Analysis of synthetic polymers - Analytical Chemistry (ACS Publications)

Curtis L. Putzig , M. Anne. Leugers , Marianne ... Sherald Gordon. 2012,271-286 ... Sherald H. Gordon , Sherald C. Whatel , Bruce C. Wheeler , Christo...
1 downloads 0 Views 4MB Size
Anal. Chem. 1991, 63, 11 R-32R

Analysis of Synthetic Polymers Charles G. Smith,* Richard A. Nyquist, Patrick B. Smith, Andrew J. Pasztor, Jr., and Steven J. Martin

Dow Chemical U.S.A., Analytical Sciences Laboratory, 1897 Building, Midland, Michigan 48667

This pa r reviews techniques for the characterization and analysis ocynthetic polymers, copolymers, and blends. The review includes techniques for structure determination, separation and quantitation of additives and residual monomers, determination of molecular weight, and the study of thermal properties including degradation mechanisms. A ma'ority of the cited references were obtained from volumes of Ckemical Abstracts or CA Selects published between Dec 1988 and Nov 1990. For the most part, this review contains references to 'ournals published in English and readily available within the

bSA.

GAS CHROMATOGRAPHY Fusion reactions and acidic or alkaline cleava e of condensation polymers prior to chromatographic anefiysis were reviewed including applications to specific commercial products (AI). Alkali fusion with KOH and sodium acetate was used to cleave a bisphenol A polycarbonate-dimethylsiloxane block copolymer. Bisphenol A diacetate was identified by gas chromatography as a polycarbonate fragment, and gas solid chromatography was used to identify methane from the substituted siloxane (A2). Gas chromatography, infrared spectroscopy, and electron spin resonance were among the techniques used to study the degradation of low density polyethylene in different environments (A3). Toluene was used as an alternative to dimethylacetamide for dissolving pol styrene prior to the determination of residual monomer y headspace as chromatography. The sensitivity was less with toluene, %utmatrix effects appeared minimal, which facilitated simplified external calibration (A4). Less volatile paint additives such as hindered amine light stabilizers or UV absorbers were determined by using a headspace gas chromatograph (A5). Static headspace gas chroma aphy was used to determine residual tert-butyl alcohol in EP M elastomers. Solute band broadening was minimized by cryofocusing and use of a 0.53-mm wall-coated open-tubular column to permit rapid transport of the sample headspace to capillary column (A6). Sorption equilibrium data were obtained for polyethylene-bis(2-chloroethyl) sulfide, polyethylene-2-methox ethanol, polyethylene-2-methoxyethyl acetate, Carbowax 2Ob-2-nitroterephthalic acid bis(2-chloroethyl) sulfide, and Tenax-tetrachloroethane systems using headspace gas chromatogra hy. Sorption isotherms indicated that absorption occurretin the polyethylene and Carbowax systems while adsorption and absorption occurred with Tenax ( A n . The temperature of hase separation for blends of polystyrene with poly(viny1 metlyl ether) was determined by gas chromatography (A8). Applications of inverse gas chromato raphy (IGC) were presented for determining melting and gfass transition temperatures, the degree of crystallinity, other thermodynamic roperties, surface measurements, and adso tion isotherms For polymers (A9). Details for optimizing 1fj)Cperformance with packed, capillary, and fiber-filled columns were presented to aid researchers studying thermod namic, kinetic, and surface properties of polymers (AIO). Jomputer simulations of the position and shape of elution curves were useful in predictin inverse gas chromatographic trends. The dependence of efution parameters on the amount of probe compound was used to differentiate between surface and bulk adsorption while rocesses affecting probe retention were determined from t i e peak maximum and the first moment (All). Inverse gas chromatography was used to determine polymer-solvent interaction parameters for 9 hydrocarbon polymers (A12) and an overview was presented including the principles of IGC and applications to 01 (vinyl acetate), polyolefiis, poly(methy1acrylate), and pog(Jmethylsi1oxane)

g

%

QQQ3-27QOt9 1/Q363-11R$Q9.5Q/Q

(A13). Water sorption of common vinylidene chloride copolymers was studied by IGC. The specific retention volume for water depended on the type of copolymer, and this value increased with decreasing temperature (A14). The IGC technique was also used to determine the polymer-polymer interaction density for blends of a chlorinated polyethylene with an ethylene-vinyl acetate copolymer (A15). A related technique, reversed-flow gas chromatography, was used to study polymer-solvent interactions in systems including polystyrene in cyclohexane, poly(viny1 acetate) in cyclohexanone, and oly(viny1 yrrolidone) in methanol (A16). Capillary I G 8 was usexto explain differences in between siloxanes. Between 70-100 "C, plots for several probe compounds were linear for methylphenylsiloxanes containing about 5% phenyl moiety. This indicated the absence of any phase transition (A17). Thermodynamicsorption and mixing functions plus interaction parameters were determined for systems comprised of triacetin solute with molten polymers such as aliphatic a,wdihydroxy block and branched poly(ester ethers) or a,w-dihydroxy polyesters, polyethers, or polycarbonates (A18). Acetates, n-alkanes, and straight-chain or branched-chain alcohols were used for IGC study of poly(ethy1methacrylate). Solvent interaction parameters and the free ener of mixing were determined, and information was obtaineyabout depolymerization at tem eratures close to the decomposition temperature (AN). AI%; anes, chlorinated hydrocarbons, ketones, and acetate probe molecules were used to determine specific retention volumes and solvent interaction parameters fir poly(viny1idene fluoride) over the temperahre range 80-220 OC IA20). Acid-base (acceptor-donor) interactions at the surface of low density polyethylene and a vinyl acetate-vinyl alcohol copolymer were obtained from IGC data (A21).The techni ue was also used to study the miscibility of poly(viny1 chlorae) with a polyadi ate ester plasticizer over the ran e 90-120 O C (A22) and to i t e r m i n e the relative cross-link tensity of radiochemically cross-linked ethylene-propylene rubber (A23). Inverse gas chromatogra hy was also used to study the interaction coefficients to cKaracterize surface activity of fillers in polymer composites (A24) and acid-base interactions of glass fibers or silane-treated glass fibers (A25).

PYROLYSIS TECHNIQUES Reviews of pyrolysis-gas chromatographic (Py-GC) principles, instrumentation, and applications for compositional analysis, sequence distribution, thermal degradation mechanisms, and microstructure characterization appeared in the literature (B1,B2). Applications were also included in the proc-s of the 8th Intemational Symposium on Analytical and Applied Pyrolysis (B3). This volume also included an approach for the development of a pyrogram library. The necessary components for this approach included reproducible pyrolysis and chromatographic parameters and correlation of pyrolysis products with specific polymers (B4).The standardization of nomenclature for pyrolysis studies was also addressed (B5), and a bibliography was presented including pyrolysis applications from 1980 to 1989 (B6). Instrumentation was described to permit dynamic headspace samplin of volatiles prior to pyrolysis. This two-step approach incLded an online trapping system for collection and injection of sample volatiles followed by conventional pyrolysis with capillary gas chromatograph (B7). Another worker described techniques for treating pyro&sis and evolved gas profiles obtained from infrared spectra of polyurethanes (B8). In another modification of pyrolysis instrumentation, a packed precolumn, placed in the injection port, helped to minimize dead volume and column contamination from tarry 0 1991 American Chemlcal Soclety

11R

ANALYSIS OF SYNTHETIC POLYMERS Chad08 G. Smith is a Research Associate wHh the Polymeric Materials Research Center, Dow Chemical U.S.A. He received his B.S. degree from Alleghany College and his M.S. in chemistry from the University of Michlgan. Following graduation, he worked 3 years with the Chemical Division of PPG Industries before joining Dow in 1967. After 4 years of methods development in the Organic and Agricutturai Prcducts Groups, he transferred to his current assignment. His expertise has been concentrated on chromatographic separatbn and application ' to poiymer systems with the last 12 years devoted to developing pyrolysis techniques. He is an author or coauthor of 13 publications and chairman of ASTM D2070 Subcommittee on Analytical Methods for Plastics.

1

Rkhard A. Nyqukt is a Senior Associate Scientist in the Instrumental Group of the Analytical Science Laboratory Dow Chemt cal U.S.A. He received his B.A. degree in chemistry from Augustana College. Rock Island, IL. and his M.S. from Oklahoma State University. He joined the Dow Chemical Company In 1953, and his career has been mainly in the field of IR and Raman spectroscopy. He utilizes I R and Raman spectroscopy for solving chemical problems, for the elucidation of molecular structure, and for qualitative and and quantitative anatysis. Nyquist is the author or coauthor of over 100 scientlflc articbs including books, chap-

i,

ciety, The Cobleniz Society, The Society for Applied Spectroscopy, and ASTM E13 on molecular spectroscopy. I n 1985 he received the WiiliimsWright Award for his contributions to vibrational spectroscopy, and in 1991, he was named an honorary member of the Coblentt Society. Patrldc B. sm)th k a member of the Polymeric Materials Research Center, D o w Chemlcal U.S.A., Midland, MI. He received a Ph.D. degree in physical chemistry from Michigan State University in 1978. Dr. Smith's research interests are largely con. cerned with the structural characterization of synthetic polymers by NMR spectrosco. py, both high resolution and solM state. Dr, Smith has lectured at a number of universk ties on the topic of polymer characterization by NMR spectroscopy and is the author o( coauthor of 24 publications. He Is a mem ber of the American Chemical Society, Polymer Science Division, and Sigma Xi. He r e ceived the Midland Chapter Sigma Xi award in 1987.

Andnw J. Psutor, Jr., is a Research Lea& er in the Thermal Analysis Group of the Analytical Science Laboratory, Dow Chemt cal U.S.A., Midland, MI. He recehred his Ph.D. in physical chemistry from the University of Miami (Florida) in 1976. He joined Dow in that same year and worked in the Halogens Research Laboratory and the Styrene Molding Polymers Laboratory before taking his present assignment. His research interests include the compatibility of polymer blends and the energy and orientation in formed polymers parts. He is a member of the North American Thermal Analysis Sodety and holds five U.S. patents.

Steven J. MsMn is an Associate Scientrst with the Polymeric Materials Research Center, Dow Chemical U.S.A., MMland, MI. He is also Adjunct Professor at Central Mlchigan University. He received his B.S. (1973) at Michigan State Unfversity and his W.D. (1977) at the University of Illinois. His research interests are in the development of polymer characterization techniques and the application of new and t r a d w a i techniques to the characterization of novel polymers. Current emphasis includes the use of sizeexclusion chromatography, liquid chromatography, light scattering, and combined techniques to characterize heterogeneous polymers.

12R

pyrolysis products. The system was evaluated for pyrolysis of polystyrene, poly(viny1 chloride), polypropylene, poly(methyl methacrylate), and several copolymers (R9). NMR and pyrolysis as chromatographic data were compared to prepare a caaration curve for the routine determination of composition of ethyl acrylate-methyl methacrylate copolymers (BIO). End groups in poly(methy1methacrylate) were identified by high-resolution pyrolysis-gas chromatography. Minor peaks in the pyrograms were associated with end groups derived from a benzoyl peroxide initiator or dodecanethiol chain transfer reactions ( H I ) . Some of the same co-workers also related these end group data from pyrolysis-gas chromatography with molecular weights for poly(methyl methacrylate) initiated with benzoyl peroxide (B12). A variety of techniques were used to study the pyrolysis behavior of poly(methy1methacrylate), poly(methacry1icacid), and acrylic/ceramic mixtures. Thermoanalytical, infrared, and gas chromatographic data confirmed a depolymerization mechanism for poly(methy1 methacrylate). At higher temperatures, however, data suggested a surface reaction for polymer A1203 mixtures. Dehydroxylation followed by cross-lin ing and cyclization reactions was indicated from infrared data for poly(methacry1ic acid) (B13). Some of the same co-workers also studied the pyrolysis of poly(viny1butyral) binder with A1203 (B!4). Another worker used oxidative pyrolysis with atmospheric pressure chemical ionization and tandem quadrupole mass spectrometry to study several methacrylate and acrylate polymers. Protonated molecular ions dominated the atmospheric pressure mass spectra, and methacrylic or acrylic acids were observed as fragment ions. By usin tandem mass spectrometry, ethyl acrylate, methyl methacrykte, and n-butyl methacrylate were identified in an acrylic thermoplastic even though all had the same nominal molecular weight (B15). High-resolution pyrolysis-gas chromatography/mass spectrometry was used to characterize poly(styrene-dimethylsiloxane) block copolymers. Major products were identified as aromatics and cyclic siloxane isomers (B26). Multidimensional chromatography involving online microcolumn size-exclusion chromatography, and pyrolysis-gas chromatography was used to characterize a styrene-acrylonitrile copolymer (B17). Thin-layer chromatograph and pyrolysis-gas chromatography were combined to stu$ the composition distribution of styrene-maleic anhydride copolymers. Styrene content was determined from the linear relationship between the styrene content of samples and a ratio of pyrolysis product responses (styrene monomer/styrene monomer + methyl acrylate monomer). Fractionated copolymers with higher styrene content also gave higher TLC R, values (B18).Model compounds representing parts of the oly(styry1pyridine)structure and a cured resin were analyzefby DSC and P-GC/MS. Pyrolysis products were explained based on a mechanism involving bond scission followed by proton or C6H, transfer (B19). Pyrolysis-gas chromatography/mass spectrometrywas used to study the thermal degradation of poly(vinylcyc1ohexane) and styrene-vinylcyclohexane copolymers. Diad sequence distribution was characterized for these copolymers (B20). Block copolymers of ordinary and perdeuterated styrene were used to study the thermal degradation of polystyrene. Identification of hybrid oligomers by pyrolysis-gas chromatography and pyrolysis-field desorption mass spectrometry suggested that dimers are formed through reaction of unsaturated chain ends and benzyl radicals generated by 1,5transfer of a microradical followed by @scission (B21). Copolymers of styrene with maleic anhydride, diethyl fumarate, or diethyl maleate were pyrolyzed at 450 "C. Major products separated and identified by GC/MS included toluene, ethylbenzene, and styrene monomer from the maleic anhydride and diethyl fumarate copolymers, while styrene oligomers were detected in pyrograms of the diethyl maleate copolymer. Incorporated maleic anhydride units degraded at temperatures 80 "C lower than the polymer backbone (B22). Laser microprobe mass analysis (LAMMA) and pyrolysisGC MS were used to study the thermal degradation of a sul onated styrene/divinylbenzene cation exchange resin. A prominant degradation product was 1,3-diphenylpropanefrom heating the wet resin 24 h at 300 "C, and some sulfuric acid was also formed (B23). Some of the same co-workers continued this study by using GC/MS analysis of pyrolysis

. *- .

-

ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

/

ANALYSIS OF SYNTHETIC POLYMERS

products in aqueous and alcoholic solutions to formulate a mechanism for cation exchange resin de radation (B24). Ethylene- ropylene diene-modified (EjDM) rubbers were characterize: by p olysis followed by high-resolution as chromato aphy. gecific pyrolysis products were usecfto ethylidenenorbomenecontent of these elastomers estimate as well as the eth lene-propylene content and sequence distribution (B25). %polymers of cis- or trans-l,&pentadiene and acrylonitrile were pyrolyzed at 500-800 OC. Composition data and sequence distributions from these pyrolysis-gas chromatographic studies agreed well with values redicted by reactivity ratios and data generated by IsC N d R (826). Pyrolysis products from microcrystalline cellulose, identified b yrolysis-gas chromatography/mass spectrometry, incL&d carbonyl compounds, acids, meth 1 esters, furans, pyrans, anhydros am,and hydrocarbons. bechanisms were pro osed for the ormation of some of the ma'or pyrolysis pr0a)uct.a (B27). Other workers yrolyzed nitroceduloseat high tem raturea (fast heating) and?, temperatures (low heating rateywith identifications by gas chromatography/mass spectrometry or Fourier transform infrared spectroscopy (FT-IR) (B28). C clic siloxanes, formed from 600 OC pyrolysis of cyclic metiylsiloxanes partially substituted with phenyl or 2cyanoethyl oups, were separated by capillary as chromatography. gbstituent effects on retention be avior were studied with the help of Kovats retention indexes (B29). Pyrolysis products from glass fibers treated with y-anilinopropyltrimethylsilane and y-methacryloxypropyltrimethylsilane couplin agents were se ated by gas chromatography and analyzed t y FT-IR.A n g i s before and after methanol washes permitted estimation of the fixing ratio for these coupling agents (B30). Pyrolysis-gas chromatogra hy with a flame ionization detector was used to detect PO y(vinylpyrro1idone)down to a level of 0.2 ppm in h drophilic 1 ers such as poly(ethy1ene oxide) and polyhy&ic alcohor &I). Pyrolysis-gas chromatography/mass spectrometry and field ionization mass s ectrometry were also used to identif products from the tiermal de adation of polyquinones. $he carbox 1content was relate80 the yield of carbon dioxide detectei by pyrolysis-gas chromatography while the distribution of keto acids and quinonoid functionality was estimated from fragments identified by pyrolysis-field ionization mass spectrometry (B32). Decabromodiphenylether and poly(buty1ene tere hthalate) polymers containing this compound plus antimony8II) oxide were pyrolyzed in air at 300-800 OC. The maximum formation of polybrominated dibenzofurans, identified by mass s ectrometry, occurred between 400 and 600 OC (B33). Microtial olyester, poly(8-hydroxybutyrate) and poly(8-hydroxyutyrate-co-/3-hydroxyalerate),degradations were studied b direct yrolysis-mass spectrometry and fast atom b o m b a d ment (%AB)mass spectrometry. Oligomers higher than trimer were not detectable by conventional mass spectrometry, but products up to decamers were detectable by using FAB mass spectrometry (B34). Pyrolysis-field ionization mass spectrometry was used to study the thermal de adation of linear polyesters with oligomers identified as the gminant products (B35). The same workers also applied the technique to several nylons and olyamide blends. The various products were distinguishabe from characteristic molecular ions for oligomers, protonated nitriles and amines, and degradation products terminated in olefinic end groups (B36). Pyrolysis- as chromatographic fingerprints were used to differentiatePbetween cotton, acetate, acr lic, polyester, PO1 amide, and polyeth lene fibers (B37). Jtructural changes Juring thermal degraiation of ly(acrylonitri1e) fibers in an oxidative atmosphere were s t u g d by pyrolysis-high-resolution gas chromato raphy, Fourier transform infrared, and solid-state I3C N& spectroscopy (B38). A segmented polyurethane was characterized by yrolysis chemical ionization tandem mass s ectrometry. fnitially, cleavage of the urethane linkage via k H transfer resulted in formation of 4,4'-methylenebis(pheny1 isocyanate), 1,4-butanediol, and 1,4-cyclohexane-dimethanol chain extenders and hydroxyl-terminated oligomers of tetramethylene glycol adipate. Cyclic ester oligomers resulted from secondary decomposition of higher molecular weight olyester se ments (B39). A pyrolysis-derivatization procefure was utifized to

d%

Y

!

