s o c y a n a t e swhich c a n be r e p r e s e n t e d s c h e m a t i c a l l y as f o l l o w s :

HO-R-OH polyether or polyester

+

OCN-R -NCO

-~> 4-O-R-0-C-NH-R -NH-Of—

diisocyanate

Polyurethane

n

If the functionality of the hydroxyl o r isocyanate component i s i n c r e a s e d t o t h r e e o r more, b r a n c h e d o r c r o s s l i n k e d polymers a r e formed. The p r o p e r t i e s o f u r e t h a n e p o l y m e r s a r e dependent p r i m a r i l y upon molecul a r weight, degree o f c r o s s l i n k i n g , e f f e c t i v e i n t e r m o l e c u l a r f o r c e s , s t i f f n e s s o f c h a i n segments, and 238

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

17.

FRISCH

A N D KRESTA

Sugars in Urethanes

239

crystallinity. Due t o t h e many s t r u c t u r a l v a r i a t i o n s t h a t a r e p o s s i b l e , urethanes c a n be f o r m u l a t e d and p r o c e s s e d i n t o many d i v e r s i f i e d f o r m s . They i n c l u d e f l e x i b l e , s e m i r i g i d and r i g i d foams; s o f t and h a r d elastomers, c o a t i n g s , and adhesives; t h e r m o p l a s t i c and t h e r m o s e t t i n g p l a s t i c s , f i b e r s (Spandex), f i l m s ; poromerics; etc. A breakdown o f t h e p r i n c i p a l areas o f u r e t h a n e p o l y m e r s i n m i l l i o n p o u n d s i s shown i n T a b l e I (1). The p r i n c i p a l s u p p l i e r s o f u r e t h a n e raw materi a l s ( i s o c y a n a t e s and p o l y o l s ) and an e s t i m a t e o f t h e i r r e s p e c t i v e p r o d u c t i o n c a p a c i t y f o r 1976 a r e l i s t e d i n T a b l e I I (3). Sugars and sugar d e r i v a t i v e s p l a y v e r y important r o l e s i n t h e manufacture o f urethane foams, e s p e c i a l l y of r i g i d urethane foams, W h i l e p o l y o l s used f o r t h e manufacture o f f l e x i b l e foams, c o a t i n g s , a d h e s i v e s , a n d e l a s t o m e r s g e n e r a l l y have a f u n c t i o n a l i t y ( f ) o f 2 t o 3 ( 2 - 3 OH g r o u p s ) , p o l y o l s u s e d f o r t h e m a n u f a c t u r e o f r i g i d foams have u s u a l l y a f u n c t i o n a l i t y o f 4 o r g r e a t er. The most commonly u s e d p o l y o l s f o r r i g i d foams are based on sucrose (f=8), s o r b i t o l (f=6), p e n t a e r y t h r i t o l (f=4) a n d o n a l i p h a t i c o r a r o m a t i c p o l y a m i n e s (4-5), such as e t h y l e n e d i a m i n e , d i e t h y l e n e t r i a m i n e , tolylenediamine andcondensation products of aniline and f o r m a l d e h y d e . Due t o t h e i r s u p e r i o r h y d r o l y s i s r e s i s t a n c e and l o w e r c o s t s , p o l y e t h e r p o l y o l s have been employed i n p r e f e r e n c e t o p o l y e s t e r p o l y o l s a l t h o u g h many f l a m e r e t a r d a n t p o l y o l s c o n t a i n i n g p h o s p h o r u s a n d halogens possess e s t e r l i n k a g e s . The p o l y e t h e r p o l y o l s a r e p r o d u c e d b y t h e a d d i t i o n of a l k y l e n e o x i d e s , p r i m a r i l y p r o p y l e n e o x i d e , t o t h e above p o l y o l s u s i n g m o s t l y base c a t a l y s i s . The r e a c t i o n mechanism o f t h e base c a t a l y z e d a d d i t i o n o f propylene oxide t o a p o l y o l (schematically represented as ( R - C H 2 O H ) c a n b e r e p r e s e n t e d a s shown i n F i g u r e 1 ( 4 - 6 ) . The b a s i c c a t a l y s t f o r m s a n i o n s b y t h e a c t i o n o f the c a t a l y s t upon t h e p o l y o l i n i t i a t o r l e a d i n g t o t h e o p e n i n g o f o x i r a n e r i n g a n d t h e f o r m a t i o n o f a new a n ion. Propagation occurs by successive attacks o f t h e s e a n i o n s u p o n p r o p y l e n e o x i d e monomer. Chain t e r m i n a t i o n r e s u l t s by combination o f the polymer anion with a proton. T h i s r e p r e s e n t a t i o n may b e a n o v e r s i m p l i f i c a t i o n s i n c e G e e , e t a l {1) h a v e shown t h a t i o n p a i r s may b e i n v o l v e d . W h i l e t h e above mechanism shows o n l y t h e f o r m a t i o n o f t e r m i n a l s e c o n d a r y a l c o h o l g r o u p s , a c e r t a i n amount (5-10%) o f p r i m a r y a l c o h o l groups i s a l s o formed i n t h e o x i r a n e r i n g opening. The r i n g o p e n i n g p o l y m e r i z a t i o n o f 1 , 2 - e p o x i d e s h a s b e e n r e v i e w e d b y I s h i i a n d S a k a i (£) a n d P r i c e (9) and more r e c e n t l y b y L u n d s t e d a n d S c h m o l k a ( 1 0 ) .

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

SUCROCHEMISTRY

240 Table I.

Overall

Urethane Demand - 1975, and Outlook - 1976 Demand * M i l l i o n s o f Pounds 1975

1976

Foams Rigid

293

353

Flexible

915

1043

1208

1396

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

SUB-TOTAL Elastomers

84

94

Surface Coatings

77

82

Adhesives and S e a l a n t s

37

42!

TOTAL

1406

* On a urethane r e s i n

ILL

1614

basis

URETHANE RAW MATERIAL SUPPLIERS AND CAPACITIES 1976 Estimate ( M i l l i o n s o f Pounds)

TD I Allied BASF Wyandotte Dow Dupont Mobay Olin Rubicon Union Carbide Total

80 90 90 105 225 130 40 55 815

MDI Jefferson Mobay Rubicon Upjohn Total

35 160 60 240 495

Polyols BASF Wyandotte E. R. Carpenter Dow Jefferson Mobay Olin Union Carbide Other Total

330 120 400 100 180 210 400 250 1,990

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

17.

