Analysis of Petroleum for Trace Metals

X - r a y fluorescence (ion exchange) variable blanks were found (see. Contamination, p. 14). .... kerosene; otherwise the symbols are the same as in ...
1 downloads 9 Views 586KB Size
8

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0156.ch008

Chromium Chromium has been found i n surveys of metals i n crude oils, although its concentration rarely exceeds 1 p p m (μg/g) (1, 2, 3). In its native form, chromium is not particularly volatile and may be concentrated i n the bottom fractions during refining (2). Chromium may also enter petroleum matrices as antioxidants added to jet fuels, as corrosion prod­ ucts, or as a wear metal i n used lubricating oils. Although its ultimate fate is unknown, chromium may enter the atmosphere during the com­ bustion of fuels or it may enter natural waterways as part of industrial effluents.

Available Analytical Methods A number of methods exist for the determination of parts-per-billion (ng/g) levels of chromium i n aqueous media (Table 8.I). These are re­ peatedly reviewed as new techniques are introduced (4, 5, 6). Potentially all these techniques could be applied to petroleum samples after matrix destruction, but i n practice, only a few have been utilized. After wet oxidation of a large sample ( > 1 0 0 g ) , 10 to 50 μg of chromium may be determined by a colorimetric procedure w i t h 1,5-diphenylcarbohydrazide after iron, copper, molybdenum, and vanadium are extracted as the cupferrates ( 3 ) . In survey analyses, C r levels as low as 5 ng/g have been measured by optical emission spectroscopy after ashing (2, 3) or directly by neutron activation with extended irradiation and counting times ( 1 ) . Concentrations of chromium above 100 ng/g i n used lubricating oils have been measured directly by flame atomic absorption ( 8 ) ; for lower con­ centrations, heated vaporization atomic absorption (HVAA) has been utilized ( 9 ) . In the Trace Metals Project, two procedures using this latter technique were evaluated for the determination of 10 ng Cr/g i n a variety of petroleum matrices.

Special Analytical

Considerations

B o t h ashing a n d a c i d digestion m a y b e used to mineralize organic m a t r i c e s c o n t a i n i n g c h r o m i u m . A l t h o u g h c h r o m i u m itself is n o t v o l a t i l e , p r e t r e a t m e n t w i t h s u l f u r i c a c i d aids i n d e s t r u c t i o n of t h e h y d r o c a r b o n m a t r i x (10).

I n i n i t i a l a s h i n g studies c a r r i e d o u t b y t h e P r o j e c t , l a r g e 95

Hofstader et al.; Analysis of Petroleum for Trace Metals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.

96

ANALYSIS OF P E T R O L E U M

Table 8.1.

METALS

Existing Techniques for Determining n g / g Levels of Chromium in Aqueous Media Instrumental

Chemical Extraction/colorimetry Catalytic kinetics Chemiluminescence

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0156.ch008

FOR TRACE

Coulometric titrimetry D i f f e r e n t i a l pulse p o l a r o g r a p h y F l a m e atomic absorption (solvent e x t r a c t i o n ) Gas chromatography (electron capture detector) (mass s p e c t r o m e t r y ) Heated vaporization atomic absorption M a s s s p e c t r o m e t r y (direct i n j e c t i o n ) Neutron activation O p t i c a l emission spectroscopy X - r a y fluorescence (ion exchange)

v a r i a b l e b l a n k s w e r e f o u n d (see

Contamination, p. 14).

These blanks

w e r e a t t r i b u t e d to exposed n i c h r o m e h e a t i n g elements, since t h e y c o u l d b e a l m o s t c o m p l e t e l y e l i m i n a t e d b y a s h i n g samples for a m i n i m u m p e r i o d i n a muffle w i t h c o v e r e d elements. Sample

Preparation

T w o p r o c e d u r e s b a s e d o n H V A A h a v e b e e n e v a l u a t e d b y the P r o j e c t . I n one, the s a m p l e is a n a l y z e d d i r e c t l y after d i l u t i o n w i t h t e t r a h y d r o f u r a n . I n t h e other, a 0.5-g s a m p l e is c h a r r e d w i t h 10 d r o p s of s u l f u r i c a c i d i n a 3 0 - m l V y c o r c r u c i b l e a n d t r e a t e d at 5 4 0 ° C for t h e m i n i m u m t i m e r e q u i r e d to r e m o v e carbonaceous

deposits.

s u l f u r i c a c i d p r i o r to measurement.