P

E

characterize polyesters, phenolic resins, and some polymer additives. In situ derivatization in the yrolysis zone with tetramethyl- or tetrabutylammonium hygoxide was followed by as chromatography with a flame ionization detector ( B O ) . #yrolysis techniques continue to be applied to environmental and forensic problems. Suspended articulate matter was analyzed for tire tread based on the yiepd of benzothiazole from pyrolysis of a vulcanization accelerator. The yield of this pyrolysis product varied for 24 different kinds of tire treads (B41). Natural rubber and styrene-butadiene rubber from tire treads were determined simultaneously in atmospheric dust by Curie point pyrolysis followed by gas chromatography (B42),and the technique was used to compare finger rints for rubber shoe soles and tires (B43). Thermal de raiation products from components within an automobile dter a simulated fire were characterized by GC/MS (B44). Pyrograms for 26 poly(viny1 chloride) tapes were sufficiently different to permit identification. Even partially burned fragments of tapes recovered after detonation of explosive Curie . devices were succeasfully matched with standards (MI point pyrolysis-gas chromatography was also used to differentiate between med and unaged - samples of plastic-bonded explosives (B46). Modified and unmodified alkyd paint resins were pyrolyzed, and products were separated by using a capillary column of intermediate polarity or a polar packed column gas chromatographic system. The capillary system gave superior discrimination between resin types, and some of the pyrolysis products were identified by gas chromatography/mass spectrometry (B47). Flash pyrolysis-GC MS and thermogravimetry/mass spectrometry were use to study the thermal degradation of poly(ary1 ether ether ketone) (PEEK). Phenol was the primary volatile product with pyrolysis temperatures up to about 800 "C. At higher pyrolysis temperatures, there was a broader range of volatile products (B48).Pyrolysis-infrared analysis of polystyrene, n lons, poly(methy1 methacrylate), and poly(viny1chloride7utilized an interface cell for direct sampling of vaporized pyrolysis products. The rocedure has . pyropotential for quality control applications ( ~ 4 9 7 Laser lysis-GC/MS examination of a styrene-2,4,5-trichlorophenyl acrylate copolymer gave a simpler fingerprint than conventional filament pyrolysis (B50). Direct pyrolysis-mass spectrometry and therm avimetric analyais were used to study the degradation of alky isocyanate polymers. The principal de radation products were trimers. Poly(buty1isocyanate) was t i e only sample that showed trace levels of monomer as a degradation product (B51).

d

Y

LIQUID CHROMATOGRAPHY Hunt and Holdin edited the book Size Exclusion Chromatography (Cl).hawkins reviewed column packin s for size-exclusion chromatography (SEC) (C2). Burgy and Calzaferri separated spherical silses uioxane oligomers by SEC (C3). Thom son et al. ap lied &C to the analysis of polyurethane (pohropylene ggcol-toluene diisocyanatecatalyst s tem) synthesis kinetics (C4). Pasch et al. investigated the S%C of sulfonated urea-formaldehyde resins (C5).Reid1 et al. described the SEC of phenol-formaldehyde resols in different solvents ((26). Veith and Cohen developed a SEC system for nylon-6 by using universal calibration with oly(methy1 methac late) in 2,2,2-trifluoroethanol (C7). &ri obtained the SEzcalibration curve for poly(ethy1ene tere hthalate) in hexafluoro-2-propanol using a characterizea poly(methy1 methacrylate) as a secondary standard (C8). Chikazumi et al. described the room temperature SEC of poly(ethy1eneterephthalate) using a mixture of hexafluoro-2-propanol and chloroform (1:9) as the mobile hase, enablin secondary calibration with polystyrene (C9f Mourey et .!a optimized the SEC eluent conditions for poly[bis(trifluoroethoxy)phosphazene] by an examination of the dilute solution properties of the olymer in acetone, tetrahydrofuran, and cyclohexanone in &e presence of tetrabutylammonium nitrate and determined the absolute molecular weight distribution of the polymer with online low-angle laser light scattering (LALLS) and online differential viscometry (DV) (ClO).De Jaeger et al. investigated the SEC of poly(organo)phosphazenes in tetrahydrofuran with LiBr (ClI).0 awa successfully applied the universal calibration methocf to the SEC of ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

13R

ANALYSIS OF SYNTHETIC POLYMERS

oly(oxymethy1ene) in dimethylformamide at 135 OC (C12). gegudovic et al. o timized the eluent conditions for the SEC of poly(ether sul one) and various polyimides and obtained reliable molecular weight distributions in dimeth lformamide with LiBr (C13). Mrkvickova and Danhelka cgaracterized oly(tert-but 1 ac late) by SEC and determined the Markhouwink-saiurag constants (C14). Perkins and Haehn applied SEC to determine the molecular weight distribution and inherent viscosity of ly(viny1 chloride) using published Mark-Houwink-Sakuragconstants (C15). Podzimek et al. compared the number-average molecular weights of unsaturated olyester resins determined by SEC with those determinecfby osmometry and end-group analysis (C16). Miller et al. determined the molecular weight distribution of polyester/ polycarbonate blend components by SEC after selective solvation (C17). Roovers et al. used SEC to characterize poly(ary1 ether ether ketone) (C18). Keller and Kolycheck accurately described the molecular weight distribution of thermoplastic olyurethanes as a mixture of two In-normal distributions (819). Siochi and Ward reviewed methods for the determination of nitrocelluloseabsolute molecular weight distribution (C20). Evans et al. used SEC to determine the molecular weight distribution of cellulose tricarbanilates pre ared from a range of cellulose samples (C21). Siochi et al. letermined the absolute molecular wei ht distribution of h droxy ropylated lignins by SEC/LALkS and SEC/DV (822). Ajimoto et al. used supercritical dichloromethane as the mobile phase for the SEC separation of polystyrene with molecular weights less than 110000 (C23). Stre e and Dubin reported the SEC of cationic poly(dimethykdiallylammonium chloride), poly(methacry1amidopropyltrimethylammonium chloride),and poly(ethy1eneimine) on a commercially available Superose gel column (C24). Wu and Senak determined the absolute molecular weight distribution of quaternized poly(vinylpyrro1idone-co-dimethylaminoethyl methacrylate) copol mer by SEC/LALLS and universal calibration methods ($25). Nagy and Terwilli er ht distribution of pol (alkldetermined the molecular and universal calitration Malfait et al. (C27) and with the SEC chromatographic behavior of sodium poly(styrenesu1fonate) on commercial Ultrahydrogel columns under different experimental conditions. Mori investigated the elution behavior of sodium poly(styrenesulf0nate) on a variety of commercially available columns operated under a range of eluent conditions (C29C31). Soria et al. described the secondary retention effects ex erienced in the SEC elution of sodium poly(styrenesuPfonate) on silica (C32). Bolte and Tro uet reported the SEC analysis of polyacrylamide based on ?he universal Calibration with sodium poly(styrenesu1fonate) (C33). Wu et al. optimized the SEC conditions for the characterization of poly(methy1 vinyl ether-co-maleic anhydride) and demonstrated that the average molecular weights obtained by universal calibration are in good a reement with those obdemonstrated that tained by SEC/LALLS(C34,C35). poly(ethy1ene oxide) and polysacchaye exhibit universal calibration under aqueous SEC/DV conditions with commercial TSK-PW columns (C36). Lesec and Volet used SEC/LALLS and SEC/DV to describe the SEC elution behavior of poly(ethy1ene oxide) and olysaccharide on commercial Ultrahydrogel and Shodex 8H-Pak columns (C37). Moure and Miller compared several methods for meas the interJetector volume between the LALLS p h o t o m e t e r 2 concentration-sensitivedetector (C38). Philipps and Borchard used standard SEC components and a differential refractive index detector to measure the specific refractive index increments of polystyrene in cyclohexane a t various temperatures (C39). Papazian and Murphy evaluated the long-term and short-term precision of the polyst ene and poly(methy1 methacrylate) molecular weight distriGtions determined by SEC using an internal standard approach for adjusting flow rate variations (C40). Lew et al. evaluated the accuracy and precision of mobile- hase flow rate measurement for SEC using a thermal puyse flow meter (C41). Mourey et al. evaluated SEC calibration with coupled LALLS and DV detectors and used a plot of residuals to demonstrate the magnitude and s stematic nature of the deviations between the observed caligration and a fitted single polynomial curve (C42).

P

k

14R

ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

r

Gonzalez et al. used SEC and viscomet to determine the monomeric unit pro'ection len h of PO y(vinylcarbazole), oly(acenaphthylenej, poly(met yl methacrylate), and polyYvinyl chloride) (C43). Dickie and Koopmans used SEC LALLS to detect low levels of long-chain branchin in irra iated linear low density polyethylene but found rheo ogical experiments to be a more sensitive indicator of branching (C44). Taromi et al. characterized star-shaped olystyrene samples by SEC/LALLS and SEC/DV (C45).E! iochi et al. studied the dilute solution behavior of model poly(methy1 methacrylate)- oly(methy1 methacrylate), using variable temperature SE@ALLS and SEC/DV to obtain molecular weight distributions, intrinsic viscosities, branching parameters, average unperturbed dimensions, and information on hydrodynamic behavior (C46). Chunshan and Qipeng used the SEC chromatogram and the measured intrinsic viscosity of the whole polymer to determine the long-chain branching in NBS polyethylene SRM 1476 and in a branched cis-1,4-polybutadiene ((747). Weissko f analyzed randomly branched poly(ethy1eneterephthalate) f y SEC and viscometry (C48). Nordmeier et al. performed SEC, light scattering, viscosity, and 13C NMR measurements to characterize the branching in low density polyethylene (C49). Schosseler et al. investigated the sol-gel transition obtained by y-irradiation induced c r o a s - l i i g of polystyrene solutions, by the SEC LALLS determination of the size distribution function of chuted regel samples (C50). Wu et al. used light scattering and SE to study the pregel curing of an epoxy resin, lP-butanediol diglycidyl ether, with cis-l,2-cyclohexanedicarboxylic anhydride ((251). Nishikida et al. developed a SEC with an online FT-IR spectrometer to determine the molecular weight distribution and short-chain branching in linear low density 01 ethylene (C52). Hatada et al. used an online ~ C @ - MyH ~ ZNMR spectrometer for the absolute molecular weight calibration of the SEC of isotactic poly(meth 1methacrylate) containing exact1 one tert-butyl group per ciain at the chain end (C53). HataJa et al. determined the average composition as a function of molecular size for isotactic block and random copolymers of methyl methacrylate and but 1 methacrylate by SEC with an online NMR s ctrometer (654). Zhonge et al. used SEC with dual UV anKefractive index detectors to characterize poly(ethy1eneterephthalate)-poly(tetramethy1ene ether) multisegment block copol mer after solvent cross fractionation (C55). De Chirico &ermined the molecular weight distributions of olystyrene and poly(2,bdimethyl1,Cphenylene ether) in \lends by SEC with dual detectors (C56). Itagaki et al. measured the molecular wei ht dependence of intramolecular excimer formation efficiency of polyt2-vinylnaphthalene)solutions by us' SEC with tandem fluorescence and differential refractive s e x detectors (C57). Cortes et al. developed a microcolumn SEC with an online pyrol sis gas chromatograph and determined the molecular endence of styrene-acrylonitrile copolymer com 0size sition (858).Dekmezian et al. developed an interface to codkt solvent-free polymer fractions from a high temperature SEC and characterized ethylene-propylene rubber and h drocarbon-b-polyesterblock copolymers by FT-IR analysis olSEC fractions (C59, C60). Jandera characterized the retention behavior of oligostyrenes, oligoethylene, and oligoethylene glycol nonphenyl ethers in reversed-phase liquid chromatography (LC) (C61). Gu et al. developed an LC method for the oligocarbonatea and chloroformate-containing oligomers at various stages in a typical polycarbonate phosgenation reaction (C62). Mukoyama and Mori investigated the elution behavior of alkylbenzenes, phthalate esters, oligostyrenes, a n d a p r e g o l y y of epoxy resins and methylated melamineform de e resins on a column packed with hydrophilic poly(hy&oxyethyl methacrylate) ges (C63). Okada separated oligomers of poly(oxyethy1ene) on cation exchange resin and detected the polymer by indirect conductometric detection after separation (C64, C65). Glockner compared the turbidimetric titration and silica column gradient elution behavior for monodisperse polyst ene samples (C66). Lochmuller and McGranaghan and A Xedai et al. examined the LC retention mechanism of polymers via the isocratic elution of high molecular weight monodisperse polystyrenes (C67,C68). Schultz and Englhardt studied the elution behavior of polystyrene under reversed-

t?

P

8

&

d

ANALYSIS OF SYNTHETIC POLYMERS

phase and normal-phase conditions (C69). Gemmel et al. used supercritical fluid chromatography to separate oli omers of poly(ethy1ene oxide), pol (ca rolactone), pol (Bviny&yridine),and epoxy prepolymers h70r Takeuchi anBSaito applied semimicrosupercriticalfluid chromatograph with gradient elution to the oligomer separation of poG(methy1 methacr late), polystyrene, and poly(methy1phenylsiloxane) (C71f Tennikova et al. demonstrated the se aration of oligoesters of phenolphthalein and terephthalic acifaccording to the type of terminal oup ((272).Sat0 et al. separated stereoisomers of oly(metry1 methacrylate) by adsorption LC ((273). &ori separated ethyl methacrylate-but 1 methacrylate co olymers according to composition by L using a 1,2-dichPoroethane/ethanol gradient mobile phase (C74).Mori and Mouri ap lied adsorption LC to separate styrene copolymers of methy! ethyl, and n-but 1 acrylates and methacr lates according to composition (875,C76). Glockner and barth fractionated statistical co olymers of styrene and ethyl methacrylate by gradient LC 8277). Teramachi et al. investigated the compositional fractionation of styrene-methyl methacrylate copolymers by normal-phase and reversed-phase LC (C78,C79). S aridans et al. separated styrenemethyl acrylate and st rene- utyl acrylate co olymers according to composition gy gradient LC (C80).8lockner et al. investi ated the separation of statistical copolymers of styrene an 2-methox ethyl methacrylate according to composition by gradient L 8 (C8l).Asada et al. determined the composition distributions of acrylonitrile-butadiene copol mers by LC and compared the observed distributions wit{ those calculated from copolymer theor (C82). Tacx and German Jetermined the molar mass-chemical com osition distribution of oly(styrene-co-ethyl methacryLte) statistical copolymers y a cross-fractionation based on size-exclusion chromatography and subsequent thin-layer chromatogra h with flame ionization detection (C83).The n a oiserved distributions were in good agreement predicted! for high- and low-conversion batch solution polymerizations. D a w b s and Montene o characterized statistical copolymers of styrene and n-buty methacrylate b cross-coupling SEC and a second column system operate with solvents which promote nonexclusion separation mechanisms (C84). Glockner and Muller investigated the gradient LC compositional separation of statistical and block copolymers of styrene and tert-butyl methacrylate (C85). Mori separated poly(styrene-methyl methacrylate) block copolymers and poly(styrene-vinyl acetate) block copolymers according to com osition by adsor tion LC (C86,C87). Augenstein and Mueier characterized bock copol ers of decyl methacrylate and methyl methacrylate by g r a g n t LC (C88).Augenstein and Stickler separated the products obtained by graftin methyl methacrylate onto ethylene-pro ylene diene-modlfie 8 rubber accordin to composition by gragent LC (C89).Wang et al. used thin qayer chromatography to isolate copolymers made by ester exchange reaction of poly(ethy1ene terephthalate) and poly(bispheno1A carbonate) blends during melt mixing (C90).

e

B

B

t

P

B

MASS SPECTROMETRY Some references to pyrolysis-GC/MS and direct pyrolysis mass spectrometry of polymers are included in the earlier section on pyrolysis techniques. Applications of mass spectrometry to the characterization of polymeric formulations were discussed including thermal evolution of volatiles and Other reviews of different low level polymer degradation (01). techniques were presented for rubber compounds (02) and polymer surfaces (03).Specific discussion was presented for instrumentation and ap lications of secondary ion mass spectrometry (SIMS) to t i e analysis of polymer surfaces (04, 05). SIMS was used to study diffusion in deuterated-protonated monodis erse 01 styrene film annealed at 125 OC (06). Time-of-Ri ht was used to study polystyrene standards with well-&fined molecular weight distributions. Oligomers were detected in the mass range up to 10OOO amu using Ag substrates covered with a monolayer of polymer (07). Other applications of SIMS technology included static ex riments with methacrylate copol mers used for controlleBedrug delivery (08)and surface cgaracterization of polyolefins and a variety of rubbers including styrene-acrylonitrile, styrene-

&&

butadieneat ene triblocks, and butyl rubber (09).This later work conclu& that surface com ition of cured unsaturated rubbers was different than in t e bulk material. Fast atom bombardment (FAB) mass spectrometry was used to study sequencing in polyesters and polyamides. Specific data were presented for @-hydroxybutyricacid-8hydroxyvaleric acid, piperazinetruxillic acid-adipic acid, and ethylene glycol-terephthalic acid-truxillic acid copolymers (010).Sterically hindered phenols and other additives containing thioesters, phosphites, hosphonites, and hindered amine moieties were analyzed y laser desorption Fourier transform mass spectrometry and FAB mass spectrometry. The laser desorption technique was preferred for analysis of polymer additives because of undesirable fragmentation from I). Laser heating of field-desorption FAB experiments (01 emitters was also compared with resistive heating during mass spectrometricanalysis of poly(pro ylene gl col), polystyrene, and poly(methy1methacrylate). Eomparagle sensitivity was obtained with both systems (012). Polymer samples were also analyzed b K+ ionization mass spectrometry. Potassium ion adducts andythermal degradation products were detected for nylon-6, a cyanoethylmethylsilicone, poly(vinylpyrrolidone), polyesters, and poly lycols rapidly heated on a K+ thermionic emitter (013). combination of NMR spectroscopy and ion exchange liquid chromatography-thermos ray mass spectrometry was used to determine acrylic acid oyigomers in acrylic acid monomer. For negative ion mass spectra, formate anion adducts were observed, while ammonium ion adducts dominated the positive ion mass spectra (014). Identification of organic additives in carbon black filled styrene-butadiene and cis-polybutadiene rubbers was described for several modes of mass spectrometry. Field ionization and field desorption were the most efficient techni ues for identifying additives in rubber (015). One of these wo2ers also studied the feasibility of using MS/MS techniques with electron impact and chemical ionization for identification of additives in rubber (016).Combined capillary supercritical fluid chromatography and mass spectrometry were used for se aration and detection of antioxidants and ultraviolet stabilzers used in food packa es (Dl7). Pol ethylene, poly(vinyf chloride), nylon-6, and polypropyrene were burned in an open flame furnace, and sootextracted adsorbed com onents were identified by GC/MS. Polyolefins formed alipgatic and olefinic compounds while condensed aromatica (e.g., naphthalene, phenanthrene, pyrene) were obtained from poly(viny1chlonde) and polystyrene (018). Polynuclear and chlorinated aromatic compounds were among the products se arated and detected by capillary GC/MS after thermal degrafation of poly(viny1idene chloride) food wrapping films (019). P olysis-GC/MS with pattern recognition analysis was u s e g o differentiate between polystyrene and 01 ropylene and between structurally similar polyacrylics (82OyThermal analysis and mass spectrometry were used to identify the products from thermal degradation of poly(viny1chloride) floor coverin s (021).These techniques were also combined for the anaysis of volatiles from heating polymers based on fury1 alcohol and polyamic acid (022).