FRISCH

Sugars in Urethanes

A N D KRESTA

R-CH OH + 1^

? R - C H c ß + BH

2

(1)

2

CH-

CH-

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

R-CH-CT + CH

- C%-

CKU R-CH

241

2

2

CH,

l ,0 C H C H 0

(2)

-> R-CH 0 CH CHO^-

CH

I

e w

+ nCH

2

CH,

0

- CI^

I >R-CH 0(CH CHO) CHjCHnK 2

I

©

(3)

2

0

CH

CH

3

R-CH 0(CH CHO) CH i:H0 2

2

n

2

CH

3

9

+ BH

CH

3

3

> R-CH 0(CHjCHO) CH CHOH 2

n

+ B

(4)

2

e

Figure 1. Mechanism of base-catalyzed addition of propylene oxide to polyols

When t e r m i n a l p r i m a r y h y d r o x y l g r o u p s a r e d e s i r e d e t h y l e n e o x i d e may b e u s e d e i t h e r a s t h e s o l e a l k y l e n e o x i d e w i t h t h e p o l y o l i n i t i a t o r , o r i t may b e e m p l o y e d to "cap" o r " t i p " t h eoxypropylated p o l y o l with ethyl e n e o x i d e a s shown i n t h e f o l l o w i n g s c h e m e : CH.

CH.

CH—

CH

0

CH.

R-(CH.-CH-O) CH.CHOH > R- (CH.-CH-O) _ C H C H 0 H 2 n 2 2 n+l 2 2 However, s i n c e o x y e t h y l e n e groups a r e h y d r o p h i l i c i n n a t u r e and most a p p l i c a t i o n s r e q u i r e good w a t e r r e s i s t a n c e , p o l y e t h e r p o l y o l s f o r r i g i d u r e t h a n e foams c o n s i s t u s u a l l y o f oxypropylene adducts o f p o l y o l o r polyamine i n i t i a t o r s . The o x y p r o p y l e n e adducts e x h i b i t also better fluorocarbon (blowing agent) s o l u b i l i t y a n d i m p r o v e d i s o c y a n a t e c o m p a t i b i l i t y a s compared t o t h e corresponding p o l y o l s containing oxyethylene adducts. o

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

o

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

242

SUCROCHEMISTRY

Base c a t a l y s i s u s u a l l y i s p r e f e r r e d i n t h e epoxide condensation o f " n e u t r a l " p o l y o l s w i t h potassium hydroxide being the favored c a t a l y s t although other a l k a l i h y d r o x i d e s , a l k a l i a l k o x i d e s , and v a r i o u s t e r t i a r y a m i n e s may b e u s e d . T e r t i a r y amine c a t a l y s t s a r e s u g g e s t e d f o r t h e a d d i t i o n o f a l k y l e n e oxides under anhydrous c o n d i t i o n s to a l k a l i s e n s i t i v e , s o l i d p o l y o l i n i t i a t o r s such as sucrose (11, 1 2 ) . I t has been claimed t h a t t h e use of a t r i a l k y l a m i n e c a t a l y s t c o n t a i n i n g two o r t h r e e c a r b o n atoms i n t h e a l k y l g r o u p l i m i t s t h e a d d i t i o n t o o n l y one h y d r o x y p r o p y l group on each o f t h e h y d r o x y l groups o f t h e i n i t i a t o r ( 1 2 ) . When h a l o g e n a t o m s a r e p r e s e n t i n t h e e p o x i d e such as i n e p i c h l o r o h y d r i n , 3 , 3 , 3 - t r i c h l o r o p r o p y l e n e o x i d e (TCPO) o r 4 , 4 , 4 - t r i c h l o r o - l , 2 - b u t y l e n e o x i d e ( T C B O ) , o r i n . t h e i n i t i a t o r , a c i d c a t a l y s t s , e.g. boron t r i f l u o r i d e e t h e r a t e , may b e u s e d ( 1 3 - 1 8 ) . Vogt and D a v i s (16) f o u n d t h a t , i f t h e c o n c e n t r a t i o n o f c a t a l y s t / i n i t i a t o r ( p o l y o l ) complex i s decreased w i t h r e s p e c t t o TCPO i n o r d e r t o o b t a i n h i g h e r m o l e c u l a r w e i g h t p r o d u c t s , s i d e r e a c t i o n s such as c y c l i z a t i o n r e a c t i o n s become i n c r e a s i n g l y i m p o r t a n t . Boron t r i f l u o r i d e a l s o promotes d i m e r i z a t i o n o f a l k y l e n e oxides t o dioxane o r a l k y l d e r i v a t i v e s o f dioxane as d e s c r i b e d by F i f e a n d R o b e r t s (19_) . The u s e o f a c i d c a t a l y s t s , e . g . L e w i s a c i d s , p r o m o t e s f o r m a t i o n o f a g r e a t e r amount o f t e r m i n a l p r i m a r y a l c o h o l g r o u p s when c o m p a r e d t o b a s e c a t a l y s i s o f epoxides. When u n c a t a l y z e d , p r i m a r y a l c o h o l g r o u p s r e a c t w i t h i s o c y a n a t e s two o r t h r e e t i m e s a s f a s t a s secondary a l c o h o l groups, whereas t h e presence o f c a t a l y s t s , p a r t i c u l a r l y m e t a l c a t a l y s t s , cause an even g r e a t e r spread i n r e a c t i v i t y between primary and secondary a l c o h o l groups (20-22). R e c e n t l y K n o d e l (23) r e p o r t e d the use o f m i x t u r e s o f e t h y l e n e o x i d e and propylene oxide i n t h e p r e p a r a t i o n o f p o l y e t h e r p o l y o l s from s o l i d p o l y o l i n i t i a t o r s such as sucrose i n t h e presence of t r i m e t h y l - o r t r i e t h y l a m i n e as c a t a l y s t s . This p r o c e s s was s a i d t o r e d u c e t h e p r e p a r a t i o n t i m e f o r t h e p o l y e t h e r p o l y o l s b y a s much a s 67 p e r c e n t , a n d t h e v i s c o s i t y o f t h e r e s u l t i n g p o l y e t h e r p o l y o l was l o w e r than i n c o n v e n t i o n a l processes u s i n g propylene oxide as the s o l e a l k y l e n e oxide. The i s o c y a n a t e s u s e d i n r i g i d u r e t h a n e f o a m s c o n s i s t primarily of polymeric isocyanates, i . e . isocyan a t e s h a v i n g a n NCO f u n c t i o n a l i t y o f g r e a t e r t h a n 2 (most o f them = 2 . 6 - 2 . 8 ) . These a r e produced by phosgenation o f a n i l i n e - formaldehyde condensation prod u c t s a n d a r e a l s o r e f e r r e d t o a s " c r u d e " MDI. The

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

17.