T h e a s h is t h e n s o l u b i l i z e d i n I N A reagent b l a n k is c a r r i e d t h r o u g h

t h e p r o c e d u r e f o r e a c h set of samples.

T h e analyses are c a r r i e d o u t

p r o m p t l y after p r e p a r a t i o n so that loss of c h r o m i u m f r o m aqueous s o l u t i o n b y a d s o r p t i o n o n the w a l l s , w h i c h has b e e n r e p o r t e d i n some cases

(II),

can be avoided. Measurement B e f o r e analyses w e r e c a r r i e d out b y t h e t w o p r o c e d u r e s , the o p t i m u m H V A A parameters were established e m p i r i c a l l y using 2 0 - n g / m l aqueous standards. H V A A measurements f o r c h r o m i u m w e r e m a d e w i t h a V a r i a n T e c h t r o n C R A - 6 3 a t o m i z e r ; other t u b e f u r n a c e a t o m i z e r s w h i c h p o s s i b l y c o u l d h a v e b e e n u s e d , w e r e n o t i n v e s t i g a t e d . A l t h o u g h the H V A A r e ­ sponse w a s l i n e a r b e t w e e n 0 - 4 0 0 n g / m l , a w o r k i n g r a n g e o f 0 - 5 0 n g / m l was utilized. T h e detection limit ( S / N =

2 ) w a s c a l c u l a t e d to b e 1 p g .

T h e a b s o r b a n c e of the n e o n 359.4-nm l i n e i n t h e c h r o m i u m h o l l o w c a t h o d e l a m p w a s u s e d to m a k e b a c k g r o u n d corrections.

Hofstader et al.; Analysis of Petroleum for Trace Metals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.

8.

HOFSTADER E T A L .

97

Chromium

C h e m i c a l m a t r i x effects w e r e e n c o u n t e r e d i n the H V A A d e t e r m i n a ­ tion.

W h e n a constant a m o u n t of c h r o m i u m w a s a d d e d t o

different

p e t r o l e u m samples, the a t o m i z a t i o n response v a r i e d c o n s i d e r a b l y that o b t a i n e d i n T H F alone ( T a b l e 8 . I I ) .

from

S i n c e a l m o s t p a r a l l e l effects

w e r e n o t e d after a s h i n g , t h e effect of F e , N i , a n d V w a s s t u d i e d . Excesses of v a n a d i u m h a d a significant effect at levels w h i c h often o c c u r i n c r u d e oils (10 to > 100 p p m ) .

O n c e v a n a d i u m was introduced i n the atomizer,

the c h r o m i u m s i g n a l was consistently s u p p r e s s e d u n t i l the a t o m i z a t i o n f u r n a c e w a s b a k e d at m a x i m u m t e m p e r a t u r e to r e m o v e r e s i d u a l v a n a d i u m . F r o m the d a t a i n T a b l e 8.II i t is a p p a r e n t that c o m p o n e n t s other t h a n v a n a d i u m affect the c h r o m i u m s i g n a l . N o e x p l a n a t i o n has b e e n f o u n d f o r Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0156.ch008

the e n h a n c e m e n t

observed

i n s o m e cases.

S i n c e a l i n e a r response

is

o b t a i n e d after t h e i n i t i a l i n j e c t i o n of a g i v e n s a m p l e s o l u t i o n , t h e m e t h o d of s t a n d a r d a d d i t i o n s c a n b e a p p l i e d to c o m p e n s a t e f o r these c h e m i c a l m a t r i x effects. Recommended

Method

I n the d i r e c t H V A A p r o c e d u r e the s a m p l e is d i l u t e d w i t h t e t r a h y d r o ­ furan.

T h e c o n c e n t r a t i o n of c h r o m i u m is d e t e r m i n e d b y t h e m e t h o d of

s t a n d a r d a d d i t i o n s c o u p l e d w i t h b a c k g r o u n d corrections i f necessary. T h i s p r o c e d u r e has b e e n a p p l i e d to s e v e r a l c r u d e o i l samples, a n d t h e results w e r e c o m p a r e d to those o b t a i n e d b y H V A A ashing (Table 8.III).

after s u l f a t e d

T h e g o o d a g r e e m e n t b e t w e e n t e c h n i q u e s verifies

t h a t n o c h r o m i u m is lost p r i o r to a t o m i z a t i o n i n t h e d i r e c t t e c h n i q u e . F u r t h e r m o r e , i t demonstrates t h a t the c o m b i n a t i o n of s t a n d a r d a d d i t i o n s a n d c o r r e c t i o n for reagent b l a n k a n d b a c k g r o u n d o v e r c o m e s t h e interTable 8.II.