K" t

1

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY A number of books and review articles were written describing such to ics as high-resolution solid-state NMR of polymers (El-ELfYand polymeric liquid crystals (&), m v e t i c resonance of polymers at surfaces (E@, NMR of cross-linked and NMR methods for conformational polymer systems (E6), analysis (E7,E8).The general subject of the NMR analysis of polymers (E9,EIO) and the subject of high-resolution (li uid-state) 13C NMR characterization of eth lene-based po?ymers were reviewed (Ell). The use of two-Jimensional NMR methods for studying polymers in the solid state was reviewed (El2 4 14). The reactivity ratios of 2-hydroxyethylmethacrylate-@cidyl methacrylate copolymers were determined by '% N R s ectroscopy (E15)as were those of styrene with acrylonitrile (116).The content of residual double bonds was measured for poly(trimethylo1propanetriacrylate) by 13Ccross olarization/magic angle spinning techniques (El 7). Carton-13 NMR was used to determine the sequence distribution of ANALYTICAL CHEMISTRY, VOL.

63,NO. 12, JUNE 15, 1991

15R

ANALYSIS

OF

SYNTHETIC POLYMERS

01 (ethylene terephthalate-co-oxybenzoate) ( E l @ ,.polyfetiylene oxide-co-1,2-butylene oxide) ( E l 91, acrylonitrileethyl methacrylate copolymers (E20), acrylic acid-methyl methacrylate copolymers (E21), ethyl acrylate-methyl methacrylate copolymers (E22),ethylene-1-butene co olymers (E23). The stereoregularity of poly(propy1ene oxi8e) (E24), poly(2,3-epoxypropylmethacrylate) (E%), poly(styreneoxide) (E26),and styrene-maleic anhydride copolymers (E27) was measured by I3C NMR spectroscopy. Carbon-13 NMR spectroscopy was used to determine the composition of styrene-methyl acrylate copolymers (E28), styrene-a-methylstyrene-butadiene copolymers (E29),and styrenemethacrylate copolymers (E30)and the bromine levels in brominated polystyrene and poly(2,6-dimethyl-l,4phen lene oxide) (E31). A 13CNMR method was also presentedlfor the analysis of multicomponent polymer mixtures (E32). The structure of naturally occurring polyisoprenes was characterized by I3C NMR spectroscopy (E33) as was the structure of chlorinated natural rubber (E34). The I3C NMR chemical shift assignments were presented for styrene-methyl a-cyanocinnamate copolymers (E35) and styrene-butadiene copolymers (E36). The characterization of polysiloxane antifoam agents by 13Cand %Si NMR spectroscopy was given (E37). The network formation that results from the curing of ethylene glycol dimethacrylate was studied with 13C NMR spectroscopy and DSC (E38). NMR imaging was used to determine the porosity in polyurethane foams (E391 and to image epoxy adhesive joints (E40) and case I1 diffusion in glassy polymers (E41). Magic angle spinning 'H NMR imaging methods were used to image polystyrene-pol butadiene blends with a resolution of less than 50 pm (E42r A method for imaging materials with short T2values was presented which utilizes large sinusoidallytime varying gradients (E43). Carbon-13 NMR was used to study the chemistry associated with the early stages of network formation in dimethacrylate systems (EM, E45)and diol modified epoxies (E46).Junction point motion in urethane networks was studied by 31PNMR with poly(propy1ene glycol-tris(4-isocyanatophenyl) thiophosphate) crosslinkers (E47). Proton NMR spin-spin relaxation measurements were used to characterize end-linked poly(dimethylsi1oxane) networks (E48). The swelling of chloroprene and styrene-butadiene rubbers was monitored by 2H NMR spectra of adsorbed benzene& (E49). The 'H NMR spectra of water contained in methacrylate hydrogels were used to characterize the network (E50),and high-resolution solid-state 'H NMR (with magic angle spinning) was used to probe the structure of hydrolyzed acrylonitrile-starch graft copolymers (E51). The effect of cross-linking on the '3c NMR spectra of polyacrylates was investigated (E52). Deuterium and carbon-13 NMR relaxation measurements were used to define the environment of solvents in a swollen poly(4vinylpyridine) network (E53),and xenon-129 NMR was used to measure xenon absorbed in EPDM rubber (E54). The level of unreacted vinyl groups in styrene-divinylbenzene copolymer networks was determined by I3C cross-polarization/magic angle spinning (CP/MAS) spectra (E55). The coupling of gel permeation chromatography (GPC) with an NMR detector was used for determining the molecular weight dependence of the tacticity of chloral oligomers (E561 and poly(methy1 methacrylate) (E57) plus the composition of copolymers of methyl and butyl methacrylates (E58). Another study used GPC/NMR as an absolute method for molecular weight calibration (E59). The miscibility of polymer blends was studied by a variety of methods. Solid-state 'H NMR relaxation times were used to define the compatibility of a blend of poly(viny1 acetate) and poly(methy1 methacrylate) a t various compositions and thermal histories (E60). The compatibility of blends of poly(viny1idene fluoride) and oly(methy1methacrylate) was studied by using solid-state p3C NMR relaxation methods (E611 and by 'BF enhanced '3c NMR spectroscopy (E62). The chemical shifts of the 13C NMR spectra of blends of polybenzimidazole and polyimide were shown to be characteristic of miscibility as were proton rotating frame spin-lattice relaxation time values (E63). A similar behavior was observed for poly(ether sulfone)-polyimide blends (E64). 16R

ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

Thermoluminescence and 'H NMR spin-spin relaxation time measurements were used to determine hase se aration NMR in segmented polyurethanes (E65). Solidsstate spectroscopy was used to determine the morphology and molecular motions associated with the components of poly@-phen lene) and trans-polyacetylene blends with polystyrene &66). Blends of poly(viny1chloride)with co lymers of methyl methacrylate and methacrylates were a n g z e d for compatibility by 'H NMR relaxation measurements (E67). The miscibilit of several methacrylate pol ers with polyand 'H NMR (vinyl chloride7was determined from DSC, relaxation measurements (E68). Proton relaxation measurements were also used to determine hase separation in polystyrene-poly(viny1 methyl ether) bgnds (E69). These techniques were also used to probe miscibility in poly(phenylene sulfide)-poly(ether sulfone) blends (E70) and that of phosphorus additives in polymers (E71). 'H and I3C NMR relaxation measurements were used to study mixing of polyisoprene-poly(l,2-butadiene) blends (E72). The structure, morphology, and molecular dynamics were determined for nylons (E73-E81), polyethylenes (E82, E83), poly(diethy1siloxanes) (E84, E85), poly(oxymethy1enes) (E86, E87) and polycarbonates (E88-E92). The formation of cross-linksand the fate of unreacted isocyanate groups in MDI-pol isoc anurate resins were determined by usin solid-state ' d a n d YN (CP/MAS) NMR techniques (E937. The solid-state structures of semicrystalline, stereoregular poly(methy1 methacrylate) ( E N ) and syndiotacticpolystyrene ( E S E 9 7 ) were probed by 13C CP/MAS NMR techniques. The chain dynamics of oly(oxy-1,4-phenyleneoxy-1,4-phenlenecarbonyl-1,4-p~enylene)(PEEK) were robed by using 7H and 13C NMR relaxation measurements The frequency of methyl group rotation of the a-methyl group of poly(methy1 methacrylates) was shown to be dependent upon the tacticity of the polymer as determined from their 13CNMR relaxation characteristics (E99). Two-dimensional solid-state NMR techniques were applied to the study of slow motions in pol ropylene (E100) and oriented, crystalline poly(oxymethyge) (E101). The molecular structure and dynamics of insulating and conducting forms of pol anilines were determined from 2H NMR line shapes and 7C NMR relaxation measurements (E102). The morphology of two-component polymer systems was studied by usin inversion recovery cross-polarization (IRCP) NMR metho& (E103). A correlation between IRCP cross- olarization rates for main-chain carbon atoms of several o ymers and their dynamic storage modulus was presentel ( E l04). The solid-state 13C NMR spectra of model urethane systems were correlated with their dynamic mechanical spectra (El%). Solid-state NMR methods were used to determine the partitioning of short-chain branches between crystalline and am0 hous regions in linear low density polyethylenes (Elm, E l O T The degree of crystallinity was obtained from static I3CNMR spectra for linearpolyethylene (ElO8),and 'H NMR spectroscopy was used to define both the crystalline content and transition temperatures in similar systems (E109). The phase structure of oriented (E110) and ultrahi h molecular weight ( E l 1 1 , E l 12) polyethylene was probed %y using solid-state 13CCP/MAS techniques. The mo hology of isotactic polypro ylene was studied b 13CC P l d ( E 1 1 3 ,E114) and H NM! techniques (E115f The C NMR chemical shift tensors in isotactic polypropylenes were determined by sample rotation at an off-magic angle by using a two-dimensional powder pattern technique (E116). The orientation of the diphenylenepropaneunit of stretched polycarbonates was investigated by two-dimensional MAS NMR methods (E117). These techniques were also ap lied to orientation in poly@-phenyleneterephthalamide) {bers (E118). The phenyl ring flips in olycarbonate were shown to be suppressed with increasing ydrostatic pressure as observed from 'H NMR T2measurements (E119). The environment of gas molecules sorbed b polymeric materials was probed by using I3C and BXe N h R relaxation and NOE measurements (E120). Plasticization of glassy polymers was investigated for a polycarbonate-dibutyl phthalate system (E121) and polymers exposed to elevated carbon dioxide pressures (E122). The interface of lass-filled polymer composites was probed by solid-state 138NMRtechniques (E123, E124). The NMR spectra of polyamide rigid rodlike polymers under strain gave rise to additional resonances when compared

28

E

'

(8%).

P

R

ANALYSIS OF SYNTHETIC POLYMERS

to the spectra of the relaxed network (E125). The molecular dynamics associated with liquid crystalline polymers were studied by solid-state NMR techniques (E1264130). Proton NMR T2measurements and small angle neutron scattering were used to characterize ethylene-vinyl acetate copolymers absorbed on silica (E131)and poly(ethy1ene oxide) at a waterpolystyrene interface (E132). The density profile of a poly(2-vinylpyridine-co-styrene)block copol a-deuteriostyrene absorbed at a silica surface was etermined with from 2H NMR TI measurements (E133). The perturbation of motion at the microphase boundary in styrene-isoprene block copolymers was probed by lSC Ti and NOE measurements (E134). The 'H NMR free induction decay, associated line widths, and Goldman-Shen exmriments were used to determine the character of dynamic h'eterogeneities in glassy polycarbonate just above its glass transition temperature, Tg (E135). The H NMR spectra of linear, high molecular weight polyethylene were used to define transition temperatures and crystalline content (E136). Two-dimensional nuclear Overhauser experiments were used to probe the inter 01 er interactions in a polystyrene-poly(viny1 methyr e t g ) blend in concentrated solution (E137). Two-dimensional &resolved spectroscopy was used to determine the lgFscalar coupling constants of poly(vinyl fluoride) and, thereby, deduce the average local conformations of the molecule (E138).Three-dimensionalNMR methodology was used to determine the polymer chain conformation of vinyl acetate-vinylidene cyanide alternating (piezoelectric) copolymers (E139).

b""'

INFRARED AND RAMAN SPECTROSCOPY Mandelkern reviewed the characterization of crystalline polymers by Raman spectroscopy and differential scanning calorimetry. Emphasis was made on the Raman low-frequency acoustical mode (LAM), the Raman internal modes of polyeth lenes, and the D-LAM mode of these polymers (FI). dulkin and Lewis reviewed the use of Raman spectroscopy in the characterization of polymers and fibers (272). The crystallization kinetics of poly(ethy1ene terephthalate) was discussed. McMillan and Hofmeister reviewed the literature on IR and Raman spectroscopies of minerals. These data could aid in the identification of inorganic materials added to polymer systems (F3). Leyden and Murthy reviewed the literature on diffuse-reflectance FT-IR spectroscopy (F4). This method was useful in the identification and elucidation of polymeric materials. Ishida reviewed the literature on the surface characterization of high-performance fibers by FT-IR spectroscopy (F5). Thulstrup and Michl reviewed the literature on polarized absorption spectroscopy of molecules aligned in stretched polymers (F6). Braiman and Rothschild reviewed IR techniques for probing membrane structure (F7). Harthcock et al. utilized IR microspectroscopic functional group ima ing to study the compositional homogeneity and com atibi ity in polymer blends exhibitin a skin-core morphoggy (F8). Cole et al. used diffuse-refkctance FT-IR to stud fiber-reinforced composites (F9). Isiitana et al. utilized FT-IR microscop in the study of polyester fiber-embedded epoxy resin (F107.Day et al. discussed the use of Raman spectroscopy in the study of the bond deformation of single fibers and the micromechanics of fiber-reinvorcedcomposites (FII).Sellithi et al. characterized the surface of graphitized carbon fibers by ATR/FT-IR (F12). DeBlase and Harrick demonstrated the usefulness of the microsampling/nanosampling internal reflection FT-IR technique for polymer analysis (F13).Perrin et al. obtained polarized resonant Raman spectra of fully oriented cis-polyacet lene. The depolarization ratios for the trans Raman ban& corrected for reflectivity absorption were given (F14). Wu et al. used both resonance Raman and FT-IR to study the molecular deformation of polydiacetylene single crystals under stress and variable temperature (F15). Raynor et al. characterized polymer additives utilizing capillary supercritical fluid chromatography FT-IR microspectrometry (F16). Wieboldt et al. used TGA/FT-IR to analyze the evolved ases of plasticized poly(viny1 chloride) samples (F17),a n t Ichimura used this same technique to analyze the evolved ases of ethylenevinyl acetate copolymer (F18). Duncan usecfGC/IR/MS and a pyrolysis system with

K

spectral search capabilities to identify the pyrolysis products of polybutadiene and the antioxidant, 2,6-di-tert-butyl-4methylphenol (FI9). Vigoureux and co-workers utilized attenuated total reflectance (ATR) IR with radiation polarization in the study of the crystalline orientation, or texture, present at the surface of high density polyethylene which had undergone a dry friction test of long duration (8'20). Zerbi et al. used Raman spectroscopy to determine the molecular flexibility of polymethylene molecules (F21). Zerbi used the polarization properties in IR and Raman for the study of molecular dynamics of chain molecules such as polyethylene (F22). Zerbi and Longhi discussed the lattice of n-alkanes which can contain a lar e and gentle conformational twist. They calculated its vi rational spectrum and discussed under which condition it may be observed experimentally (F23). Housaki et al. studied the molecular weight dependence of short-chain branching of linear low density polyeth lene (ethylenel-octene copolymer) by gel chromatography/I&"-IR techniques (F24). Pepper and Samueh characterized oriented pol ropylene surfaces by application of polarized ATR/IR ancolarized refractometry (F25).Burfield and Loi utihed IR to determine the stereoregularity of polypropylene (F26). Marchand and Sipos discussed the recent advances in utilizing IR for the measurement of coextruded webs of low density polyethylene and polypropylene (F27). E s c o u h et al. used IR to study coat' on glass fibers used to reinforce polyepoxide matrixes ( F 2 y Wu et al. used IR and Raman to study the effect of highly oriented poly(oxymethylene) at 20-160 "C (F29). Price et al. utilized IR and DTA to study the decomposition gases evolved from flame retardants applied to cotton (F30). Younes and Cohn used IR and DSC to study phase separation in poly(ethy1ene glycol)/poly(lactic acid) blends (F31). Yamaura et al. utilized IR to determine polymer chain orientation in films of syndiotactic-rich poly(viny1 alcohol) (F32). The 705-cm-' band decreased in intensity with increased inclination of the film plane to the direction of the IR beam. Roy and Kradjel utilized NIR to determine the water content at levels higher than 0.04% in polyols (F33). Mirabella and Shankernarayanan used a DSC cell adapted for microscopic observation during thermal treatment combined with an IR microsampling accessory in a FT-IR spectrometer to allow the simultaneous collection of structural changes associated with thermal responses for a series of commercial polyethylenes (F34, F35). Zhou et al. utilized IR to study the planar orientation and trap depth of poly(ethy1ene terephthalate) film. The gauche conformation decreased linearly with the degree of planar orientation, while the content of trans conformation increased linearly (F36). Chabot et al. utilized IR to study the effect of the plasticizer poly(a-methyl-a-propyl-8-propiolactone) on the orientation of poly(viny1 chloride) (F37). Carter et al. used IR and (2-13 NMR to determine the compositions of poly(buty1ene terephthalate), polycarbonate, and poly(methy1methacrylate)coated SBR rubber in blends of these components (F38). Pirnia and Sung used ATR FT-IR to study the molecular orientation of injection mol ed plaques of thermotrophic 4-hydroxybenzoic acid-2,6-hydroxynaphthoicacid copolymer. The orientation function along the surface plane showed transverse orientation at a position closest to the gate due to radial character of the flow in this re ion. The orientation functions in the thickness direction injicated that the chains were mostly planar with respect to the mold wall, especially on the skin (F39). Earhart et al. used IR to study the grafting reactions of poly(viny1 alcohol) during the emulsion copolymerization of vinyl acetate and butyl acrylate (F40). Belke and Cabasso used FT-IR and DSC to study the properties for miscible blends of poly(viny1idene fluoride) and poly(viny1 acetate) (F41). Mackenzie and Sellors compared data obtained by IR transmission, diffuse reflectance, and photoacoustic spectroscopies on poly(viny1chloride) stabilized with dibutyltin bis(buty1 maleate). For this particular polymer/stabilizer system, IR transmission spectroscopy is the preferred method of analysis (F42).