FRISCH

AND

KRESTA

Sugars in Urethanes

243

commercial p r o d u c t s from the v a r i o u s i s o c y a n a t e supp l i e r s d i f f e r somewhat i n t h e i r r e a c t i v i t y w h i c h i s d u e m a i n l y t o t h e r a t i o o f t h e o- a n d p-NCO s u b s t i t u t i o n i n the molecule, the molecular weight d i s t r i b u t i o n o f t h e p o l y m e r i c f r a c t i o n s o f t h e " c r u d e " MDI a n d a l s o p a r t i a l l y due t o the d i f f e r e n t a c i d i t y i n the i s o c y a nates (24). I n a d d i t i o n t o " c r u d e " MDI, "crude" ( u n d i s t i l l e d grades) TDI ( t o l y l e n e d i i s o c y a n a t e ) , a l s o a r e employed i n the manufacture o f r i g i d foams, e s p e c i a l l y f o r u s e i n a p p l i a n c e s such as r e f r i g e r a t o r s and f r e e z ers. The m o s t i m p o r t a n t s u g a r s o r s u g a r d e r i v a t i v e s used i n the p r e p a r a t i o n o f p o l y o l s are sucrose, s o r b i t o l , a-methyl g l u c o s i d e and dextrose although other d i - and monosaccharides a n d d e r i v a t i v e s t h e r e o f have been employed i n s m a l l e r q u a n t i t i e s . Due t o t h e i r r e l a t i v e l y high f u n c t i o n a l i t y (4-8), polyols derived from these i n i t i a t o r s f i n d a p p l i c a t i o n s p r i m a r i l y i n the manufacture o f r i g i d foams. P o l y o l s based on a-methyl g l u c o s i d e were phased out o f the market a l m o s t t h r e e y e a r s a g o when CPC I n t e r n a t i o n a l , t h e m a j o r s u p p l i e r o f these p o l y o l s , d i s c o n t i n u e d t h e i r manufacture. I t i s e s t i m a t e d t h a t about one t h i r d o f t h e r i g i d u r e t h a n e foam p o l y o l s a r e b a s e d on s u c r o s e a n d s o r b i t o l {25) . Many p r o c e d u r e s h a v e b e e n d e v e l o p e d f o r t h e manuf a c t u r e o f p o l y e t h e r p o l y o l s b a s e d o n t h e a b o v e monoa n d d i s a c c h a r i d e s a s w e l l a s some o f t h e i r d e r i v a t i v e s such as the c o r r e s p o n d i n g p o l y h y d r i c a l c o h o l s (26-44). S i n c e the o x y p r o p y l a t i o n o f s o l i d i n i t i a t o r s , such as sucrose and other s o l i d p o l y h y d r i c a l c o h o l s p a r t i c u l a r l y f o r low adducts o f p r o p y l e n e o x i d e ( h i g h hydroxy1 number), leads t o the f o r m a t i o n o f p o l y e t h e r p o l y o l s h a v i n q v e r y h i g h v i s c o s i t i e s ( a s h i g h a s >1,000,000 c p s a t 2 5 C ) , a number o f c o i n i t i a t o r s a r e b e i n g u s e d t o reduce the v i s c o s i t y and t o impart other d e s i r a b l e prop e r t i e s , e.g. r e d u c e d f r i a b i l i t y , l o w e r combustion, etc. These i n c l u d e the u s e o f w a t e r (26-29), p o l y o l s such as g l y c e r o l (30-32), s o r b i t o l (33), alkanolamines s u c h a s t r i e t h a n o l a m i n e (3_i'3_5) a n d 3Tamines s u c h a s ethylenediamine (36). The p r e s e n c e o f w a t e r i n a n y s i g n i f i c a n t a m o u n t l o w e r s t h e f u n c t i o n a l i t y , i . e . , t h e number o f h y d r o x y l groups i n the r e s u l t i n g product, because the p o l y e t h e r d e r i v e d from the r e a c t i o n o f water w i t h propylene oxide h a s a f u n c t i o n a l i t y o f 2, t h u s r e d u c i n g t h e a v e r a g e f u n c t i o n a l i t y o f the oxypropylated p o l y e t h e r p o l y o l . H i g h f u n c t i o n a l i t y i s d e s i r a b l e f o r good d i m e n s i o n a l s t a b i l i t y s i n c e i t h a s b e e n shown t h a t d i m e n s i o n a l s t a b i l i t y increases with increased functionality of the Ö

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

244

SUCROCHEMISTRY

polyether. Therefore, polyols with a functionality of 3 o r g r e a t e r and amine-based p o l y o l s a r e used w i d e l y i n t h e p r e p a r a t i o n o f l o w v i s c o s i t y p o l y o l s i m p a r t i n g good d i m e n s i o n a l s t a b i l i t y t o t h e r e s u l t i n g foams. Phenol formaldehyde condensation products (hydroxy1-containing p h e n o l i c r e s i n i n t e r m e d i a t e s ) a l s o may s e r v e a s c o i n i t i a t o r s w i t h sucrose i n the manufacture o f polyether p o l y o l s f o r r i g i d u r e t h a n e f o a m s (39) . As has p r e v i o u s l y been p o i n t e d o u t , w h i l e propylene adducts o f p o l y o l i n i t i a t o r s generally are preferred, combinations o f o x y e t h y l e n e a n d o x y p r o p y l e n e a d d u c t s h a v e b e e n emp l o y e d , e s p e c i a l l y w i t h sucrose as i n i t i a t o r (23, 37, 38) . I n a d d i t i o n t o p o l y o l s d e r i v e d f r o m mono- o r d i saccharides or t h e i r d e r i v a t i v e s , polyether polyols a l s o have been p r e p a r e d from s t a r c h - d e r i v e d g l u c o s i d e s . They g e n e r a l l y a r e p r e p a r e d by t h e t r a n s g l y c o s y l a t i o n of s t a r c h w i t h p o l y o l s such as g l y c e r o l o r ethylene g l y c o l i n t h e p r e s e n c e o f an a c i d (45-49) t o y i e l d a m i x t u r e o f g l u c o s i d e s a s shown i n F i g u r e 2. The r e s u l t i n g glucoside mixture then reacts f u r t h e r with propylene oxide t o y i e l d the corresponding polyethers. D i f f e r e n t t y p e s o f p o l y o l s may b e u s e d i n t h e t r a n s g l y c o s y l a t i o n r e a c t i o n as w e l l as g l y c o l e t h e r s o f t h e g e n e r a l f o r m u l a ROCH CH OH ( 4 7 ) . In a d d i t i o n t o c o i n i t i a t i o n o f p o l y o l s , blends o f p o l y o l s a r e b e i n g employed t o i m p r o v e c e r t a i n foam 2

2

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

17.