Effect of Matrix on the Determination of Chromium by the Direct H V A A and A s h - H V A A Procedures Δ Α Χ 10 per ng Cr/ml Added 3

A

Direct (THF, 1:1)

Crude/Solvent (Response

"L

Ash (m

5:1)

H SO t

h

Ratio Ratio) Ash

Direct

Reagent B l a n k (THF)

0.99

5.63





Crude A

1.33

7.85

1.34

1.39

Crude Β

1.20

7.07

1.21

1.25

Crude C

0.83

6.04

0.84

1.07

Crude D

0.42

5.57

0.43

0.98

Crude Ε

0.77

6.57

0.78

1.17

Hofstader et al.; Analysis of Petroleum for Trace Metals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.

98

ANALYSIS O F P E T R O L E U M

ferences e n c o u n t e r e d

i n the H V A A

measurement.

FOR TRACE

METALS

T h e sulfated a s h

procedure m a y b e used to obtain reliable data, but the direct technique is s i m p l e r , has s m a l l e r reagent b l a n k s , a n d is less subject t o c o n t a m i n a t i o n . C o n s e q u e n t l y , t h e d i r e c t H V A A p r o c e d u r e , w h i c h has b e e n e v a l u a t e d b y t h e cross-check p r o g r a m , is p r e f e r r e d . T h e p r e c i s i o n o f the d i r e c t p r o c e d u r e w a s e v a l u a t e d for a v a r i e t y o f m a t r i c e s i n t h e i n i t i a t i n g l a b o r a t o r y . A base kerosene, w h i c h c o n t a i n e d n o d e t e c t a b l e c h r o m i u m , w a s s p i k e d w i t h 47.9 n g C r / g as c h r o m i u m n a p h t h e n a t e . T h e other samples c o n t a i n e d n a t i v e c h r o m i u m . T h e results are s h o w n i n F i g u r e 8.1, w h e r e t h e average values are r e p r e s e n t e d b y the points a n d t h e total spread of data b y the brackets.

The

percentages

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0156.ch008

g i v e n are r e l a t i v e s t a n d a r d d e v i a t i o n s , a n d the degrees o f f r e e d o m (η — 1) are g i v e n i n parentheses.

F r o m t h e d a t a s h o w n the o v e r a l l R S D i n t h e

initiating laboratory was 1 7 % .

KEROSENE (Spiked) SHALE OIL

\-+-\

16% (6)

\-+-\

18% (6)

1

#6 FUEL OIL A

CRUDE A

1 · 1 Η

CRUDE Β

1 40

·

|l7%(6)

26% (5)

6.5% (4)

1 80

1 120

1 160

1

200

ngCr/g (see text for explanation of symbols)

Figure 8.1.

Intralaboratory data for determi­ nation of chromium

F o u r samples w e r e a n a l y z e d i n the cross-check p r o g r a m . T h e results o b t a i n e d a t t h e i n i t i a t i n g l a b a n d a t t w o c o o p e r a t i n g laboratories a r e s u m m a r i z e d i n F i g u r e 8.2. laboratory study.

T h e kerosene s a m p l e w a s u s e d i n t h e i n t r a -

T h e a r r o w i n d i c a t e s t h e d e t e c t i o n l i m i t i n t h e base

kerosene; o t h e r w i s e the s y m b o l s are the same as i n F i g u r e 8.1. F o r t h e kerosene a n d the shale o i l , the R S D w a s 2 5 % w h i l e f o r the N o . 6 f u e l o i l i t w a s 1 3 % . S o m e scatter w a s e n c o u n t e r e d w i t h t h e N o . 6 f u e l o i l ; t h i s i s a t t r i b u t e d t o d i f f i c u l t y w i t h b a c k g r o u n d corrections, since b o t h a n e g a t i v e b a s e l i n e a n d t h e b a c k g r o u n d p e a k f o r this h e a v y m a t r i x w e r e i n v o l v e d . H o w e v e r , t h e average v a l u e o b t a i n e d b y the d i r e c t p r o c e d u r e w a s 145

Hofstader et al.; Analysis of Petroleum for Trace Metals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.

8.

HOFSTADER E T A L .

Table 8.III.