6

ci

ANALYTICAL CHEMISTRY, VOL.

63,NO. 12, JUNE 15, 1991

17R

ANALYSIS

OF

SYNTHETIC POLYMERS

Chalmers and Wilson discussed the u+ of PAS/FT-IR for resin characterization in carbon fiber reinforced thermoset and thermo lastic s tems, namely, epoxy resin, PEEK, and poly(phenyf)enes u l g e ) (F43). Castiglioni et al. used IR to henylenes) (F44). Cole et al. utilized diffuse to determine the degree of crystallinity at %?IZE!$f?-IR the surface of com ite materials made from poly(pheny1ene sulfide) reinforcegith carbon fibers (8'45). Bertinelli et al. used IR to study a thianthrenic polymer (F46). Decker and Moussa used IR to monitor ultrafast photo 01 erization cross-linkin of acrylate-terminated resins (P4rSayyah et al. assignet! bands in the IR spectrum of semiconductin lithium acrylate-methyl methacrylate copolymer (F48).f i c u et al. used IR to study structural modification in the synthesis and spinning of ac lonitrile cospectra of polymers (F49). Sayyah et al. studied the chromium acrylate-methyl methacrylate copolymers (F50). Cooper et al. utilized in situ PAS FT-IR to study the kinetics of cross-linkin of polyester wi styrene (8'51). Janssen et al. utilized IRto ciaracterize styrene-u-benzyl L- lutamate c o p o p e r s (F52). Waldman et al. emplo ed pofarization mod ation IRreflection spectroaco y to s t u i ultrathin films of ethyl bromide-end-capped propypene sultii-tyrene block copolymers (F53). Conti et al. studied the IR spectra of syndiotactic polystyrene and poly(p-methylstyrene) (2754). Garrell and Beer used surface-enhancement Raman spectroscopy to characterize poly(4-vinylpyridine) and styrene4-vinylpyridine coyolymer on silver and old electrodes (F55).Lan e et al. uti ized IR to determine t l e thickness of the interfad layer of poly(viny1 acetate)-polystyrene core-shell 2-stage emulsion polymer latexes (F56). Lantman et al. used IR dichroism studies in an attempt to settle the controversy about orientation relaxation in polystyrene (F57).Slusarczyk et al. studied the structures of styrene-zinc acrylate ionomers by using wide-angle X-ray scattering and IR (F58). Wu and Liedberg used IR reflection-absorption spectrosco y to study the chemical structure of thin f h of pyrolyzed poyy(acrylonitri1e) on copper and aluminum surfaces (F59). Galiotis et al. used Raman to determine the strain de ndence of the vibrational frequencies of carbon fibers u n g r stress (F60).Fina et al. measured the shift and change of the band shape of the 1616-cm-' Raman band of two moderately oriented samples of oly(eth lene terephthalate) under various was found to be related linearly tensile loads. The L a n to the applied stress (F61). Young recorded s ectra of single fibers of Kevlar and Nomex aramid usin I f microscopy (F62). Stewart and Urban utilized A T R / d - I R to characterize silicone rubber surfaces modified by gas plasma (F63). Gaboury and Urban used IR to study the cross-linking of hydroxy-terminated dimethylsiloxane with (C2H50)4Si(F64). Allen and Sanderson reviewed the literature on the application of IR in the characterization of the chemical nature of epoxy resins and hardness, chemical structure of epoxides, cross-linking, and modification of epoxy resins (F65). Cole et al. compared IR methods for the quantitative analysis of e oxy resins used in carbon-epoxy composite materials (F66). Ackerman employed diffuse reflectance FT-IRfor identifying polyester, cotton, and polyamide fibers (F67). Hallmark and Rabolt utilized FT-Raman spectroscopy to study a series of synthetic poly(L-alanine) oligomers where length varies from 10 to 330 peptide units. Short-chain polypeptides exhibit a 8-sheet structure. When the sequence length reached 40 units, the backbone conformation is an a-helix (2768). Bretzlaff et al. used IR to study thermal and electrical aging in olyurethane used as insulators (F69). Davidson used p oi)ysis-evolved gas/FT-IR for the characterization and icntification of some polyurethanes (F70). Siesler and Per1 used IR to study polyurethane kinetics, the temperature dependence of hydrogen bondin in polyamide 6, and strain-induced crystallization in a %methylsiloxane elastomer (F71). Choe et al. studied the temperature dependence of poly[2,2'-(m-phen lene)-5,5'-bibenzimidazole] and polybenzimidazole/polyimic& miscible blends at 30-450 "C. Pure polymers showed frequency shifts that were reversible, but the blends exhibited irreversible frequency shifta (F72). Ahern et al. used surface-enhanced Raman and UV to determine the mechanism by which metal particles are stabilized

%

ti,

sht

18R

ANALYTICAL CHEMISTRY, VOL.

63, NO. 12, JUNE 15, 1991

by linear poly(acry1amide) to characterize the formation of acrylamidemethylenebia(acrylamide) copolymer gel networks, and to robe poly(acrylamide) gel pore size as a function of time $ 7 3 ) . Dosiere used IR to study oriented films of polyamide I1 swollen with various organic liquids (F74). Garton reviewed the literature on the characterization of epoxy matrix composites usin ATR/IR (F75).Urban wrote a review on characterizin PO ymeric coatin s using hotoacoustic/FT-IR (F76). Safmar-Rojas and U s a n s t u i e d the curing of nonpigmented alkyl coatings by application of in situ photoacoustic/FT-IR (F77). Cousin reviewed the literature covering the use of IR and Raman s ectroscopy for determining the crystallinity and structur3 properties of poly(viny1 chloride) (F78).Fink et al. wrote a review on the combined use of IR, NMR, smalland wide-angle X:ray scattering, and electron microscopic methoda in dete the structure of solid polymer samples (F79). Jasse re= the literature on the application of photoacoustic/FT-IR for the analysis of synthetic pol (F80), and Grasselli et al. reviewed the literature on t c ; : plication of FT-IR in polymer analysis (F81). Pracella et al. utilized FT-IR and DSC to analyze blends of poly(viny1chloride) or pol tyrene with ethylenepropylene copolymers containin 4 a n 8 0 w t % ester groups in the side chains. Their data sEowed that the miscibility phenomena between the polymer components depended upon the degree of functionalization of the copolymer, the thermal history,and the preparation conditions (F82).Benedetti et al. utilized microscopic FT-IR to study blends of functionalized polyolefins and polystyrene or poly(viny1 chloride) (F83). Zheng et al. used FT-IRto study ly(viny1chloride) (PVC) inity bands in PVC tend with various rubbers. Microc to decrease in NBR/PVC anTin ternary blends (F84). Lantman et al. utilized IR dichroism to measure the orientation relaxation of 6-arm polystyrene stars. Block copolymers of erdeuterated and rotonated styrene were used to separate &e relaxation of thefknch point, arm center, and chain end of the star (F85).Xu et al. utilized FT-IRto study the conformational changes occurring at the yield point in uniaxially drawn atactic and isotactic polystyrene during application of strain. On passing through the yield point, spectra indicated an increase in the amount of higher energy conformation. In atactic polystyrene, it corresponded to an increase of gauche conformations whatever the state may be: pure or plasticized polystyrene, blend with a compatible polymer [poly(methyl vinyl ester)], or copolymer with acrylonitrile. In amorphous isotactic polystyrene, an increase of high-energy trans conformation was observed (F86). Foster utilized IR to study poly(2,54hienylenevinylene) including photoinduced absor tion at 400-4500 cm-' (F87). Williams and Parker utilizefresonance Raman to study polyene formation from samples of iodinated and brominated polyethylene (F88).Snyder and Painter used FT-IRto study high-temperature ring closure of pol amic acids. Both the acid group substitution and olymer tackbone had a stron influence on the rate of ring c l k r e (F89). Pryde et al. utilized IR to study the thermal cure of two polyimides (F90). Young and Day utilized Raman microscopy to study the deformation of carbon fibers and carbon fiber PEEK composites. They found that the Raman bands of the fiber were sensitive to compressive strain (F91). Volka et al. a plied IR to study the mechanism of poly(viny1 chloride) stahization by cadmium stearate (F92). Prasad and Grubb utilized Raman spectroscopy to stud gel-spun high-strength polyeth lene fibers under stress detailed study of the 1063-cm-' gand (393). Sakata et al. used Raman to study the effect of stress on uniaxial stress of benzenederived a hite fibers (F94).Feldman et al. studied epoxy-lignin pogbf)ends by using IR spectroscopy (F95). Parmer et al. utilized FT-IRto study the miscibility of methyl, cyclohexyl, or benzyl methacrylate homolopolymer with poly(viny1 chloride) (F96). Cassel and McClure discussed the computer software versatility TG/FT-IR analysis of volatile and evolved products from an experiment on vinyl acetate-vinyl chloride copolymer (F97). Hues et al. used FT-IR, NMR, and time-of-flight secondary ion mass spectrometry to study perfluorinated poly(alky1 ethers) (F98).

B

s s

wid

ANALYSIS

Druy et al. used IR traqsmittin optical fibers to study the curing of graphite fiber-remforcef polyimide or epoxy reains. IR-transmittingAs-Ge-Se chalcogenide optical fibers or heavy metal fluoride glass optical fibers were used (F99).Urban and Gaboury used photoacoustic FT-IR to study the cross-linking of hydroxy-terminated dimet lsiloxane with Si(OC2HJ,. The spectral changes found c o u d be correlated with change in viscosity (F100). Kornfield et al. utilized dynamic IR dichroism to study the molecular relaxation in binary blends of monodis erse hydrogenated and deuterated polyisoprene (F101).gong and Krimm used Raman to study the longitudinal acoustic mode (LAM) of poly(ethy1ene oxide) to characterize chain folding in a series of molecular weight fractions of this material (F102). Baker discussed the qualitative and quantitative analysis of volatile effluents from the thermal treatment of olymers b utilization of IR (F103). Lee and Shaw used both fR and DSE to characterize the phase separation kinetics of butanediolMDI-poly(propy1ene oxide) block polyurethanes (F104). The0 hilou et al. studied highly conducting doped and undopel polyacetylene by application of IR (F105).Malazzi and Lefrant used Raman to study the n-doped trans-polyacetylene. Additional Raman bands were observed after doping, and an inter retation of the bands was given in the frame of the perturged Green function formalism (F106). Koba ashi et al. used IR to quantify the microstructure of an ahition olymer com osed of 1,4-benzenedithiol and 1,4-diethynylfenzene. M&l compounds were used as an aid in assigning the spectra (F107). Wallinoefer et al. used resonance Raman spectrosco y to study poly(is0thianaphthene)and related compounds (&Os). Furer et al. calculated the Raman band intensities of isotactic and syndiotactic poly(methy1 methacrylate) from electrooptical parameters obtained from band intensities and de ees of depolarization in the spectra of model compounds (#09). Wang and Woodward utilized IR to study solution-crystallized trans-1,4-polybutadiene copolymers (F110).Merino et al. utilized IR to stud the monoclinic and orthorhombic conformers in poly(3,3-$ethyloxetane) obtained dependin u on crystalline temperature (~111).Com ton et al. usei &A FT-IR to study poly (tetrafluoroethypene) and polybutaliene (F112). Yamagiwa et al. utilized IR to study random styrene-methyl methacrylate random copolymers absorbed on silica (F113). Young et al. used Raman microscop to study carbon fibers under stress (FI14). Pandey utilizeJFT-IR microscopy of sin le fibers based on acrylic copolymers (F115).Mulazzi utifized Raman to investigate trans-(CH), and trans-(CD) containin sp3 type defects (F116). Botta used polarized resonant kaman scattering to stud cis-(CX), and polythiophene (F117).Perrin et al. used p o b resonant Raman scattering to study oriented cis-rich (CHI films for the excitation wavelengths 676.4 and 600 nm. $heoretical interpretation is also given (F118). Hanfland et al. used IR and Raman to stud undoped pressures poly@-phenylene) at ambient temperature ranging from 0.1 Torr to 0.20 GPa (Fl19).Pelous et al. utilized resonance Raman to study poly(p-phenylene) doped with AsFs (F120). Lefrant used resonance Raman to study poly@phenylenevin lene). Stron modifications were noted after doping with &CIS (F121). astiglioni et al. used amplitude mode theory and classical molecular dynamics to interpret the vibrational IR and Raman spectra of poly@-phenylene) (F122). Humecki demonstrated the application of FT-IR microscopy in the identification of crystals in a plastic matrix, polypropylene and Teflon surgical thread in tissue sections, elastomers, cabillary tubes, etc. (F123). Furukawa et al. used IR and Raman to stud the molecular structures of oly (1,4-phenylenevinylener and poly(2,5-thienylenevinypenej (F124). Carl demonstrated the utility of IR microimaging for the examination of organic coatings on steel and latex-coated paper (F125). Hotta et al. measured the dichroic ratios of polythiophenes. The carbon-hydrogen out-of-phase deformation mode at approximately 800 cm-' was found to be highly polarized perpendicular to the drawn direction (F126). Compton et al. utilized TGA/FT-IR to study synthetic rubber, gold-filled e oxy resin, pol (vinyl acetate), and silicone O-ring material (h27). Miraberla used FT-IR microspectroscopy and DSC

L

aril

b

OF

SYNTHETIC POLYMERS

simultaneously to study the effect of thermal treatment on olymeric structures of microtomed cross sections of multiyer f i b ( F I B ) . Gerson and Chess used FT-IRreflectance microspectroscopy to study graphite-Teflon pump seals (F129). Zimba et al. used Raman spectroscopyto characterize the vibrational spectra of nylon 66 isotopomers. Five polymers were selectively deuterated at each chemically unique CH group (CD,) and one polymer was '%-labeled at the carbonyf group (F130). Chase determined the molecular orientation of single polyamide and spandex fibers using polarized IR spectrometry methods based on dichroism/microscopymeasurements of polarized lights. If a single aperture system is used, quantitative orientation information can be obtained only by calculating the full dichroic ratio for the IR bands of interest. Incorporation of redundant aperturing into the IR micrwope improved the stray light level and allows for better photometric accuracy (F131). Shen et al. used IR to study hydrogen bonding in a semicrystalline TDI-based polyurethane. A broad band at 101 cm-' in amorphous samplea and 107 cm-' in highly oriented samples was assi ned to a hydrogen bond. A band at 320 cm-' was assi n e t t o a 04-NH-C bending mode cou led to the metfiylene chain bending (F132). Carter et al. cfaracterized weathered surfaces of intact olymer films on substrates by using photoacoustic/FT-IR h133). Vorenkamp et al. used ATR/IR to study the interdiffusion of poly(viny1 chloride) and poly(methy1 methacrylate) (F134). Church et al. discussed the use of FT-Raman for structural characterization of end groups of polyesters or dyed acrylic fabrics and sulfur compounds (F135). Yang et al. used a hi h-pressure differential scanning calorimeter (DSC) and a -lRsystem with a prism liquid cell to monitor the reaction kinetcis of styrene-unsaturated pol ester resins at elevated curing temperatures and pressure 67136). Tassin et al. studied the orientation relaxation of selected parts of linear and star polystyrene by application of IR dichroism (F137). Gaboury and Urban used photoacoustic FT-IR to study cross-linking of unsaturated polyester resins with styrene ( F I B ) . Popli and Dwivedi utilized variable angle ATR FT-IR to obtain the compositional depth rofile of blen s of styrene-acrylate-methacrylic acid coporFer, an alkali-soluble styrene-acrylic acid resin neutralized with ammonia, and a copolymer of propylene (F139). Tanaka et al. studied the dissociation of oly(st enesulfonic acid) and poly(ethy1enesulfonic acid) gy appcation of Raman spectroscopy (F140). Ny uist studied the IR spectra of syndiotactic pol tyrene recorjed over a range of temperatures and showedrsthat at approximately 180 "C the crystalline form changes. The syndiotactic form of polystyrene at ambient temperature is dependent u on its physical history (F141). Reynolds et al. studied the spectra of syndiotactic polystyrene. A helical conformation was obtained by casting from dilute solution, and an all-trans form was obtained after annealin at 200 "C or upon drawing at 100 OC. Annealing at 185 OC! increased the degree of crystallinity of the helical form, while heating to >200 "C caused the transition to the all-trans conformation (F142). Jo et al. investigated the interactions in miscible blends of a styrene (92% )-acrylic acid (8%)copolymer with poly(methy1 methacrylate). The IR data indicated that there is intermolecular hydrogen bonding existing between the proton of the carboxylic acid groups and the carbonyl groups of PMMA (F143). Nyquist and Malanga reported two types of crystalline polystyrene units in syndiotactic styrene-4-methylstyrene depending upon the concentration of 4-methylstyrene in the copolymer by application of IR (F144).Storey and Hoffman used IR to quantify the hydroxyl concentration in poly(ethylene ether carbonate) (FI45).Kumler et al. utilized IR to study the thermal stability of vinylidene chloride-methyl methacrylate random copolymers. The carbonyl stretching frequency for methyl methacrylate increased as the concentration of vinylidene chloride increased. The copolymers had maximum susceptibility to thermal decomposition when the number of adjacent methyl methacrylate and vinylidene chloride units was maximized (F146). Piaggio et al. utilized IR and Raman data to make an assignment for poly(p-phenylene sulfide) (F147). Kumler et al.