FRISCH

Sugars in Urethanes

A N D KRESTA

245

p r o p e r t i e s such as f r i a b i l i t y and flame r e s i s t a n c e . For instance, sucrose and sorbitol-based p o l y e t h e r p o l y o l s f r e q u e n t l y a r e b l e n d e d w i t h t e r t i a r y aminec o n t a i n i n g p o l y o l s (e.g. oxypropylene adducts o f ethylenediamine o r d i e t h y l e n e t r i a m i n e ) t o reduce t h e f r i a b i l i t y o f t h e r e s u l t i n g foams. A t t h e same t i m e , t h e p r e s e n c e o f t h e t e r t i a r y n i t r o g e n atom i n t h e amine-containing polyols hasa c a t a l y t i c effect i n promoting f a s t e r r e a c t i o n r a t e s , hence reduces t h e amount o f e x t r a n e o u s c a t a l y s t ( s ) r e q u i r e d . In addit i o n , l o w e r amounts o f f l a m e r e t a r d a n t p o l y o l s o r a d d i t i v e s a r e r e q u i r e d t o a t t a i n a c e r t a i n degree o f l o w c o m b u s t i o n i n t h e f o a m d u e t o t h e w e l l known s y n e r g i s m between n i t r o g e n a n d p h o s p h o r u s o r (and) h a l o g e n s . Blending o f sugar-based p o l y o l s w i t h flame r e t a r d a n t p o l y o l s o r a d d i t i v e s a l s o i s q u i t e common. Cert a i n flame r e t a r d a n t a d d i t i v e s such as t r i s - ( c h l o r o ethyl) phosphate a l s o serve as a v i s c o s i t y r e d u c i n g agent a l t h o u g h t h e a d d i t i o n o f g r e a t e r amounts o f t h i s p h o s p h a t e may a f f e c t a d v e r s e l y c e r t a i n f o a m p r o p e r t i e s , e.g. humid a g i n g c h a r a c t e r i s t i c s . Many f l a m e - r e t a r d a n t p o l y o l s b a s e d o n s u g a r s a n d s u g a r d e r i v a t i v e s have b e e n p r e p a r e d , most o f them c o n t a i n i n g phosphorus, halogens, o r a combination o f these elements (17, 50-59). An example o f a f l a m e retardant sugar-based p o l y o l c o n t a i n i n g o n l y halogens a r e a d d u c t s o f t r i c h l o r o b u t y l e n e o x i d e (TCBO) t o o x y e t h y l a t e d s u c r o s e (r7). T h e p r e p a r a t i o n o f t h i s TCBOc o n t a i n i n g p o l y o l i s shown s c h e m a t i c a l l y b e l o w :

R-OH + n C l C-CH -CH-CH 9

Initiator

TCBO

Catalyst

TCBO-Polyol

Other h a l o g e n - c o n t a i n i n g sugar based p o l y o l s i n c l u d e chlorinated o r brominated a l l y l glucoside polyethers w h i c h have been r e p o r t e d t o y i e l d foams o f l o w combusti b i l i t y and good r e s i s t a n c e t o d r y and humid a g i n g ( 5 0 51). Hydroxyl-containingtetrabromophthalic esters Tby r e a c t i o n o f t e t r a b r o m o p h t h a l i c a n h y d r i d e w i t h a n excess o f a g l y c o l o r another p o l y h y d r i c a l c o h o l , e.g. s o r b i t o l ) which a r e t h e n p r o p o x y l a t e d , have been used i n t h e p r e p a r a t i o n o f f l a m e r e t a r d a n t u r e t h a n e foams (60). However, more e f f e c t i v e f l a m e - r e t a r d a n t p o l y o l s were o b t a i n e d b y t h e c o m b i n a t i o n o f t e t r a b r o m o p h t h a l i c anhydride, oxypropylated sucrose, phosphoric a c i d and propylene oxide(61).

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

246

SUCROCHEMISTRY

A number o f s u g a r - b a s e d p o l y o l s ( e . g . d e r i v e d f r o m sucrose, a-methyl g l u c o s i d e , d e x t r o s e , s o r b i t o l , e t c . ) c o n t a i n i n g phosphorus i n t h e form o f phosphate, phosp h i t e o r phosphonate l i n k a g e s have been r e p o r t e d f o r use i n f l a m e - r e t a r d a n t , r i g i d u r e t h a n e foams ( 5 2 - 5 9 ) . Recent r e v i e w s on f l a m e - r e t a r d a n t u r e t h a n e s i n c l u d e t h o s e o f P a p a (62) a n d F r i s c h a n d R e e g e n (6_3) . The e f f e c t s o f c h e m i c a l s t r u c t u r e o f p o l y e t h e r p o l y o l s f o r r i g i d foams and o f d i - and p o l y i s o c y a n a t e s on t h e p h y s i c a l p r o p e r t i e s o f t h e r e s u l t i n g u r e t h a n e p o l y m e r s have b e e n d e s c r i b e d b y a number o f a u t h o r s (64-67) . D a r r , e t a l (100,000 22,500 200,000 30,000 30,000-40,000

0 0 0 0 0 16.4 U2

14.8 123 50.0

* Not otherwise identified by manufacturer.