99

Chromium

Comparison of Chromium by T w o Procedures Chromium Direct

Sample

Concentration

(ng/g)

Mini-Ash-HVAA

HVAA

Crude A

44, 7 7 , 7 5 , 90, 77, 49

57, 73, 61

Crude Β

50, 56, 58, 59, 54

44, 61

Crude C

38

42,49

Crude D

5 χ d e t e c t i o n l i m i t levels of the m e t a l s , t h e s a m p l e s h o u l d b e f u r t h e r

Hofstader et al.; Analysis of Petroleum for Trace Metals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.

8.

HOFSTADER E T A L .

101

Chromium

d i l u t e d b e f o r e s t a n d a r d a d d i t i o n s . T h i s d i l u t i o n t e c h n i q u e is r e c o m ­ m e n d e d r a t h e r t h a n c h a n g i n g o p e r a t i n g parameters. T h e r e s i d u a l h e a t i n t h e a t o m i z a t i o n t u b e c o n t r i b u t e s to t h e r e p e a t a b i l i t y of s a m p l e signals. T h i s effect m a y b e m i n i m i z e d b y i n j e c t i n g samples o n a fixed s c h e d u l e . F o r t h e m e t h o d d e s c r i b e d h e r e , injections m a d e at 90-sec i n t e r v a l s g i v e good repeatability. ( 3 ) A l i q u o t 5 μ\ of the s a m p l e s o l u t i o n i n t o t h e s y r i n g e , i n i t i a t e the C R A - 6 3 p r o g r a m , a n d i m m e d i a t e l y inject the s a m p l e .

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0156.ch008

( 4 ) R e c o r d the a b s o r b a n c e p e a k h e i g h t ( A ) o b s e r v e d d u r i n g t h e a t o m i z a t i o n step. ( 5 ) R e p e a t Steps 3 a n d 4 t w o m o r e t i m e s ; c a l c u l a t e t h e average p e a k h e i g h t f o r e a c h . I f t h e t h r e e signals are w i t h i n =fc 1 0 % of t h e a v e r a g e , use this v a l u e ( Α) i n the c a l c u l a t i o n ; i f not, r e p e a t the s e q u e n c e of Steps 3 a n d 4 t w o m o r e times a n d use t h e average of t h e five r e a d i n g s . ( 6 ) A d d 5 / J of the c a l i b r a t i o n s t a n d a r d ( e q u i v a l e n t to 25 n g ) t o t h e s a m p l e s o l u t i o n , m i x w e l l , a n d c a r r y o u t Steps 3 - 5 . R e c o r d t h e average p e a k h e i g h t as Αχ. ( 7 ) A d d a s e c o n d 5 μ\ of the c a l i b r a t i o n s t a n d a r d ( 2 5 n g , a t o t a l of 50 n g ) to the s a m p l e s o l u t i o n a n d a g a i n c a r r y o u t Steps 3 - 5 . R e c o r d t h e a v e r a g e p e a k h e i g h t as A . 2

( 8 ) A d d a t h i r d 5 μ\ of the c a l i b r a t i o n s t a n d a r d ( 2 5 n g , a t o t a l of 75 n g ) t o the s a m p l e s o l u t i o n a n d a g a i n c a r r y o u t Steps 3 - 5 . R e c o r d t h e a v e r a g e p e a k h e i g h t as A . 3

( 9 ) Reset w a v e l e n g t h to 359.4 n m a n d inject t h e s a m p l e s o l u t i o n ( S t e p 8 ) to m e a s u r e b a c k g r o u n d . R e c o r d the r e a d i n g as b. Calculation ( 1 ) C a l c u l a t e the c o n c e n t r a t i o n of m e t a l i n the s a m p l e f r o m the first a d d i t i o n as:

n

(2)

g

p

g

C

( 2 5 n g C r ) added -

r

A

- A .

l

w

X

A

-

Q

b

"W

R e p e a t t h e c a l c u l a t i o n for the second a d d i t i o n :

n

(3)

ζ /

g

/

g

C

r

=

A

- A

2

0

-23Γ

X

Repeat the calculation for the third a d d i t i o n : , n

g

/

g

(75 n g C r ) added C

r

JT=T

e

A

0

X

-

b

~2lT

( 4 ) A v e r a g e the t h r e e v a l u e s ( f r o m Steps 1, 2, a n d 3 ) a n d r e p o r t t h a t n u m b e r as n g / g i n the s a m p l e .

Hofstader et al.; Analysis of Petroleum for Trace Metals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.