E

d

d

Ik

ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

IQR

ANALYSIS OF SYNTHETIC POLYMERS

used IR to stud inter- and intramolecular interaction in amylonitrile-met&l methacrylate random copolymers (FIB). Brasch and Lustiger studied the slow crack brittle-type fracture of polyethylene under elongation by using olarized IR microspectrometry to determine the morp olog.ica1 changes, and the role of the crystalline and am0 hous r played in the failure mechanism (F149). S a v i 3 and ward studied the effects of temperature on partially crystalline trans-1,4-poly(isoprene)by application of FT-IR (F150). Ishitani et al. used ATR/FT-IR, Raman, SIMS, and ESR to study the surface of oxy en-implanted polyethylene (F151). Maddams et al. utilized Ik to estimate the ethyl branching in 01 ethylene (F152). 8arrdemonstrated the application of IR microspectroscopy in the analysis of coatings for optical fibers coupled with com uter spectral searching of a polymer library (F153). Lang et applied IR micros ectroscopy in the identification of polymeric constituents ordust contaminants on materials and products (F154). Aurelio da Costa et al. used ATR/IR to study the surface of polyethylene pretreated with potassium permanganate (F155).Maddams and Parker used FT-IR and Fourier selfdeconvolution to determine that a carbonyl band in oxidized polyethylene consists of three separate carbonyl stretching modes (F156). Hagemann et al. utilized IR to measure quantitatively the crystallinity of polyethylene and ita temperature dependence (F157). Carter et al. utilized IR in the analysis of poly(ethy1ene terephthalate) fibers, and they discussed the broadening of spectral features in terms of sample preparation (F158). Carduner et al. used IR to study the degradation mechanism of poly(ethy1ene terephthalate) fibers in nitrile rubber composites (F159). Schneider et al. utilized IR to study Langmuir-Blodgett films of poly(l,l,2,2-tetrahydroperfluorodecylmethacrylate) and 2-hydroxyethyl acrylate-l,l,2,2-tetrahydroperfluorodecyl methacrylate copolymer to determine the orientation of the side chains at ambient and elevated temperatures (F160). Zhao et al. measured the IR dichroic ratios of chain-oriented polystyrene, methacrylic acid-styrene copolymer, and ita sodium and cesium salts. The measurements showed that for a stretching temperature normalized to the glass temperature the chain orientation was higher in the salts, the greater the salt content, the greater the chain orientation (F161).Bouton et al. used FT-IR studies to determine the orientation in uniaxially stretched films of poly(2,6-dimethyl-l,Cphenylene oxide)-atactic polystyrene blends (F162). Yan and Lee used IR to study the heat curing reaction of glycercf -terminated TDI and poly(pro ylene glycol urethane) prepolymers (F163). Harthcock u s e i IR spectroscopy and sophisticated software to study the hydrogen bonding structure of urethane block copolymers and various acid-containin copolymers. He stated that in a model urethane (a bloc% copolymer based on poly(propy1ene oxide), MDI, and varying amounts of butanediol as a chain extender) several distinctive absorption bands due to hydrogen bonding of various strength are present and are a function of hard segment length (F164). Musto et al. utilized FT-IR to study hydrogen bonding in polybenzimidazole/polyimide s stems using low molecular wei ht monofunctional probes (ASS).Brisson et al. used IR, I3C%MR, and single-crystalX-ray diffraction to study model compounds of aromatic nylons (F166). Ley and Drickamer used IR on various n-alkanes from CsHIs to C H,, and polyethylene to study the effect of pressure on #e wbrational spectra. The intensities of the CH2 wag and C-C stretch increased with pressure. The C-C stretch borrowed intensity from the CH wag to the extent of overwhelming it. This was attributed!to intermolecular coupling and was much more in polyethylene than in the case of the linear hydrocarbons (F167, F168). Mori utilized IR to determine the composition of styrene-methyl methacrylate random copolymers (F169). Taylor used IR in the analysis of poly(viny1 alcohol). The ratio of the absorbances at 2917 cm-I to the absorbance at 1090 cm-I was measured and calculated. This allowed the uncorrected ercent wax values to be determined. These data allowed recfmation of poly(viny1 alcohol) (F170). Taboudoucht and Ishida described a new FT-IRtechnique called diffuse transmittance which is based on the collection and analysea of the diffusely transmitted IR radiation through

K

9

20R

ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

fibrous samples (F171). Kirret and Lake coauthored a book on the IR spectra of synthetic and natural fibers (F172). Spells and Sadler studied the CD2 bendin vibration of annealed solution-grown crystals of deuteratmf polyeth ylene in terms of conformational changes and they compared the results with model calculations involving annealing zones of various dimensions (F173). Bhat and Sundaresan applied IR in the analysis of poly(acrylonitri1e)-polypyrole composites film (F174). Barry et al. utilized IR in the study of chemical thermomechanical pulp grafted with a acrylonitrile-methyl methacrylate copolymer (FI75). b r i o et al. observed selective oxidation of para-substituted polystyrene films on Ag substrates during surface-enhanced Raman scattering (FI 76). Davidson discussed the enhancement of the evolution profiles of the IR spectra of products formed by linear tem erature programmed pyrolysis of polymers (F177). Ishicfa has edited a book on the characterization of polymers by application of FT-IR (F178). Lee et al. utilized IR to study the phase separation kinetics of a model butanediol-MDI olyoxypropylene block pol urethane (FI79). Nguyen uszphotoacoustic FT-IR to stuiy an adhesive film containin poly(viny1 formal) coated on a modified polyethylene rubger surface (F180). Xu and Balik utilized ATR/IR to study the effects of acidic deposition on latex paint films with and without a calcium carbonate extender additive (27181). Wang et al. made preliminary vibrational assignments on the IR spectra of soluble poly(o- and m-toluidines) (F182). Park et al. utilized both IR and ESCA to study the effects of ionizing radiation of epoxy's, graphite fiber, and their composites (F183). Thygarajan and Janarthanan used IR and thermal analysis to study the intermolecular interactions in blends of poly(viny1 alcohol) and poly(vinylpyro1idone) (F184).Schmidt et al. utilized IR and ESCA to study the olymer distribution in homopolymer blends of poly(metgy1 methacrylate) and poly(viny1 chloride) (F185).Clark et al. used IR, ESCA and DSC to study the miscibility of homopolymer blends of poly(epsi1on-caprolactone) and poly(viny1 chloride) (F186). Kim et al. used IR to study the crystalline and amorphous phases in the vinylidene fluoride-trifluoroethylene copolymer (F187).Mittlefehldt and Gardella utilized ATR/IR to perform quantitative Fourier self-deconvolution and Fourier transform IR analysis of bis henol A-polycarbonate-poly(dimethy1siloxane) random {lock copolymers (F188).Yang and Lee used IR to study the heat curing reaction of glycerol-terminated urethane prepolymers (F189). Zimba et al. were able to record FT-Raman spectra of submicrometer-thick polymer films, laminates, and molecular com sites by using the film as an asymetrical waveguide for the f",er excitation and collecting the scattering emanating from the guided streak (F190). Schuetzle et al. utilized FT-IR, ESCA, and secondary-ion mass spectrometry to study organic coating/steel interfaces (F191). Krishman used FT-IR microscopy to obtain transmission or reflection spectra of polymers as small as 20 pm (F192). Roush et al. utilized IR spectral deconvolution to obtain information about the length of the methylene sequence in an ethylene-propylene co olymer and also to provide information about the crystaiinity of a polypropylene sample (F193). Ishitani wrote a review on the application of FT-IR in the characterization of polymers, semiconductors, and ceramics (F194). Teramae and Tanaka used the FT-IR phoand Urban toacoustic technique to study polymer films (F195), wrote a review on this same topic (F196). Sumpter et al. wrote a review on computer simulation of condis crystals and meso-phase transitions, amorphous and crystalline polymers, and calculation of vibrational spectra and heat capacities of solids. Polyethylene was used as a demonstration (F197). Graf et al. wrote a review describing optical and IR techniques such as diffuse reflectance, photoacoustic, and IR microscopy which are capable of producing high-quality spectra of systems including filled polymers, reinforced plastics, fibers, and surface-treated particulates (F198).Khodzhaeva et al. used IR to develop a method to determine the % branched a-olefins in the range 1-10% in copolymers with ethylene (F199). Holland-Moritz studied the effects of deformation, thermal pretreatment, or mechanical retreatment on the IR s ectra of polyethylene, poly(1,l-gmethyethylene), polyketra-

ANALYSIS OF SYNTHETIC POLYMERS

methylene terephthalate), and adi ic acid-1,8-octanediol copolymer using an ap roach that aiowed simultaneous recording of stresa-strain and IR spectra with polarized light within pre rogrammed time intervals (F200). Zerbi et al. used ATR/IW to study the depth profile of polyethylene films (F201). Alamo et al. used Raman spectroscopy to study changes in the phase structure of polyethylene after long-time storage at room temperature (F202). Siesler used IR to study the transient structural changes of high, low, and linear low density polyethylene by simultaneous mechanical and FT-IR measurements (F203). Rossignol et al. combined birefringence and IR dichroism measurements on semicrystalline 1-butene-ethylene copolymer samples with 3245% cr stallinity and draw ratios of 1-9 to show that the estimateivalue for the intrinsic amorphous birefringence of 0.058 was realistic (F204). Garcia and Starkweather utilized IR to stud hydrogen bonding in nylon 66, N,"-diacetylhexamethylen~e, and N-butylacetamide. They concluded that the breaking of h dr en bonds in these amides is a complex multistep proteas ($203. Woebkemeier and Hinrichsen investigated aliphatic polyamides by using IR and density measurements. They found that the integral intensity of the characteristic NH stretching vibration shows a quantitative dependence on the chemical composition of the polyamide and that the density varied systematically with the concentration of the hydrogen bonds (F206). Lee and Quin used FT-IR, DSC, and DMA to study the miscibility of poly[2,2-(m- henylene)-5,5'-benzimidmle)]and pol imide-polysulfone [om 3,3',4,4'-benzophenonetetracarLxylic dianhydride and 3,3'-diaminodiphenyl sulfone. The blends showed a single but broad glass transition (F207). Edwards and Hakiki obtained Raman spectra of single fibers of Nomex and Kevlar, and they made vibrational assi ments (F208). Benrahid et al. utilmd diffuse reflectance IR to study the surface of Kevlar modified via amination and sulfonation (F209). Siesler reviewed recent advances in IR spectrometry of polymers such as olyethylene, poly(ethy1ene terephthalate), poly(viny1idene doride), and natural rubber with focus on the structural changes induced by various mechanical treatments (F210). Kaufmann et al. used IR, TEM, and electron diffraction to study hi hly oriented melt drawn films of poly(viny1idene fluorid$ and blends with poly(methy1 methacrylate) (F211). The scattering of incident IR radiation was made diffuse through the use of a KBr overlayer in surface Characterization of fiber and polymer film samples. McKenzie et al. stated that this approach eliminates orientation effects in studies of fiber materials and enables enhancement of the spectra of surface species on films (F212). Kim et al. used IR to study the miscibility of poly(viny1 chloride) with styrene/acrylonitrile copolymers (F213). Todorovskii and Plotkin determined the force and electrooptical fields for poly(o-meth lstyrene), poly(m-methylstyrene), pol (p-methylst ene[ and poly(2,l-dimethylst rene). Tabes of half-Endwidths were also compiled ( h 1 4 ) . Menif et al. used IR and carbon-13 NMR in the characterization of cross-linked polymers obtained by the condensation of 2,4,6-trimethylpyridine with tere hthalic aldehyde in the presence of an acid catalyst (F215f: Jasse used derivative spectroscopy and FT self-deconvolution to enhance the apparent resolution of IR spectra of polyethylene, polystyrene, isotactic polystyrene, and Lopox 152 epoxy resin (F216). Kumar used FT-IR microscopy in the characterizationof external lubricants on styrenic polymer surfaces (F217). Magonov et al. recorded IR spectra in the region 500-600 cm-l of atactic polystyrene in the glass transition region. The heights of the positive peak at 532 cm-' and the negative peak at 566 cm-l a pearing in the temperatue spectra were a measure of the , n a ! in the conformationally sensitive spectral range continuously increasing low-frequency shift 60 < T < 100 (F218). Graf et al. performed uantitative analysis on neat fibers of poly(ethy1ene tereph%alate) usin drifts and optical constant data (F219). Kundu et al. used to analyze samples of acrylonitrile-grafted jute fibers (F220). King and Codella used IR to study monomeric carbonates and polymeric polycarbonates in solution a t variable temperatures. Polycrystalline films formed a t low temperature

flasrame

8

(F221). Kokai et al. used ATR/IR to stud the surface of poly(ethy1ene terephthalate) film etched by d F laser-induced ablation (F222). Rabie et al. used IR and UV to study poly(viny1 alcohol) after treatment with FeCl and ZnC1,. A significant change in crystallinity of poly(viny! alcohol) was noted (F223). Miller and Obremski discussed the use of vector concepts in multicom nent IR analysis to enhance quantitation of polymers (F224y Graf et al. compared IR transmission, specular reflectance, and attenuated total reflectance spectra of poly(methy1 methacrylate) deposited on germanium. The spectra differed significantly from each other, but these differences were optical artifacts and not true sample differences (F225). McCluskey et al. studied the IR spectra of polyacrylates on ceramic oxide powders. Two types of metal complex formation occur involving bidenlate or bridging interactions (F226). Bowley et al. used laser Raman spectroscopy as a direct noninvasive method for quantitatie monitoring of the polymerization of methyl methacrylate even beyond the onset of the Trommsdorf effect. They stated that individual monomers in 2-component systems can be monitored independently (F227). Urban reviewed the literature covering the application of IR and Raman in the characterization of water-soluble polymers (F228). Pfeffer and Nold studied stress-induced frequency shifts in olyethylene utilizing IR spectroscopy. They used the m o f k l a r d amics technique to study the spectral response of a polyetrlene chain in a crystal environment under a mechanical &formation (F229). S der showed that the IR band intensity associated with a degalized mode of polymer chains was nonlinearly related to the concentration of disorder measured in terms of the conformational state of bonds. The degree of nonlinearity increased with chain length. An interrelation was shown for the relation between the direction of the local dipole moment derivativeassociated with the mode and direction of the skeletal bond whose internal rotational states determine the conformation of the chain and the dependence of the normal coordinate of the mode on the conformation of the chain (F230). Birch determined the optical constants of high and low density polyethylene in the region 50-450 cm-' (F231). Painter et al. reexamined previous IR studies of ionomers. They stated that there was little evidence to suggest that IR studies of the carboxylate stretching vibrations can be used to differentiate between multi les and clusters and that temperature studies can be ex Pained in terms of water loss (F232). Vedu and Devesa useIpyrolysis-GC, TGA, and IR to determine the vinyl content in ethylenevinyl acetate copolymers (F233). Bohan et al. recorded the Raman spectrum of liquid, 2,4-dimethylpentane as a model for determining the structure of polypropylene (F234). Miller utilized NIR to perform quantitative analysis on ethylenediene-propylenediene monomer (EPDM) terpolymers (F235). Shahada recorded the IR spectrum of poly(4ethylidene-l,3-cyclopentylenevinylene)(F236). Carter et al. utilized photoacoustic/FT-IR to identify natural rubber in samples containing as much as 15 w t % carbon black (F237). Arram et al. determined the effect of temperature on intermolecular orientational correlations between chain segments in strained polyisoprene using IR and the dichroic ratio method. The molecular orientation did not de end on temperature, which suggested that this intermolecJar correlation presented an entropic character (F238). DeSimone and Block used IR and UV to study the affects of artificially aged cellophane film (F239). Yang et al. used FT-IR photoacoustic spectroscopy to study foam finished cotton fabrics (F240). Flink and Stenber used IR to study rubber grafted cellulose fiber composites fF241). Michell et al. utilized second-derivative diffuse reflectance FT-IR in the region 1550-1800 cm-l to study the light-induced yellowing of paper (F242). Aharoni et al. utilized both IR and NMR to study pol amides in strained and unstrained states. The amide I m d e shifts to higher frequency with strain (F243). McDonald et al. developed a new rhmphotoacoustic FT-IRcell to perform stress-strain measurements which lead to the enhancement of the photoacoustic signal. This allowed one to determine the effect of elongation forces on the molecular structure of polymers (F244). ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

21 R

ANALYSIS

OF SYNTHETIC

POLYMERS

Pacansky and Schneider utilized IR to study thin films of 01 (vinyl alcohol) exposed to a 25-kV electron beam under ig vacuum conditions and to a 175-kV electron beam at atmospheric pressure under nitrogen (F245). Taylor used IR to determine the wax content in reclaimed poly(viny1 alcohol)

R. E

(F246). Samanta et al. utilized polarized ATR IR to study the orientation behavior of nylon 6,6 yarn at dif erent draw ratios. They showed that the a-conformation increases with drawin for nylon 6,6 fibers (F247). Todorovskii and Plotkin predicte! the IR spectra of polystyrene and its deuterated analogues. They determined the force and electrooptical fields of polystyrene and its deuterated analogues, and a table was compiled for half-widths of IR absorption bands of these compounds. The theoretical IR curves constructed by using a machine library of standard fragments agreed qualitatively with curves calculated from experimental data (F248). Usami et al. utilized pyrolysis-GC, IR, and carbon-13 NMR to study poly(acrylonitri1e) fibers during oxidative thermal degration (F249). Feng and Ng used Raman to study the kinetics of microemulsion olymerizations of styrene and methyl methacrylate in situ &BO).Schlotter used waveguide Raman techniques to study the diffusion of small molecules in glassy polymer thin films (F251). Tassin et al. utilized the IR dichroism technique to measure the orientation relaxation of both components in blends of long entangled polystyrene and short nonentangled deuterated polystyrene chains. An unexpected significant orientation of short chains was detected at long times (F252). Shashidhar et al. utilized IR, proton NMR, and UV to stud styrene erized with methyl methacrylate, ethyl metgacrylate, g y - k y l methacrylate (F253). Dybal and Krimm measured the IR and Raman spectra of nonoriented Sam les of crystalline isotactic poly(methy1 methacrylate). ?formal coordinate calculations were performed by using a combined valence force field transferred without refinement from hydrocarbons and from methyl acetate (F254). Terlemezyan et al. used IR and electroconductive measurements to study polymer blends of poly(acetylene) with poly(methy1 methacrylate) and with methyl methacrylatebutadiene-styrene copolymer (F255). Kim and Heeger used IR to study the IR active modes of heavily doped "metallic" polyacetylene (F256). Hankin and Sandman used Raman spectroscopy to study single crystals of brominated pol (1,6-di-N-carbazolyl-2,4hexadiene) (F257). Pryde utilized 6"-IR to study polyamide hydrolysis. Polyamides studied were repared from benzophenonetetracarboxylic d i a n h y d r d , pyromelletic dianhydride, or 3,3',4,4'-biphenyltetracarboxylic dianhydride with various aromatic diamines (F258). Snyder and Painter utilized IR as a method for acquiring and treating kinetic cure parameters from dynamic IR data for a series of polyamic acids (F259). Tinh and Byrd used IR to study the degradation of one-component polyetherpolyurethane protective coatings on steel (F260). Druy studied the cross-linking of graphite fiber reinforced epoxy resin using a sapphire embedded optical fiber in the resin and IR (F261). Plazek and Frund used IR and DSC to determine the degree of cure of Dartiallv cured epoxy resins (F262). Fukuda et al. used NIR to study the nature of water sorbed in Dolv(ethv1ene tereDhthalate) film (F263). Khoo et al. utifized ATR/IR to st;dy surface modification of contact lens material by silanization. The surfaces of poly(methy1 methacrylate) and poly(2-hydroxyethyl methacrylate) were the materials modified (F264). Boerio et al. used surface-enhanced Raman scatterin to study a model acrylic adhesive deposited onto Ag island fihs (F265). Cabasso et al. used IR in their study of radiopaque miscible systems composed of poly(methy1methacrylate) and transition and nontransition metal salts (F266). Devaux et al. used IR and UV to follow the photo1 sis of poly(cyc1ohexylmethylsilane) and poly(hexylmethy7silane) (F267). Song and Krimm used Raman spectroscopy to study the longitudinal acoustic mode (LAM) of folded-chain morphology in poly(ethy1ene oxide) (F268-F270), and they also determined the elastic modulus of poly(ethy1ene oxide) from the LAM mode (F271). ($n et al. used IR to determine that there is intermolecular hy rogen bonding between poly(vinylpheno1) and poly(ethylene oxide) (8'272). Benedetti utilized IR to study the