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

TYPE aliphatic aliphatic aliphatic aliphatic aliphatic heterocyclic heterocyclic heterocyclic heterocyclic aromatic

17. FRISCH AND KRESTA

Sugars in Urethanes

247

T a b l e I V . VICAT SOFTENING POINTS OF HIGHLY CROSSLINKED URETHANE SOLID POLYMERS (SOFTENING POINTS, °C.) RESINS ALI PH ATIC Isocyanate

3(150)* 4(125)

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

HDI TDI MDI-2 MDI-2S MDI-3

22 79 95 105 110

35 94 103 120 130

4(150)

6(125)

6(150)

4(125)

60 136 155 160 170

45 96 116 124 122

80 160 178 150 154

23 75 99 100 108

AROMATIC

HETEROCYCLIC 4(150) 63 126 140 150 160

8(125)

8(150)

3(150)

63 130 154 165 150

52 112 127 133 150

90 168 >200



170

(a) Numbers in parentheses indicate equivalent weights.

T a b l e V. 1975 U. S. RIGID FOAM MARKET ( M i l l i o n s o f Pounds)

Construction Tanks and P i p e Appliances Transportation Furniture Marine F l o t a t i o n Packaging Miscellaneous

Pounds 133 44 70 36 20 10 12 15 340

% 39.1 12.9 20.6 10.6 5.9 2.9 3.5 4.4 100.0

mensional s t a b i l i t y (assuming t h a t t h e e q u i v a l e n t w e i g h t i s t h e same) (65) . The c o m p r e s s i v e s t r e n g t h o f the foams u s u a l l y t e n d s t o i n c r e a s e w i t h i n c r e a s e d f u n c t i o n a l i t y w h i l e t h e t e n s i l e s t r e n g t h and e l o n g a t i o n tend t o decrease. A breakdown o f t h e r i g i d u r e t h a n e foam m a r k e t s f o r 1975 i s g i v e n i n T a b l e V (3)• I t c a n be seen r e a d i l y t h a t t h e c o n s t r u c t i o n market r e p r e s e n t s by f a r t h e l a r g e s t segment o f t h e r i g i d foam m a r k e t , A more r e c e n t u p d a t e o f t h e s i z e o f t h e r i g i d foam m a r k e t s i n c o n s t r u c t i o n r a n g e d f r o m 1 4 5 m i l l i o n p o u n d s (1) t o 176 m i l l i o n pounds (£8). Mobay C h e m i c a l C o r p o r a t i o n m a r k e t i n g r e p r e s e n t a t i v e s e s t i m a t e d t h a t 975 m i l l i o n b o a r d f e e t (209 m i l l i o n pounds) o f u r e t h a n e foam i n s u l a t i o n w i l l be u s e d by t h e c o n s t r u c t i o n i n d u s t r y i n 1976, w h i c h r e p r e s e n t s a 19 p e r c e n t i n c r e a s e o v e r 1 9 7 5 ' s 818 m i l l i o n b o a r d f e e t ( 1 7 6 m i l l i o n p o u n d s ) (6_8) . A summary o f Mobay

American Chemical Society Library

1155 16th St. N.Hickson, W. J.; In Sucrochemistry; ACS SymposiumWashington, Series; AmericanD.Chemical Society: Washington, DC, 1977. C. 20031

SUCROCHEMISTRY

248

Table V I . Summary o f Mobay E s t i m a t e s o f U r e t h a n e Foam C o n s u m p t i o n i n C o n s t r u c t i o n Market ( a l l f i g u r e s a r e i n m i l l i o n s ) 1975

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

Board

Feet

1976 Pounds

Board

Feet

Pounds

% Change

Pour

144

30

192

40

+33

Spray

159

37

184

43

+16

Board

339

65

407

78

+20

Pipe

60

15

40

10

-33

Tank

116

29

152

38

+31

Total:

818

176

975

209

+19

e s t i m a t e s o f t h e r i g i d u r e t h a n e foam m a r k e t i n c o n s t r u c t i o n , a c c o r d i n g t o t h e f i v e forms i n which uret h a n e i n s u l a t i o n i s m o s t f r e q u e n t l y p r o d u c e d , i s shown i n T a b l e V I (£8). The l a r g e s t c a t e g o r y o f u r e t h a n e i n s u l a t i o n i n 1976 w i l l b e b o a r d s t o c k , u s e d m a i n l y f o r r o o f and p e r i m e t e r i n s u l a t i o n . Poured-in-place foam i s employed most f r e q u e n t l y i n f a c t o r y f a b r i c a t e d p a n e l s and f o r o n - s i t e i n s u l a t i o n o f c a v i t y w a l l s and i s e x p e c t e d t o i n c r e a s e 33 p e r c e n t o v e r 1 9 7 5 p r o v i d e d that the industry can develop metal o r other s u i t a b l e m a t e r i a l - f a c e d u r e t h a n e foam p a n e l s w i t h a c c e p t a b l e f l a m e s p r e a d a n d smoke e v o l u t i o n ( 6 8 ) . Sprayed-on u r e t h a n e foam i s b e i n g used f o r r o o f i n s u l a t i o n and f o r the i n s u l a t i o n of perimeters, precast concrete w a l l s and o t h e r i r r e g u l a r s u r f a c e s . L a r g e g a i n s i n 1976 a r e p r e d i c t e d f o r t a n k i n s u l a t i o n — 3 1 p e r c e n t (60), w h i c h i s p r i m a r i l y a p p l i e d b y means o f s p r a y i n g - o n a t the j o b s i t e . Pipe i n s u l a t i o n i s the only category t h a t has been f o r e c a s t t o d e c l i n e i n 1976, a drop o f 33 p e r c e n t (68) , d u e m a i n l y t o t h e n e a r c o m p l e t i o n o f the A l a s k a p i p e l i n e . The p r i n c i p a l r e a s o n f o r t h e g r o w i n g a c c e p t a n c e and p o p u l a r i t y o f r i g i d u r e t h a n e foams i s t h e t h e r m a l c o n d u c t i v i t y , w h i c h i s l o w e s t among c o m m e r c i a l l y u s e d i n s u l a t i n g m a t e r i a l s , r e p r e s e n t i n g s i g n i f i c a n t energy savings. A c o m p a r i s o n o f t h e e f f i c i e n c y o f common tank i n s u l a t i n g m a t e r i a l s i s given i n Table V I I ( 6 9 ) .

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

*

Table V I I .