c

Y

22R

ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

enfluence of molecular weight on the cr stallization process of poly(viny1idene fluoride) (F273). Anirews and DeHaseth used fiber o tics coupled with IR to study the effect of temperature anfpressure on laminates of copper sheets with glass fabric reinforced polymers (F274). Dosiere used IR to show that the 302- and 411-cm-' bands for poly(ether ether ketone) resulted from a mode with the crystallineand amorphous phases, respective1 (F275). Chang and Hsu utilized Raman to study strain-induced frequency changes in poly(p-phenylene terephthalamide) single fibers (F276). Tidrick and Koenig used photoacoustic FT-IR to characterize the reaction products of metalated evlar 49 fibers and epichlorohydrin (F277). Noda et al. used infrared linear dichroism and polarization-modulation in their study of isotactic polypropylene, butadiene-styrene triblock copolymer, and low density polyethylene (F278). Duerst et al. used photoacoustic IR in their study of poly(ethy1ene terephthalate). For this experiment, a chamber was used that acoustically isolates the detector from environmental noise, resultin in a three-fold enhancement of the signal-to-noise ratio ( A 7 9 ) . Meilunas et al. utilized IR to identify binders in aged paint (FBO).Jansen developed an online liquid chromatography-IR system for the analysis of polymers and additives (F281). Yang evaluated photoacoustic and diffuse reflectance IR spectroscopy for the near-surface analysis of films and fibers (F282). Farquharson et al. analyzed extruded polymers via a fiber optic coupled FT-near IR system (F283). Washall and Wampler developed a new interface IR cell which allows direct Sam ling of pyrolyzed polymer samples (F284). Davis et al. usefFT-IR to study polyurethane foam reactions and hydrogen bondin in real-time (F285). Farrington et al. used an additionafmirror to existin specular reflection optics in an IR spectrometer which enahed them to record fringe-free spectra of thin smooth polymer films (F286). Tungol et al. used infrared microscopy to record IR spectra of fibers and constructed an IR data base for 43 polymer fibers. Unknown fibers were identified by usin a computer search system (F287). Jackson et al. reviewet! the application of FT-Raman spectroscopy for the analysis of elastomers (F288). McClure et al. used IR spectrometry combined with oxygen sputter etching to produce a technique for determining de th profiles of the chemical and physical structure of organic &in films (F289). Zhao used Raman spectroscopy to study polyethylene at ambient temperature and under high ressure employing a Mao-Bell type of miniature diamonf-sapphire anvil cell (F290). Wolf et al. utilized IR to help analyze the tight (110) fold in polyethylene (8'291). Pate1 used an IR analyzer to monitor slip agents in molten polyethylene during extrusion. A lower level of detection of a amide slip agent was established at lo00 m (F292). Qureshi et al. used IR to study weather-inducezzegradation of linear low density polyethylene. Changes in the mechanical properties with degradation were also reported (F293). Badilescu and Badilescu studied the effect of silver on the thermal degradation of polyethylene by pyrolytic IR spectroscopy using ATR. Silver coated crystals were used to trap the oxygenated hydrocarbons resulting in the thermal fragmentation of polyethylene (F294). Krishnan et al. utilized IR microtransmission and microreflectance spectrocopy on large polymer samples to determine laminate film compositions, polymer identity and morpholo and surface defects in aluminum- olyethylene-poly(ethy ene terephthalate) laminates, etc. k 2 9 5 ) . Passingham et al. used IR, DSC,and X-ray diffraction to study isotactic polypropylene and showed that the appearance of multiple peaks in the meltin endotherm of isotactic polypropylene arose from a-crystafline regions alone with little contribution from the &crystalline form (F296).Miller et al. used near-IR for the anal sis of the bulk composition of pol (ether urethane urea) $lock copolymers (F297). Miller andrEichinger utilized near-IR and diffuse reflectance spectroscopy for the analysis of rigid polyurethane foams (F298). Ellis et al. used RT-Raman to study paint systems in the coating industry (F299). Carter et al. used photoacoustic FT-IRspectroscopy in the depth profiig of paints and carbon black filled rubbers (F300). Snyder utilized FT-IR in the high-temperature curing reactions in polyamides (F301). So

J

P

ANALYSIS OF SYNTHETIC POLYMERS

and Rudin used IR el permeation chromatography, and high-resolution '3c NhfR to study the formation and reactions of resol phenolics (F302). Langer used photoacoustic FT-IR to study poly(N-methylaniline)and related copolymers (F303). Chabot et al. used IR to study segmental orientation in oly(vin 1 chloride), poly(a-methyl, a-n-pro yl-8-propioLctone) glends (F304). Bower and Jackson male vibrational assignments for the carbon-chlorine stretching modes observed in the Raman spectrum of poly(viny1 chloride) (F305). Seibles utilized IR to study the effect of metal halide dopin on poly(viny1 chloride) films (F306). Jackson et al. use8 Raman spectroscopy to study wet poly(viny1chloride) gels at the gel-solution transition temperature (F307). Bartholin et al. used IR to ather evidence for the grafting of ester groups on poly(viny1cboride) stabilized by zinc and calcium stearates (F308). Jackson and Bower utilized Raman spectroscopy to study poly(viny1 chloride) gels made in cyclohexanone in the wet state at concentrations of 21-9370 polymer (F309). Sugimoto and Miyake used polarized micro-FT-IR to study the molecular structural changes induced in sputtered tribologically oriented fluoro olymer film (F310). Miller et al. used near-IR in the ana&sis of the phase separation in poly(ether urethane urea) block copolymers (F311). Yang et al. used FT-IR PAS and XPS to determine the location of a copol meric inish in modified poly(ethy1ene terephthalate) fibers &312). Ma and Prud'homme used FT-IRand differential scanning calorimetry to determine the miscibility and phase behavior of caprolactone/ethylene terephthalate copolymers with poly(viny1 chloride) and chlorinated poly(viny1 chloride) (F313). Fina et al. used Raman spectroscopy to study the effects of stress on oriented poly(ethy1ene terephthalate) (3'314 ) . Cesteros et al. used IR to show that intermolecular hydrogen bondin exists between a blend of oly(n-vinylpyrrolidone) and po&(monobenzyl itaconate) (8315). Taylor et al. used Raman spectrosco y to study the coil-to-rod transition in polydiacetylenes (8316). Ancelin et al. used ATR FT-IR to study the surface hydrolysis of polythiazyl (F31 . Cole et al. developed a diffuse reflection FT-IR method for determining the state of crystallinity in com osite materials made from poly(pheny1ene sulfide) (F318). fittoria used IR to study the conformation transitions in syndiotactic polystyrene (F319). Ruvolo, Filho, and Vittoria stated that there is a correlation between the intensit of an IR band a t 1222 cm-' and the polymer structural o r d r in syndiotactic polystyrene (F320). El-Agramy and Shabaka utilized IR to study the effect of y-radiation on polystyrene (F321). Onyiriuka et al. used IR and ESCA to study the effect of y-radiation on the surface of polystyrene (F322). Noda reviewed the literature on how to obtain two-dimensional IR spectra and applications. Examples were given for polystyrene and hair keratin (F323). Miller et al. utilized near-IR in the determination of the microstructure and composition in butadiene and styrene-butadiene polymers (F324). Foti and Reitano used Raman spectroscopy to study irradiated polystyrene films (F325). Titan and Zerbi interpreted the vibrational spectra (IR and Raman) of pol pyrrole (F326). Dekiert used rheooptical FT-IR to provid a detailed picture of hard- and soft-segment orientation during cyclic loading-unloading of elastomeric poly(tetramethy1ene glycol)-carboxy-terminated poly(azacyclotridecan-2-one) block copolymer (F327). Sellitti et al. utilized ATR/FT-IR to characterize the surface of graphitized carbon fibers (F328). Saunders and Taylor used IR to record the spectrum of cellulose acetate butyrate in three different solvents (F329). Agbenyega et al. utilized FT-Raman in the study of a wide range of polymer systems with emphasis on the problem of crystallinity (F330). Kalasinsky et al. utilized IR reflectance spectroscop in the quantitative anal sis of cellulose fillers (F331). Linie used grazing incidence spectroscopy to study pyromellitic dianhydrideoxydianiline-derivedpolamic acidmetal interactions on mirror surfaces (F332). Boerio and Hong used surface-enhanced Raman scattering in the nondestructive characterizationof e xy-dicyandiamide interphases (F333). Hendra et al. use&T-Raman in the identification and characterization of pol amides (e.g., Nylon 3 to Nylon 12) (F334). Lee et al. used Jfferential scanning

f

A

I8

calorimetry and IR spectroscopy to stud the formation and characterize oxazolidone-isocyanuate po&mers (F335). Druy et al. used fiber optic FT-IR to monitor the cross-linking of epoxy resin-carbon fiber composites in an autoclave (F336). Politou et al. used IR to study chars produced by heatin polycarbonates (F337). Noda et al. studied poly(meth$ methacrylate) by means of two-dimensional IR (F338). ElAgrami and Shabaka used IR to study the effects of y-radiation on poly(methy1 methacrylate) (F339). Sharma et al. utilized IR to characterize poly(alky1 methacrylates) (F340). Cowie and Swinyard used Raman spectrosco y in a study of critical phase boundaries in poly(acry1ic acidy-dioxane solutions (F341). Xenopoulos and Wunderlich analyzed the heat ca acities of 10 polyamides using an ap roximate group viTJration spectrum and fittin the skeletarheat capacity to a Tarasov function (F342). Urgban utilized hotoacoustic and ATR/IR to study the latex film-air a n f film-substrate interfaces (F343). Pandey used photoacoustic FT-IR to study undyed acrylic-nylon fabric (F344). Bourgeois and Church utilized FT-Raman in the identification of low levels of d estuffs in acrylic fibers (F345).Valero et al. used IR and N& to study a blend of Ardel DlWpoly(buty1ene terephthalate) (F346). Mevellec et al. used IR and Raman to study poly(thienylenevinylene) and poly(furyleneviny1ene) (F347). Rakovic et al. utilized IR and Raman in the theoretical study of poly@-phenylenevinylene) (F348). Gribov et al. used IR in the calculations and interpretation of the two poly(pheny1enevinylene) conformations (F349). Brassett et al. used Raman in the study of poly(2,5-thienylenevinylene)(F350). Abetz et al. used an IR linear dichroism technique in their study of tin block SBR rubber (F351). Shimomura et al. obtained IR and Raman data for two crystalline forms of poly(ethy1ene oxide) (F352). Viehbeck et al. used FT-IRand UV-vis spectroscopy in their study of electrochemical properties of polyimides and related imide compounds (F353). Molis used polarized IR to Characterize molecular orientation in PMDA-oxydianiline copolymer and PMDA- henylenediamine copolymer films by IR dichroism (F354f Johnson and Wunder used FT-Raman in their characterization of polyimide composites (F355). Lee et al. used XPS and ATR/IR to study the surface of pyromellitic dianhydrideoxydianiline-base polyimides which were modified by treatment with base, followed by acid, to form polamic acid sites (F356). Wang et al. utilized Raman spectroscopy to study blends of high and low density polyethylene and to obtain phase diagrams showing the magnitude of crystdine amorphous and interfacial phases at different compositions (F357).Wieboldt et al. used supercritical fluid extraction/supercritical fluid chromato raphy and IR to identify antioxidants in polyethylene b 3 5 8 ) . LeFrant et al. obtained resonance Raman and IR data for both poly@-phenylene) and poly(phenyleneviny1ene). Doped olymers were also studied. They used a dynamical model ased on a valence-force field, and all IR and Raman bands were assigned and sets of force constants were determined (F359). Guerra et al. recorded IR spectra of syndiotactic polystyrene in various crystalline forms and modifications and in the amorphous state. Spectral changes were discussed (F360). Evanson and Urban studied ethyl acrylate-methylacrylic acid copolymer-sodium dioctyl sulfosuccinate latex films at the film-substrate and film-air interfaces using ATR, circle ATR, and photoacoustic FT-IRtechniques (F361). Perry and Campion used Raman spectroscopy to study the polyimide/silver (110) interface of polyimide based on yromellitic dianhydride and oxydianiline (F362). Sack and kaudel used ATR FT-IR to study the type of interactions in polymer blen s containing poly(ester urethane) and styrene-acrylonitrile copolymer or acrylonitrile-butadiene-styrene copolymer (F363). Margalit et al. utilized ATR fiber-optic FT-IR containing a AgBr-AgC1 fiber for in situ monitoring of the cross-linking of epoxy resins, epoxy resin adhesives, or MDI based polyurethane and the polymerization of the coupling agent (F364). Samanta et al. utilized polarized ATR/IR to study structure/frequency relationships and orientational behavior in partially oriented Nylon 66 yarns spun at various s eeds (F365). Bummer and Knutson used ATR/IR to stu& the

E

d

ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

.23R

ANALYSIS OF SYNTHETIC POLYMERS

surfaces of hydrated co oly(ether-urethane ureas) (F366). Nishikida et al. deveyoped a high-temperature gel-permeation chromotography system to characterize commercial olyethylene (F367). Chien et al. fractionated polypropylene y solvent extraction and measured the IR absorbance ratios, A998fA993 and A841fA973. They found that the absorbance ratios varied linearly with the homosteric sequence population. The results suggested that the low-melting olypropylene fractions had low IR isotacticity and that theR! measure of isotacticity may be more dependent on long sequence length isotactic helices than the NMR measure of isotacticity (F368). Baker et al. studied selected random and block ethylenepropylene copolymers using IR, '% NMR, DSC, and dynamic mechanical analysis (F369). Tanabe and Shimomura ro osed a model to explain the anamalous shift of the A2 Ik aEsorption bands in 2 trigonal pol (oxymethylene) crystals (needlelike extended-chain crystal anisolution-grown folded-chain crystal) (F370). Visscher et al. characterized inter enetrating networks from poly[bis(methoxyethoxyethoxyf)phazene] and either pol (methyl methacrylate) or polystyrene b using IR and NMl$ (F371). Pinther and Hartman utilizeiIR and TGA to characterize polyester-polyanhydrides with alkylene or oxyalkylene moieties in the polymer chain (F372). Yarwood reviewed the literature for the application of FT-IR to study the n t used ial of materials for electronic devices (F373). Fried anP Li FT-IR to study cellulose acetate and oly(methy1 methpressures up to acrylate) at 35 oc as a function of pressures of 55 atm (F374). Prasad and Grubb utilized Raman to study the tensile deformation of Kevlar fibers. They reported that the Raman bands shifted to lower frequency and broadened with stress (F375). Borionetti performed lattice dynamical calculations on poly(viny1idene fluoride). From these calculations, indications were obtained for the assignment of IR or Raman bands, which originated from the amorphous part of the polymer (F376). Miller et al. utilized FT-Raman, dispersive Raman, and near-IR to study reaction-injection-molded polyurethanes (F377). Davenas et al. used Raman and Rutherford backscattering to study polymeric ordering in polyacetylene films in relation between morpholo and urit (F378). Marcos et al. used IR to s t u g po1yf)ethyCneoxide)-poly(methyl methacrylate) blends and concluded that the usual most stable helical structure of poly(ethy1ene oxide) when blended with syndiotactic poly(meth 1methacrylate) transforms into a trans-planer structure rF379).

cB,

THERMAL ANALYSIS A wide variety of topics were covered in the thermal analysis of polymers in the last 2 years. For those new to the area of thermal analysis of polymers, an excellent review appeared recently (GI). The correlation of polymer thermal analysis with microscopic and/or macroscopic observations continued to advance, and a recent review demonstratedthis with respect to macromolecular properties (G2). The change in free volume of poly(viny1 chloride) films which were quenched from the melt and a ed at different temperatures was studied by dilatometry. he more severe the quench (temperature range and rate), the greater the free volume in the sample. When aged at room temperature, the volume contraction proceeded in a liner fashion against logarithmic aging time; however, at tem eratures near T,, this relationshi was no longer linear. T e tensile creep of the specimen sgowed a direct relationship to the overall thermal history ((23). Thermoset resins with "low profile additives", such as oly(viny1 acetate) and polyurethane, were characterized b bSC. The ultimate level of conversion, the conversion at p e d maximum, the onset of cure temperature, and the Arrhenius parameters showed little variation with the concentration or t pe of additive present ( C 4 ) . A study of the curing of the J g l cidyl ether of bisphenol A and ethylenediamine was per&rmed by using differential scanning calorimetr and microwave dielectric measurements. It was reportei that microwave dielectric measurements were better suited to monitor cross-linking reactions than low-frequency dielectric measurements (G5). In the study of the glass transition and crystalline melting of semicrystalline polyimides, three melting regions were

#

R

24R

ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

observed. During isothermal c stallization, a high melting temperature region and a low m t ? k g temperature region were formed, while a third melting region was formed upon cooling from the annealing temperature. A rigid amorphous fraction was used to explain the failure of the two-phase crystalline model (G6). A recent round robin study was conducted to determine the reproducibility of melting temperatures and glass transition temperatures among 23 laboratories. The results indicated that T and Tgcould be determined within about 3.0 "C (la) (C7). 1thermogravimetricmethod for the determination of the glass transition tem erature was reported. At Tg, a volatile low molecular weigh s cies had an increased rate of release from the sample, an this was indicated by an increase in the rate of weight loss. This techni ue should be advantageous in systems where the change inxeat capacity at Tg is small (G8). Two articles appeared on deformation calorimetry, where a sample was deformed, i.e., a known amount of work was added to the system in a calorimeter and the heat given up by the sam le was measured. Using this technique, it was possible to letermine if the energy (work) put into the system was stored or lost as heat and to relate this change in internal energy to the physical properties of the polymer (G9, C10). The toughness of adhesives used to bond metal parts together was studied by dynamic mechanical spectroscopy at various temperatures. Since the adhesive was the low modulus material in this configuration, the DMS data were sensitive to changes in the adhesive phase. This method was used to study environmental effects on adhesive properties (C11). Highly oriented polymers, such as spun fibers, are anisotropic and exhibit property differences as a function of direction. Measurements on the anisotropic mechanical properties and thermal conductivity of several high-performance fibers were reported. Of particular interest was the description of instrumentation for these determinations (G12). In examining the properties of drawn pol (tetrafluoroethylene),a new higher melting crystalline form $n = 381 "C) was observed. This metastable phase was assume: to be due to strain in the surroundin amor hous polymer fraction (G13). As spun, oriented pofyester gbers are rapidly uenched and, therefore, results in an increase have a high level of stress frozen in. in free volume and gives rise to sub-T, events. Annealing fibers with different finishing processes above T relaxed the "frozen in" stress and was used to indicate the pjasticization efficiency of the finishes used (G14). Two recent articles dealt with the determination of polymerfpolymer interfacial tension. The technique involved imbedding a fiber of one polymer in a matrix of another polymer and observing the rate at which the polymer fiber changed shape from a fiber to a sphere at various temperatures. Both a theoretical development and com arisons to data in the literature were presented (G15, G16f The thermal properties of liquid crystalline aromatic main chain polyesters derived from terephthalic acid, modified hydr uinones, and p-hydroxybenzoic acid were studied. T h w q q u i d crystalline polymers were stable up to about 400 "C; however, when 3,4'- or 4,4'-dicarboxydiphenyl ether were polymerized into the system, the melting point was substantially reduced (G17). A thermotropic liquid crystalline polymer was found to be immiscible with a nonliquid crystalline polymer of similar structure in both the solid and the melt state. For copol ers which contained the same monomers as the two i n g d u a l components of the blends, no phase separation was observed (G18). For a series of polyurethanes, increasing the molecular weight of the diol resulted in a decreased Tgand increasing the molecular weight of the hard segment increased T, (G19). The thermal degradation of vinylidene chloride copolymers, in particular with the addition of phenylacetylene, was studied. Increasing levels of phenylacetylene lead to a decrease in the temperature for the onset of degradation, su gesting that this unsaturation site acted as a nucleation site for dehydrochlorination (G20). A study of the thermal de adation of aromatic poly(thiocarb0natea) indicated that, in agition to the various thio compounds formed, bis henol A polycarbonatewas also frequently formed (G21). $he degradation of bis henol A polycarbonates with aromatic side groups indicated &at there may be little difference in the manner in which these materials degrade compared to the de radation pathways for unsubstituted bisphenol A polycar%onate (G22). In studying the

k

As

ANALYSIS

thermooxidative stability of polyimides, cross-linking during the degradation process was reported which was beheved to be due to side chain rupture and recombination (G23). In studyin the degradation of acid doped polyanilines, it was reporte! that the initial process was the loss of the dopant leaving behind a polyaniline system, which upon further heatin degraded at lower temperatures than polyaniline which t a d never been doped (G24). The degradation of polyethylene over various catalysts was studied in the range 200-600 "C. The degradation product produced over the catalyst contained fractions up to C9, whereas the uncatalyzed degradation gave a wider range of products (G25). In another study of the degradation of polyethylene, an increase in the level of crystallinity with increased levels of degradation was observed. It was suggested that amorphous chains linking crystallites in the olymer can crystallize when the polymer chain is broken ( 8 2 6 ) . TGA and DSC studies of the thermal degradation of poly(acry1onitrile)and copolymers of acrylonitrile showed that the copolymers have a lower onset temperature for degradation and a more rapid rate of degradation (G27). Thermal degradation studies of some substituted poly(N-vinylcarbazoles) indicated that methyl, methoxy, and acetyl derivatives have reater thermal stability than the parent polymer, while aalogenated derivatives were less thermally stable. A depolymerization process was proposed for the halogenated derivatives (G28). When examining compatibility in polymer blends, it was suggested that solution blended polymers may appear to be miscible if the proper solvent is chosen. This was based on x12 and x13 interactions being of great enough magnitude to overcome x23 interactions in solution (G29). An attempt to compatibilize polystyrene and nylon was made by sulfonating the polystyrene. These blends of sulfonated polystyrene and nylon showed enhanced interaction compared to the nonsulfonated blend. DSC results indicated that the blends were miscible, but dynamic mechanical analysis indicated the presence of two phases (G30). Blends of lyethylene oxide and poly(methy1 methacrylate) were s t u d i e g o determine miscibility ranges. For blends of up to 60 w t % PMMA, a single TEwas observed; however, at higher concentrations of PMMA, two T 's were sometimes observed dependin upon the processing history (G31). The miscibility of PMhfA with various chlorinated polymers was studied. B varying the molding conditions, miscibility was found for PhMA with ly(viny1chloride), chlorinated PVC's, and oly(viny1idene croride-co-vinyl chloride) copolymers (G327. In the study of blends of pol carbonate and linear low density polyethylene, DSC stu2es of crystallization temperature and T indicated on1 a small dependence on the composition of &hesample. Wgen samples were taken from various depths of a thick sample, a chan e in the meltin behavior of the polyethylene was observed. h s was believe8 to reflect a change in the crystallization process of linear low density olyethylene in the presence of the polycarbonate phase (&3). Differential scanning calorimetry and dynamic mechanical analysis were used to study the miscibilit of polycarbonate and polystyrene. TEvaluea determined by 6SC for pol tyrene had a maximum at a 60/40PC/PS ratio, while the PFTg showed a minimum at this same temperature. Dynamic mechanical testing indicated that this same henomenon occurred at a 40/60PC/PS ratio (G34). Blenis of polycarbonate and nylon 6 were studied to determined if interchange reactions occurred between these two condensation polymers. An interchange reaction, probably a crosslinking reaction, was found to occur at temperatures above 523 K (G35). For blends of poly(pheny1ene sulfide) (PPS) and polycarbonate, the polycarbonate was partially miscible in PPS, based on a decrease in the melting point of the PPS phase (G36). Differential thermal analysis was used to study the diffusion of Irganox 1330 through isotactic polypropylene. This techni ue had the advantage of being sensitive to low levels of sta%ilizer, such as those commonly u~edin polypropylene. The diffusion values obtained were in good agreement with those predicted by Fick's law (G37). Bound water in poly(acry1ic acid) and the sodium and potassium salts of thispolymer were studied by DSC. Three types of water were found to exist in these systems: nonfreezing water, constant melting water,

OF

SYNTHETIC POLYMERS

and a fraction of water whose melting depends on the quantity of water present. Water found in the salt forms of poly(acrylic acid) showed some variation in the melting point from water in the protonated polymer (G38). The interaction of carbon black as a filler with various polymers was studied by DSC. Poly(but 1methac late) had an 8.6 "C shift in T when blended w i d 20% caxon black while polystyrene and random copolymers of styrene and butyl methacrylate showed only a 2 "C shift in Tg(G39). The application of fundamental thermodynamic pro erties of pol er systems and how they can be related to mo%ility and o r g i n the polymer was reviewed (G40). The theoretical considerations for comparing heat and strain induced crystallization of rubber systems were discussed (G41). A study of polyprop lene samples with varying levels of isotactic component in&ated that the heat of crystallization and the temperature for the onset of crystallization were related to the isotactic contents. Stud 'ng the crystallization curves gave a significantly better correction than the melting curves as the effects of thermal history were eliminated (G42). A DSC study of the effects of mold temperature and in'ection rate on the crystallinity of poly(ether ether ketone) indicated a mostly amorphous structure when specimens were molded in low-temperature molds. A multilayer structure (amorphous and crystalline phases) was observed as the mold temperature was raised or as the injection speed was lowered. At higher temperatures, a uniformly crystalline specimen was obtruned (G43). The effects of molding temperature and time at temperature were examined for poly(ether ether ketone). As the molding temperature increased, or the time at temperature increased, the kinetics of the crystallization process as well as the total extent of crystallinity decreased (G44). Molecular and crystalline structures in a series of linear low density polyethylenes were studied b using temperature rising elution fractionation (TREF) and Jfferential scannin calorimetry. For fractions of similar molecular weights, copof made from &ne-1 had a lower melting temperature a n g ; of crystallinity than copolymers made with butene-1 (G45). TREF studies of very low density polyethylenes indicated a lower temperature for the onset of melting (-40 "C) than for linearlow density polyethylene (G46). The Crystallization rate and the final extent of crystallinity in blends of high density polyethylene and EPDM rubber were investigated with more rapid crystallization rates and hi her levels of crystallinity being reported for samples with EbDM rubber added (G47). In studies of blends of polyethylene with natural rubber, a decrease in the overall level of crystallinity was reported but no change in Tgor T, was observed (G48). Differential scanning calorimetry was used to study the crystallization kinetics of a thermotropic liquid crystal polyester resin (70 mol % p-hydroxybenzoic acid and 30 mol % 2,6-hydroxynaphthoic acid). Two crystallization processes were observed, a rapid process that was characterized with an Avrami exponent of 2 and a second slower crystallization process (G49). Properties of li uid crystalline copolyesters of poly(buty1eneterephthalicacid or poly(ethy1eneterephtc acid) with p-hydroxybenzoic acid were compared. Copolyesters with PBT contained more block units and showed a liquid crystalline phase at lower mole percent than copolyesters with PET (G50). In studies of a thermotropic liquid crystalline copolyester at elevated pressures, changes in the crystal structure and a new mesophase in the melt were observed (G51). Two crystalline structures for syndiotactic polystyrene were identified, one relating to an "all-trans" conformation and the second relating to a trans/trans/gauche/gaucheconformation. The all-trans conformation was reported to be the more favored form when syndiotactic polystyrene was crystallized from the melt (G52). The changes in crystallinity for stretched poly@-phenylene sulfide) films were examined by DSC. The rate of stretching and the extent of orientation both affected the final level of crystallinity as well as the orientation of the crystallites in the sample (G53). The c stalline properties of a series of copolyamides were examine?. Changes in Tgand T, were observed with the changes in T, suggesting that a portion of the comonomer was bein inco orated into the polyamide crystalline phase (G54). fn stuzes of the crystallinity of polyanilines, the crystallization behavior was highly dependent on the polymANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

25R

ANALYSIS OF SYNTHETIC POLYMERS

erization conditions, with increasing acidity giving rise to a less crystalline polymer (G55).Methods for looking at the supermolecular structure of oriented semicrystalline polymers were reviewed (G56). A new c stal-crystal transition at 17 OC was reported for vir in poly?tetrafluoroethylene). This transition is believed to e! caused by a crystal structure which can only be formed during the polymerization process (G57).A new hi h-temrature transition was reported for ly(tetrafluor0et iylene). Fhe new transition, at about 370 Orwas found in high molecular weight samples which were exposed to moderate shear stresses near the melting temperature (G58).

ACKNOWLEDGMENT We acknowledge the assistance of D. Meunier, R. Nelson, C. Brown, and C. Bolzman in the preparation of this review. LITERATURE CITED QAS CHROMATOQRAPHY (AI) Haken, J. K. TrAC, Trends Anal. Chem. (Pers. Ed.) 1990, 9 , 14-20. (A2) Heken, J. K.; Harahap. N.; Burford. R. P. J . chrometog. 1990, 500, 367-371. (A3) Albertsson, A. C.; Karlsson, S. pdym. Mater. Scl. Eng. 1990. 62, 976-978. (A4) Wong, M. K.; Gan, L. M.; Koh, L. L.; Ng. K. H. Anal. CMm. Acta 1989, 278, 345-350. (A5) Tsuge, S.; Kuiyama, K.; Ohtanl, H. J. HI@ Reeolut. Chmmew. 1989, 72, 727-731. (AB) Trowell, W. T.; Bemard, J. N. J . Chromtogr. Scl. 1990, 28. 245-249. (A7) Schoene. K.; Stelnhanses. J.; Koenig, A. J . chrometogr. 1988. 455. 67-75. (AB) Price, G. J.; Agravat, A. p0rLm. Commun. 1989, 30, 89-92. (A9) Gullbt, J. E.; Romansky, M.; Price, 0. J. ACS Symp. Ser. 1989. 397, 20-32. (AIO) M a r l , A. E.; Ward, T. C.; Konlng, P. A.; Sheehy, D. P. ACS Svmp. SW. 1989, 397, 12-19. ( A l l ) Hattam, P.: Du, Q.: Munk, P. ACS Symp. Ser. 1989, 397, 33-45. (A12) Du, Q.; Hattam, P.; Munk, P. J. Chem. Eng. h t a 1990, 35, 367-371. (A13) Munk. P.; Hattam, P.; Du. 0.;AWeCArlm. A. A. A. J . Appl. pdLm. SCl., Appl. p0rLm. SymP.1990, 45, 289-316. (A14) Demertzls. P. 0.; Kontomlnas. M. G. ACS Symp. Ser. 1989, 397, 77-86. (A151 Chee, K. K. pdLmef 1990, 3 7 , 1711-1714. (A161 Agathonos, P.; Karalskakls, G. J. Appl. pdLm. Sci. 1989, 3 7 , 2237-2250. (A17) Broske. A. D.; Bohrari, A. E.; Hyver, K. J.; Weng, D.; Percher, J. F. Polym. Mater. Scl. Eng. 1989, 67, 865-869. (Ala) Edelman, A.; Fradet, A. Polymef 1989, 30, 317-323. (A19) Chen, C. T.; AI-Salgh, 2. Y. pdLmer1990, 37. 1170-1176. (A20) Chen, C.-T.; AI-Saigh, 2. Y. Macfomokcules 1989, 22, 2974-2981. (A21) Chen, F. Mac"olecules 1988. 27, 1640-1643. (A22) Demertzis, P. G.;Rlganakos, K. A.; Ioannina, G.EM. Po/ym. J . 1990, 26, 137-140. (A23) Price, G. J.; Slow, K. S.; Gulllet, J. E. Macromolecules 1989, 22, 3 1 16-3 1 19. (A24) Clganek, M.; Dressier, M. Polym. Compos. 1989, 70, 194-198. (A25) Tsutsumi, K.; Ohsuga, T. Colbkj Polym. Scl. 1990, 268, 38-44. PYROLYSIS TECHNIOUES (81) Ohtanl. H.; Tsuge, S. Appl. Polym. Anal. Charact. 1987, 217-232. (82) Hammond, T.; Lehrle, R. S. Br. Polym. J . 1989, 27, 23-30. (83) Schuiten, H A . J. Anal. Appl. pvrorVls 1989, 75, 167-298. (84) Smith, C. 0. J. Anal. Appl. pvrolLsrs 1989, 75, 209-216. (85) Erlcsson. I.; Lattimer, R. P. J . Anal. Appl. PyrOrLis 1989, 74, 219-221. (86) Wampler, T. P. J . Anal. Appl. pvrolvsls 1989, 76, 291-322. (87) Washall, J. W.: Wampler, T. P. J. Chromatcgf. Scl. 1989, 2 7 , 144-148. (88) Davldson, R. G. J. Anal. Appl. pvrolvsls 1989, 76, 143-152. (89) Llu, H.; Fu, R.; Guan, 2.; Tlan, L. J . chrometog. 1989, 462, 376-381. (810) Shen. J. J.; Woo. E. LC-GC 1988, 6, 1020-1022. (811) Ohtani, H.; Ishiguro. S.; Tanaka. M.; Tsuge, S. polym. J . 1989, 27, 41-48. (812) Ohtanl, H.; Tanaka, M.;Tsuge, S. Bull. Chem. Soc. Jpn. 1990, 63. 1196-1200. (813) Sun, Y . N.; Sacks, M. D. & r a m . Trans. 1988, 7 , 538-548. (814) Shih, W. K.; Sacks, M. D.; Schelffele, 0. W.; Sun, Y. N.; Wlllhms, J. W. Cefam. Trans. 1988. 7 , 549-558. (815) Snyder, A. P. J. Anal. Appl. -is 1990. 77, 127-141. (816) Liu, H.; Fu, R.; Zhu, P.; Ye, M.; Shi, L. J. Anal. Appl. @rolysls 1990, 78, 79-89. (817) Cortes, H.; Jewett, 0.; Pfelffer, C.; Martin, S.; Smith, C. Anal. Chem. 1989, 61, 961-965. (818) Yamaguchl, S.; Hlrano, J.; Isoda, Y. J. Anal. Appl. pvrolvsls 1989, 76, 159-164. (819) Bioch, 6.; Wright, W. W. Br. PolymJ. 1989, 27, 375-381. (820) Zakan, V. G.;Mardanov, R. 0.; Kblner, V. I.; Krentsel, 8. A,; Plate, N. A. J. Anal. Appl. Rwo&?ls 1990, 77, 291-304.

28R

ANALYTICAL CHEMISTRY, VOL.

63,NO.