0.14 0.22 0.28 0.28 0.30 0.30 0.35 0.35 10.0

K Factor* or Thermal C o n d u c t i v i t y

7.1 4.5 3.6 3.6 3.3 3.3 2.9 2.9 0.1 Negligible

R Factor*, 1-in. Thicknesses



1.0 1.6 2.0 2.0 2.1 2.1 2.5 2.5 71.0

T h i c k n e s s i n Inches Required f o r E q u i v a l e n t I n s u l a t i n g Value

EFFICIENCY OF COMMON TANK INSULATING MATERIALS

The l o w e r t h e K f a c t o r and t h e h i g h e r t h e R, t h e g r e a t e r e f f e c t i v e n e s s as an i n s u l a t i n g material. The R f a c t o r , which i s t h e r e c i p r o c a l o f t h e K f a c t o r , i s a measure o f t h e r e s i s t a n c e o f a " m a t e r i a l t o t r a n s m i s s i o n o f h e a t and c o l d .

Urethane Foam Glass F i b e r S t y r e n e Foam S t y r e n e Board M i n e r a l Wool R e g r a n u l a t e d Cork Calcium S i l i c a t e Foam G l a s s Asphaltic Paint Rust I n h i b i t i n g Paint

Material

COMPARATIVE

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

SUCROCHEMISTRY

250 Table

VIII,

Densitv lb per cu ft

Material

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

BUOYANCY

Approx. pounds o f s u p p o r t i n water f o r each c u b i c f o o t

RIGID URETHANE FOAM

2

60

Polystyrene

1.5

60

B a l s a Wood

6

56

Cork

7

55

P i n e Wood

28

34

Oak

48

14

O t h e r i m p o r t a n t r i g i d foam a p p l i c a t i o n s a r e i n appliances, t r a n s p o r t a t i o n , f u r n i t u r e , packaging and marine and f l o t a t i o n . M a j o r u s a g e s f o r r i g i d foam i n a p p l i a n c e s i n c l u d e i n s u l a t i o n o f f r e e z e r s and r e f r i g e r a t o r s , and i n t r a n s p o r t a t i o n , i n s u l a t i o n o f r e f r i g e r a t e d r a i l r o a d c a r s and t r a i l e r t r u c k s . R i g i d u r e t h a n e foam i s u s e d f o r m a r i n e s a l v a g e a n d f o r i n s u l a t i o n o f ships and o l d barges i n order t o extend their lives. A comparison o f the buoyancy o f r i g i d u r e t h a n e f o a m w i t h o t h e r m a t e r i a l s i s shown i n T a b l e V I I I (69) . O t h e r g r o w t h a r e a s among r i g i d f o a m s a r e i n the f u r n i t u r e i n d u s t r y ( h i g h d e n s i t y foams) a n d i n p a c k a g i n g where i n most c a s e s v e r y low d e n s i t y foams (0.5 - 1.0 l b / c u f t ) a r e b e i n g u s e d . More r e c e n t l y , r i g i d u r e t h a n e foams have been u t i l i z e d i n t h e manufact u r e o f s t r u c t u r a l f o a m s {3), a n d t h i s m a r k e t p r o m i s e s to be a major f a c t o r i n the f u t u r e . Dr. I r a n i , E x e c u t i v e V i c e P r e s i d e n t f o r the Chemic a l s Group o f O l i n C o r p o r a t i o n , p r e d i c t e d t h a t t h e p r o d u c t i o n o f r i g i d u r e t h a n e foam i n t h e n e x t t e n y e a r s w o u l d i n c r e a s e t o 1.3 b i l l i o n p o u n d s (7£)with c o n s t r u c t i o n b e i n g t h e most i m p o r t a n t f a c t o r i n t h i s growth. A composite f o r the t o t a l urethane i n d u s t r y p r o j e c t i o n b y Mobay m a r k e t r e s e a r c h e r s t h r o u g h 1980 i s d e p i c t e d i n F i g u r e 3 (3). Sugar o r sugar d e r i v a t i v e - b a s e d p o l y o l s have found the w i d e s t a p p l i c a t i o n s i n r i g i d u r e t h a n e foams f o r various industries. However, h i g h e r e q u i v a l e n t w e i g h t p o l y o l s (low h y d r o x y l numbers) o f t h e s e s u g a r o r s u g a r

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

17.

FRISCH A N D KRESTA

251

Sugars in Urethanes POLYURETHANE PROJECTION 1976 - 1980 (Billions of Pounds) 2.369 2.170 1.983

2.0 —

1.325

SS

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

1.67b

1.5

H

î.o H

0.5

1976

1977

1978

1979

1980

RIGID URETHANE FOAM

MICROCELLULAR

FLEXIBLE URETHANE FOAM NON-CELLULAR Figure 3.

d e r i v a t i v e s may b e e m p l o y e d i n f l e x i b l e o r s e m i r i g i d f o a m s , p a r t i c u l a r l y when b l e n d e d w i t h conventional f l e x i b l e foam p o l y o l s (e.g. based on g l y c e r o l o r t r i me t h y l o l p r o p a n e ) . I n a d d i t i o n , urethane resins based on d e x t r o s e and m a l t o s e p o l y e t h e r p o l y o l s have been found u s e f u l as r e s i n b i n d e r s f o r f o u n d r y u s e (71) . Other uses include s o l i d urethane p l a s t i c s (72) a n d f o a m c o a t i n g s (730 . I n a d d i t i o n , RIM ( r e a c t i o n i n j e c t i o n molding) technology could u t i l i z e sugar polyols f o r the molding o f s o l i d p l a s t i c s , elastoplast i c s a n d r i g i d a n d s e m i r i g i d foam p r o d u c t s . P o l y e t h e r p o l y o l s f o r r i g i d u r e t h a n e foams c u r r e n t l y a r e ( A u g u s t , 1 9 7 6 ) p r i c e d a t 37 - 45 c e n t s / p o u n d w h i l e s p e c i a l , f l a m e - r e t a r d a n t p o l y o l s command p r e m i u m p r i c e s

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

SUCROCHEMISTRY

252

o f 70 c e n t s / p o u n d o r m o r e . P o l y e t h e r s based ons u c r o s e and s o r b i t o l a r e i n t h e lower p r i c e range o f t h e r i g i d foam p o l y o l s ( 3 7 - 4 0 c e n t s / p o u n d ) .

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

Conclusions Sugar o r sugar d e r i v a t i v e s a r e p l a y i n g i m p o r t a n t r o l e s i n t h e manufacture o f p o l y o l s f o r urethane polymers, i n p a r t i c u l a r f o r u s e i n r i g i d u r e t h a n e foams. In view o f t h e a n t i c i p a t e d growth o f t h i s market ( a v e r a g e g r o w t h o f 12 p e r c e n t p e r y e a r ) a n d t h e c o m b i n a t i o n o f t h e r e l a t i v e l y low costs o f sugar-based polyo l s and e x c e l l e n t p h y s i c a l p r o p e r t i e s o f t h e r e s u l t i n g urethane polymers, sugar and sugar d e r i v a t i v e s a r e expected t o enjoy c o n t i n u e d f u t u r e growth.

Abstract Urethanes have grown at an astounding pace in the last twenty years in the United States and worldwide. The total urethane production in the U.S.A. in 1956 amounted only to 8 million lb and reached 1.3 billion lb in 1975. The principal components of urethanes are hydroxyl-terminated polyethers and polyesters referred to briefly as polyols- and d i - and polyisocyanates. Flexible and rigid foams make up the bulk of the urethane market, 1.4 billion lb (1975) and it is in the foam area that sugars and sugar derivatives have found their widest acceptance, particularly in the rigid foam field. The most commonly used sugar derivatives are propylene oxide adducts of sucrose, sorbitol, starch-derived glucosides, dextrose, etc. Frequently these polyols are modified either by blending with other polyols or employing water, polyhydric alcohols, amines or aminoalcohols as coinitiators prior to propoxylation. This is being done in order to reduce the viscosity of the polyol or to impart certain desirable properties, such as reduced friability, to the resulting foams. A comparison is made of sugar or sugar derivative-based polyols with other competitive products as far as price structure and performance characteristics are concerned. Some present uses and future potential of sugars in the urethane foam market are discussed. Literature Cited 1. 2.

Upjohn Polymer Chemicals Division "Urethane '76, Market Review and Outlook". Chemical Week, (1976), 118, (15), 32.

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

17. FRISCH AND KRESTA Sugars in Urethanes 253 3. Mobay Chemical Corp., "Urethane Market Report 1975". 4. Saunders, J.H., and Frisch, K.C., "Polyurethanes" Part I, pp. 34-35., Interscience, New York (1962). 5. Frisch, K.C., "Fundamental Chemistry and Catalysis of Polyurethanes" in "Polyurethane Technology" edited by P.F. Bruins, Interscience-Wiley, New York (1969). 6. Pizzini, L.C., and Patton, J.T., "1,2-Epoxide Polymers" in "Encyclopedia of Polymer Science and Technology" edited by H.F. Mark, N.G. Gaylord and N.M. Bikales, Vol. 6, p. 145, Interscience, New York, (1967). 7. Gee, G., Higginson, W.C.E., and Merrall, G.T., J.Chem. Soc., (1959), 1345. 8. Ishii, Y . , and Sakai, S., "1,2-Epoxides" in "RingOpening Polymerization", edited by K.C. Frisch and S.L. Reegen, pp. 13-100, Marcel Dekker, Inc., New York, (1969). 9. Price, C.C., "Polyethers" in "Polyethers", Chapter 1, edited by E . J . Vandenberg, ACS Symposium Series 6, Am. Chem. Soc.,Washington D.C.(1975). 10. Lundsted, L.G., and Schmolka, I.R., "The Synthesis and Properties of Block Copolymer Polyol Surfactants" in"Block and Graft Copolymerization", Vol. 2, edited by R.J. Ceresa, John Wiley & Sons, New York (1976). 11. Anderson, A.W., U.S. Pat. 2,902,478 (to Dow Chemical Co.), (1959). 12. Anderson, A.W., U.S. Pat. 2,927,918 (to Dow Chemical Co.) (1960). 13. Patton, J.T., J r . , and Pizzini, L.C., U.S. Pat. 3,454,646 (to Wyandotte Chemicals Corp.) (1969). 14. Davis, P. U.S. Patent 3,251,903 (to Wyandotte Chemicals Corp.) (1966). 15. Davis, P., U.S. patent 3,254,057, (to Wyandotte Chemicals Corp.). 16. Vogt, H.C., and Davis, P., Polymer Eng. and Science, (1971), 11, 312. 17. Pitts, J . J., Fuzesi, S., and Andrews, W.R., J . Cell. Plastics, (1972), 8, (5), 274. 18. Bruson, H.A., Rose, and Rose, J.S., U.S. Pat. 3,244,754 (to Olin Mathieson Chemical Corp.) (1966). 19. Fife, H.R., and Roberts, F.H., U.S. Pat. 2,448,664 (to Carbide and Carbon Chemical Corp.) (1948). 20. Dyer, E . , Taylor, H.A., Mason, S.J. and Sampson, J., J . Am. Chem. Soc., (1949), 71, 4106.

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

254

SUCROCHEMISTRY

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

21.

Wissman, H.G., Rand, L . , and Frisch, K.C. J.Appl. Polymer S c i . , (1964), 8, 2971. 22. Rand, L . , Thir, B., Reegen, S.L., and Frisch, K.C. J. Appl. Polymer S c i . , (1965), 9, 1787. 23. Knodel, L. R., U.S. Pat. 3,865,806 (to Dow Chemical Co.) (1975). 24. Nawata, T.,Kresta, J . E . , and Frisch, K.C.,J. Cell. Plastics, (1975), 11, (5), 267. 25. Private Communication. 26. Wismer, M. and Foote, J . F . , U.S. Pat. 3,085,085 (to PPG Industries) (1963). 27. Patton, J.T., J r . , Schulz, W.F., U.S. Pat. 3,346, 557 (to Wyandotte Chemicals Corp.) (1967). 28. Ulyatt, J.M., U.S. Pat. 3,357,970 (to Chas. Pfizer & Co.) (1967). 29. Brandner, J.D., U.S. Pat. 3,359,217 (to Atlas Chemical Industries) (1967). 30. Degginger, E.R., and Booth, R.E., U.S. Pat. 3,442, 888 (to Allied Chemical Corp.) (1969). 31. Katsunuma, H., and Ishizuka, Y . , Jap. Pat. 71-27815 (to Asahi Electro-Chemical Co.) (1971). 32. Kaiser, D.W., and Fuzesi, S., U.S. Pat. 3,167,538 (to Olin Mathieson Chemical Corp.) (1965). 33. Booth, R.E., U.S. Pat. 3,369,014 (to Allied Chemical Corp.) (1968). 34. Aitken, R.R., and Marklow, R . J . , U.S. Pat. 3,446, 848 (to Imperial Chemical Industries Ltd.) (1969). 35. Booth, R.E., and Degginger, E.R., U.S. Pat. 3,424, 700 (to Allied Chemical Corp.) (1969). 36. Fijal, W.R., U.S. Pat. 3,640,997(to BASF-Wyandotte Corp.) (1972). 37. Wismer, M., Lebras, L.R., Peffer, J.R., and Foote, J . F . , U.S. Pat. 3,153,002 (to Pittsburgh Plate Glass Co.) (1964). 38. Wismer, M., Lebras, L.R., Peffer, J.R., and Foote, J.F., U.S. Pat. 3,222,357 (to Pittsburgh Plate Glass Co.) (1965). 39. Wismer, M., Lebras, L.R., and Foote, J.F., U.S. Pat. 3,265,641 (to Pittsburgh Plate Glass Co.) (1966). 40. Wilson, J . E . , Truax, H.M., and Dunn, M.S.,J. Appl. Polymer Sci. (1960), 3, (9), 343. 41. Gibbons, J.P., and WondoTowski, L . , U.S. Pat. 3,816, 395 (to CPC International) (1974). 42. Hostettler, F . , Barnes,R.K., and McLaughlin, R.W., U.S. Pat. 3,073,788 (to Union Carbide Corp.) (1963). 43. Yotsuzuka, M., and Fujima, S., Jap. Pat. 72-41437 (to Takeda Chemical Industries, Ltd.) (1972).

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

17. FRISCH AND KRESTA

Sugars in Urethanes

44. Winquist, A.D., J r . , and Theiling, L . F . , J r . , U.S. Pat. 3,317, 508 (to Union Carbide Corp.)(1964). 45. Fuzesi, S., and Klahs, L.J., U.S. Pat. 3,402,170 (to Olin Mathieson Chemical Corp.) (1968). 46. Othey, F.H., and Mehltretter, C.L., U.S. Pat. 3,165,508 (to United States of America as represented by the Secretary of Agriculture) (1965). 47. Moss, P.H., and Cuscurida, M., U.S. Pat. 3,721,665 (to Jefferson Chemical Co.) (1973). 48. Othey, F.H., Bennett, F . L . , Lagoren, B.L., and Mehltretter, C.L., Ind. Eng. Chem. Prod. Res. Develop. (1965), 4, (224), 228. 49. Leitheiser, R.H., Impola, C.N., Reid, R . J . , and Othey, F.H., Ind. Eng. Chem. Prod. Res. Develop. (1966), 5, 276. 50. Othey, F.H., Westhoff, R.P., and Mehltretter, C.L., J.Cell. Plastics, (1972), 8, (3), 156. 51. Wilham, C.A., Othey, F.H., Mehltretter, C.L., and Russell, C.L., Ind. Eng. Chem. Prod. Res. Develop., (1975), 14, 189. 52. Heckles, J.S., and QuTnn, E . J . , U.S. Pat. 3,764, 570 (to Armstrong Cork Co.) (1973). 53. Anderson, J.J., U.S. Pat. 3,251,785 (to Socony Mobil Oil Co.) (1966). 54. Friedman, L., U.S. Pat. 3,261,814 (to Union Carbide Corp.) 1966). 55. Lutz, M.R., U.S. Pat. 3,251,828 (to FMC Corp.) (1966). 56. Lankro Chemicals, Brit. Pat. 1,105,953 (1968). 57. Patton, J.T., J r . , and Hartman, R . J . , U.S. Pat. 3,530,205 (to Wyandotte Chemicals Corp.)(1970). 58. Quinn, E . J . , Ind. Eng. Chem. Prod. Res. Develop., (1970), 9, (1), 48. 59. Birum, G.H., U.S. Pat. 3,317,510 (to Monsanto Co.) (1967). 60. Pape, P.G., Sanger, J . E . , and Nametz, R.C., J.Cell Plastics, (1968), 4, (11), 438. 61. Austin, A.L., Pizzini, L.C., and Levis, J r . , W.W., U.S. Pat. 3,639,541 (to BASF Wyandotte Corp.) (1972). 62. Papa, A.J., "Flame-Retardant Polyurethanes" in "Flame Retardancy of Polymeric Materials", Vol. 3, edited by W.C. Kuryla and A.J. Papa, Marcel Dekker, New York (1975). 63. Frisch, K.C., and Reegen, S.L., "Relationship Between Chemical Structure and Flammability Resistance of Polyurethanes" in "Flame-Retardant Polymeric Materials" edited by M. Lewin, S.M. Atlas and E.M. Pearce, Plenum Press,

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF MELBOURNE on October 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch017

256

SUCROCHEMISTRY

New York (1975). 64. Darr, W.C., Gemeinhardt, P.G., and Saunders, J.H. Ind. Eng. Chem. Prod. Res. Develop. (1963), 2, 194. 65. Frisch, K.C., J . Cell. Plastics, (1965), 1, (2), 321. 66. Reegen, S.L., and Frisch, K.C., J . Polymer Sci. (1967), 16, 2733. 67. Saunders, J . H . , and Frisch, K.C., "Polyurethanes" Part II, Interscience, New York (1964). 68. Urethane Plastics and Products(1976), 6, (6), 1. 69. "U.S. Foamed Plastics Markets and Directory 1976", Technomic Publishing Co., Westport, Conn. 70. Urethane Plastics and Products, (1976), 6, (5), 3. 71. Molotsky, H.M., U.S. Pat. 3,743,621 (to CPC International) (1973). 72. Deanin, R.D., Ellis, E . J . , Briere, T.A., and Dunn, M.R., SPE Journal, (1972), 28, (4), 56. 73. Karashi, A . , and Kitakawa, T., Jap. Pat. 71-01710 (to Takeda Chemical Industries) (1971). Biographic Notes Professor Kurt C. Frisch, Ph.D., Prof, of Polymer Eng. and Chem. and Dir. of Polymer Inst. Educated at Univ. of Vienna, Univ. of Brussels and Columbia Univ. Industrial experience at General Electric Co., E.F. Houghton & Co. and Wyandotte Chemical Corp. Joined Univ. of Detroit first in Chem. Eng. Dept. and then at the Polymer Inst. Some 100 publications and books and 35 patents in polymers. PoPolymer Inst., Coll. of Eng., Univ. of Detroit, 4001 West McNichols Rd., Detroit, Michigan, 48221 U.S.A.

In Sucrochemistry; Hickson, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.