12, JUNE 15, 1991

(821) Ohtanl, H.; Yutam, T.; Tsuge, S.; Plage, 8.; Schuiten, M.Ew. Polym. J . 1990, 26,893-899. (822) BIkni, 0. H.; Vljeyakumar, C. T.; Fink, J. K.; Lererer, K. J . Anal. A@. WO!YSiS 1989, 76, 221-227. (823) Wssoy, P.; Scanlan, F. P.; Muller, J.-F.; Klster, J. J . Anal. Appl. PyfO&Sk 1989. 76, 255-268. (824) Scanlan, F. P.; Muller, J.-F.; Ziegler, J.M.; Flquet, J.M. J . Anal. Appl. WO!YSiS 1989, 76. 269-289. (825) Yamada, T.; Okumoto, T.; Ohtanl, H.; Tsuge, S. Rubber Chem. Technol. 1990. 63. 191-201. (826) PeM, A.; Neel. J. J . Appl. pdLm. Scl. 1990, 4 7 , 267-299. (827) Pouwels. A. D.; ElJkel, G.8.; Boon, J. J. J. Anal. App/. &?v/y& 1989, 74. 237-280. (828) 'Uu, H ~ F u R. , J . Anal. Appl. Pyrolysis 1988, 74, 163-169. (829) Fujlmoto, S.; Ohtanl, H.; Yamagiwa, K.; Tsuge, S. J . High Resdut. chromew. 1990, 73, 397-404. (830) Nlshb, E.; Ikute, N.; Hkashlma, T.; Koga, J. Appl. Spectrasc. 1989, 43, 1159-1164. (831) Erlcsson. I.;Ljunggren. L. J. Anal. Appl. Pyrolysls 1990. 77, 251-260. (832) Blarso, M.; Jakab, E.; Srekely, T.; Plage, 8.; Schulten, H.-R. J . Po/ym. Scl., Part A : pdym. Chem. 1989, 2 7 , 1027-1043. (833) Dwnbr, R.; Lenok, D.; Thoma, H.; Hutzinger, 0. J. Anal. Appl. Pyro&?is 1989, 76, 153-158. (834) BaYlstrerl, A.; Garouo, D.; cyutfrlda, M.; Impallomenl, 0.; Montaudo, Q. J . Anal. Appl. &TO&& 1989, 76, 239-253. (B35) Plage, 8.; Schulten, H A . M a c r e & s 1990, 2 3 , 2842-2648. (836) Plage, 8.; Schuiten, H A . J . Appl. Po/ym. Scl. 1989, 3 8 , 123-124. (837) Hardln, I. R.; Wang, X. Q. Text. Chem. color 1989, 27, 29-32. (836) Usaml, T.; Itoh, T.; Ohtani, H.; Tsuge, S. M a w o " A s 1990, 2 3 , 2400-2465. (839) Lattkner, R. P.; Muenster, H.; BudzYtbwicz, H. J. Anal. Appl. pvrolvis 1990, 77, 237-249. (840) Challnor, J. M. J. Anal. Appl. pvrdLsls 1989, 76, 323-333. (841) Kim, M. 0.; Yagawa, 2.; Inoue, H.; Lee, Y. K.; Shlral, T. A t m s . EnPartA 1990, 24A. 1417-1422. (842) Lee, Y.X.; Kim, M. G.; Whang, K.J. J . AMI. Appl. Pyrolysis 1989, 16. 49-55. (843) Ding, J. K.; LiU. H. S. SCl. Int. 1989, 43, 45-50. (844) lkacryk, M.; Hrusak, J.; SoJkova, I.J . Anal. Appl. Pymlysis 1989, 76. 173-182. (845) Wibms, E. R.; Munson, T. 0. J . Fwefx?c l Scl. 1988, 33. 1163-1170. (840) Druet, L. M.; Degenhardt, C. A. PropeUanb, Explos., &rote&. 1990, 75, 14-18. (847) Bates, J. W.; Allinson, T.; Bal, T. Forenslc Scl. Int. 1989, 4 0 , 25-43. (848) Day, M.; Cooney, J. D.; Wiles, D. M. J. Anal. Appl. mo&?sis 1990, 78, 163-173. (849) Washall, J. W.; Wampler, T. P. J. Appl. Polym. Scl.: Appl. Po/ym. Symp. 1990, 45, 377-392. (850) Pouan, A.; Cecchlnato, F.; Seraglla, R.; Traldl, P.; Cecchettl, W.; Polhi. R. Org. M ~ S SpeCtrom. S 1990, 25,392-394. (851) h a l r a j , 8.; Dlmock, A. W.; Samulskl, E. T.; Shew, M. T. J . Polym. Scl., Part A : W m . Chem. 1989, 2 7 , 3211-3225.

-.

LlOUlD CHROMATOQRAPHY (C1) Hunt, 8. J.; Holding, S. R., Eds. Size Exclusbn Chromatography; Blackle: Glasgow, U.K., 1989. (C2) Dawkhs, J. V. Chfomtogr. Sci. 1990, 47, 471-510. (C3) Burgy, H.; Calzaferri, G. J . chrometogr. 1990, 507, 481-486. (C4) m p s o n , C. M.; Taylor, S. 0.; McOee, W. W. J . Polym. Scl. Part A : pdLm. Chem. 1990, 28, 333-344. (C5) Pasch. H.; Dakanieh, I. S.; Khan, 2. H. J . Polym. Scl. Part A : Pdym. Chem. 1990, 28, 2063-2074. (C6) R M i , 8.; Vohl, M. J.; Calve, L. J. Appl. Polym. Scl. 1990, 3 9 , 34 1-353. (C7) Veith, C. A.; Cohen, R. E. R+mef 1989, 3 0 , 942-948. (C8) Mori, S. Anal. Chem. 1989. 67. 1321-1325. (C9) Chkazuml, N.; Mukoyama, Y.; Sugltani, H. J. Chromatogr. 1989, 479, 85-95. (CIO) Mourey, T. H.; Miller, S. M.; Ferrar, W. T.; Molaire, T. R. MacromoleC~leS1989,22,4286-4291. (C11) De Jaeger, R.; Lecacheux, D.; Potin, P. J . Appl. Po@??. Scl. 1990, 39, 1793-1802. (C12) Ogawa, T. J . L i q . Chromatogr. 1990, 73, 51-61. (C13) Segudovlc, N.; Karasz. F. E.; Mac Knight, W. J. J . L l p . Chromatogr. 1990, 73, 2561-2591. (C14) Mrkvlckova, L.; Danheika, J. J. Appl. Polym. Scl. 1990, 4 7 , 1929-1931. (CIS) Perkins, G.; Haehn, J. J . Vlnyl Techno/. 1990, 72, 2-6. (Cl6) Podrlmek, S.; Hanus, J.; Kitzler, J. J . L l q . Chromatogr. 1990, 13, 1809- 1824. (C17) Miller, R. L.; Brooks, R. V.; Briddell, J. E. Polym. Eng. Scl. 1990. 3 0 , 59-62. (C18) Roovers, J.; Cooney, J. D.; Toporowski, P. M. Macromolecules 1990, 2 3 , 1611-1618. (C19) Keller, D. J.; Kolycheck, E. 0. J . L i q . Chfomatogr. 1990. 73, 2035-2047. (C20) Skchl, E. J.; Ward, T. C. Rev. M a c f m l . Chem. Phys. 1989, 2 9 , 561-657. ('221) Evans. R.; Weame, R. H.; Wallis, A. F. A. J. Appl. Polym. Scl. 1989. 37. 3291-3303. (C22). Sbchl. E. J.: Ward. T. C.: Hanev. M. A.: Mahn. 8. Macromdecules 1690, 23. 1420-1429. ('223) Fujlmoto, C.; Watanabe, T.; Jlnno, K. J. Chromatog. Scl. 1989, 2 7 , 325-328. (C24) Siege, M. A.; Dubln, P. L. J. Chfomatcgf. 1989, 463, 165-170.

ANALYSIS OF SYNTHETIC POLYMERS

s.;

m.

(c25) WU, c. senak,L. J . chnwne-. 1990, 13, 851-861. (c28) Nagy, D. J.; Temllllger, D. A. J. Chrmtogr. 1989, 12, 1431-1449. (C27) MaWalt, T.; Sbotmaekers, D.; Van Cauwelaert, F. J. Appl. pdym. &I. 1990. 39. 571-581. ( ~ 2 8 )PerezlPaya, E.; Braco, L.; Campos, A.; -la, v.; Abad, C. J. ~ h r o InUtO@‘. 1989. 461, 229-242. (C29) Morl, S.Anal. Chem. 1989, 61, 530-534. (C30) Morl, S. J. &. chrome-. 1989, 12, 785-798. (C31) M,S.J . c h n w n e t ~ 1989. ~ . 471. 367-374. (C32j Swla, V.; Campos, ;A: Garcla, R.; Parets, M. J. J. Llq. Chrometog.. 1990, 13. 1785-1808. (C33) Bolte, M.; Troquet, M. E u . Powm. J . 1990, 26, 177-179, (C34) Wu, C. S.; Senak, L.; Malawer, E. G. J. Llq. chrometop. 1969, 12, 2901-2918. -. .. -.. - . (C35) Wu, C. S.; Senak, L.; Malawer, E. G. J. Uq. chrometop. 1989, 12, 2919-2930. (C38) D. J. J. Llq. Chrometog. 1990, 13, 677-891. (C37) L e a , J.; Volet, G. J. Llq. Chrometogr. 1990, 13, 831-849. (C36) Mourey, T. H.; Miller, S. M. J. Llq. Chrome-. 1990, 13, 693-702. (C39) phlllpps, T.; Borchard, W. Ew. polLm. J. 1990, 26, 1289-1294. (C40) Papazien, L. A.; Murphy, T. D. J. Llq. C h r ” t o g r . 1990, 13. 25-49. (C41) Lew, R.; H0. M.; Bake, S. T.; Mouey, T. H. J. Llq. chrometop.1990, 13, 453-472. (C42) Mourey, T. H.; Mllbr. S. M.; Balke. S. T. J. L/q. Chrometogr. 1990, 13, 435-452. (C43) (knzalez, C.; Zamora, F.; Rodriguez, M.; Gonzalez, M.; Leon, L. M. J . ~awomol.SCI., mp.i900,29,337-349. (C44) Mckle, B. D.; Koopmns, R. J. J. Po/ym. S d . P8rt C: Pdym. Lett. 1990, 28, 193-198. (C45) TarmI, F. A.; Grublsic-Gelbt. 2.; Rempp, P. E u . pdym. J. 1989, 25, 1183-1187. (C46) Sbchl. E. J.; DeSimone, J. M.; Hellstern, A. M.; McGrath, J. E.; Ward, J. C. Macromdecules1990, 23, 4896-4706. (C47) ChUnShan, J.; Qiwng. G. J . Appl. polLm. SCl. 1990, 41, 2383-2390. (c48) Welsskopf, K. J. Appl. polLm. Scl. 1990, 39, 2141-2152. (C49) Nordmeier, E.; Lanver, U.; Lechner, M. D. Macromokcuks 1990, 23, 1072-1078. (C50) Schosseler. F.; Benoit, H.; Grubislc-Gallot, 2.; Strazielle, C.; Leibler, L. MaCromdeCUleS 1989, 22, 400-410. (C51) WU, C.; ZW, J.; ChU, 8. MaCromoleCUkS 1989, 22, 633-839. (C52) Nlshlklda, K.; Housakl, T.; Morlmoto, M.; Klnoshlta. T. J. Chromatop. 1990, 517, 209-217. (c53) Hatada, K.; Ute. K.; Kashlyam, M.; Imanari, M. Pdym. J. 1990, 22, 218-222. (c54) btada, K.; Ute, K.; Kltayama, T.; Yamamoto, M.; Nlshlmura, T.; Kashlyema. M. porVm. BUN. 1969, 21, 489-495. (C55) UKmge, X.; Yueng. P.; Jlnggw, 2.; Erfang. J.; Melyan, W.; Fetters, L. J. J . Appl. pdym. SCl. 1989, 37. 3195-3204. (C56) De ChlrlCO, A. Ew. Porn. J . 1990, 26, 695-697. (C57) Itagakl, H.; Gulllet, J. E.; Slenlckl, K.; Wlnnlk, M. A. J. Pdym. Scl. part c: pdym. Len. 1989, 27,21-24. (C58) Cortes, H. J.; Jewett, 0. L.; Pfelffer, C. D.; Martin, S.J.; Smith. C. G. Anal. Chem. 1989, 61, 981-965. (C59) Ddtmezlan, A. H.; Morloka, T. Anal. Chem. 1989, 61, 458-461. (C60) Dekmezlan, A. H.; Morloka, T.; Camp, C. E. J. Po/ym. Sci. Part B: pdym. RIP. 1990, 26, 1903-1915. (C81) Jandera, P. J. Chromatogr. 1988, 449, 381-389. (C82) Gu,J.; H u e S.; ~ Cheng, F. J . Appl. polvm. Sci. 1990, 40, 555-587. (C83) Mukoyam, Y.; Morl, S. J. Llq. Chrometop. 1989, 12, 1417-1430. (C64) Okada. T. Anal. Chem. 1990, 62, 327-331. (C65) Okada, T. Anal. Chem. 1990, 62. 734-738. ((266) CUockner, G. Clvometogvephla 1986, 25, 854-860. (C67) Lochmulbr, C. H.; McGranaghan, M. B. Anal. Chem. 1989, 61, 2449-2455. (C88) Alhedal, A.; Boehm, R. E.; Martire, D. E. chrometograph& 1990, 29, 313-321. (C89) Schuk, R.; Englhardt, H. Chrometogr8phi9 1990, 29, 205-213. (C70) Qmmel, 6.; Loreschat, 6.; Schmk, F. P. ChmmtoEPepMe 1989, 27, 805-810. (C71) Takeuchl, M.; Salto, T. J . Chromatogr. 1990, 515, 829-638. (C72) Tennkova, T. 6.; Blagodatsklkh, 1. V.; Svec, F.; Tennikov, M. B. J. Chrometog*. 1990, 509, 233-238. (C73) Sato, H.; Sasakl. M.; Oglno, K. Powm. J. 1989, 21, 965-989. (C74) Morl, S.Anal. Chem. 1990, 62. 1902-1904. (C75) Morl, S.; Mourl. M. Anal. Chem. 1989, 61, 2171-2175. (C76) Morl, S.J . Chrometop. 1990, 507. 473-479. (C77) Qlockner, G.; Barth, H. G. J. Chrometog.. 1990, 499. 645-854. (C78) Teramachi, S.; Hasegawa, A.; Motoyama, K. Po/ym. J. 1990, 22, 489-496. (C79) Teramachl, S.; Hasegawa, A.; Shigekunl. Y.; Matunaga, S.Powm. J. 1969, 2 1 803-808. (C80) Sparldans, R. W.; Claessens, H. A.; Van Doremaele, 0. H. J.; Van Herk, A. M. J . Chromatog.. 1990, 508, 319-331. (C8l) (Uodtner. G.; Stlckler, M.; Wunderllch, W. J. Appl. w m . Sci. 1989. 37, 3147-3161. (C82) Asada, N.; Hosozawa, H.; Toyode. A.; Sato. H. RubkKChem Technd. 1990, 63, 181-190. (C83) Tacx, J. C. J. F.; German, A. L. P d y m 1989, 30. 918-927. (C84) Dawklns. J. V.; Montenegro, M. C. Br. pdym. J. 1989, 21, 31-36. (C85) Olockner. G.; Muller. A. H. E. J. Appl. Porn. Scl. 1989, 1761-1774. (C86) Morl, S.J. Appl. Pdym. Scl. 1989. 38. 95-103. (C87) MOrl, S.J . ChrOmetog*. 1990. 503, 411-419. (C88) Augensteln, M.; Mueller, M. A. Makromol. Chem. 1990. 191. 2 15 1-21 72.

Nak,

I

m.

(C89) Augensteln, M.; Stickler, M. Makromol. Chem. 1990, 191, 415-428. (coo) Wang, L.; Lu, M.; Yang, X.; Porter, R. S.J. Mcromd. scl. p h 9 . 1990, 629, 171-183.

M A S SPECTROMETRY (Dl) Blease, T. G.; Paterson. G. A.; Scrhrens, J. H. Br. polLm. J. 1989, 21, 37-44. (D2) Lanimer, R. P.; Harris. R. E. Rubber Chem. Techno/. 1989. 62, 548-587. (D3) Gsrdella, J. A., Jr.; Plreaux, J. J. Anal. Chem. 1990, 62, 845A-661A. (D4) Briggs, D. Encycl. polLm. Scl. Eng. 1989, 16, 399-442. (D5) Brlggs. D. Br. Po/ym. J. 1889, 21, 3-15. (D6) Whitlow, S. J.; Wool, R. P. Maawnolecule~1989, 22, 2648-2852. (D7) Van Leyen, D.; Hagenhoff, B.; Nlehuls, E.; Bennlnghoven, A.; Bletss, I. V.; Hercules, D. M. J. v 8 C . S d . T m d . , A 1989, 7. 1790-1794. (D8) Wilding, I.R.; Mella, C. D.; Short, R. D.; Davles, M. C.; Brown, A. J. Appl. polvm. Sd. 1990, 39, 1827-1835. (D9) Van Ooij. W. J.; Nahmlas, M. Rubber. Chem. Techno/. 1989, 62, 656-682. (D10) Montaudo, G. polvm. Repr. 1989, 30, 341. (D11) Donovan, T. L.; Laude, D. A., Jr.; Youssefi, M. J. Anal. Chem. 1990, 62. 1187-1172. (D12) Tottszer, A. I.; Neumann, G. M.; Derrlck, P. J.; Willett, G. D. J. Fhys. D : Appl. phys. 1988, 21, 1713-1720. 0 1 3 ) Bomdick, D.; Allison, J. Anal. Chlm. Acta 1988. 208, 99-118. (D14) Cutle. S. S.; Kalb, G. J.; Smlth, P. 8. J. Chrometogr. 1988, 408, 349-355. (D15) Lattlmer. R. P.; Harris, R. E.; Rhe, C. K.; Schulten, H.-R. Rubber Chem. Techno/. 1988, 61, 839-657. (D16) Lattlmer, R. P. Rubber Chem. Technol. 1990, 63, 298-307. (D17) AtPlnO, P. J.; Dllettato. D.; NgWM Khoa, 8. A. J. H@I ResoM. C ~ O maw.1990, 13, 5-12. (Die) Klusmeler, W.; Kettrup, A.; Ohrbach, K. H. J. Thenn. Anal. 1989, 35, 497-502. (Dl9) Yesuhara, A.; Morita, M. Envkon. Sd. techmi. 1988, 22.846-650. (D20) Price, D.; Mllnes, G. J.; Tayler, P. J.; Scrlvens. J. H.; Blease, T. G. Porn. -8d. Stab. 1989, 25, 307-323. (D21) Kettrup, A.; Ohrbach, K. H.; Matuschek, G.; Klusmeler. W. J. Therm. Anal. 1989, 35, 291-303. (D22) Shlbaev, L. A.; Sazanov. Y. N.; Stepanov, N. 0.; Boko, A. A. J. Therm. Anal. 1989, 3 5 , 947-954. NUCLEAR MAQNETIC RESONANCE SPECTROSCOPY (El) Laupretre, F. Prog. Pdym. Scl. 1990, 15. 425-474. (€2) Saito, H.; Ando, I.Annu. Rep. NMR SpeCtroJc. 1989, 21, 209-290. (€3) Bluemich, 6.; Hagemeyer, A.; Schafer, D.; Schmldt-Rohr, K.; Spless. H. W. A&. Mater. 1990, 2 , 72-81. (€4) Pew, B. C.; Koenig, J. L. J. Appl. Powm. Scl., Powm. Symp. 1989, 43. 185-210. (€5) Blum, F. D. Wl.Surf. 1990, 45, 361-378. (€6) Andreis, M.; Koenig, J. L. A&. polLm. Scl. 1989, 89, 69-180. (€7) Jones, C. Nucl. Map. Reson. 1989, 18. 289-309. (€8) Tonelll, A. E. NMR Spectroscopy and polvmer Mlcrostntctwe: The C o n f m t i o n e l Connection; VCH Publishers. Inc.: New York, 1989. (€9) Heatley, F. Nud. Map. Reson. 1989, 18, 259-288. (€10) Cheng, H. N. J. Appl. polvm. Sci.: Appl. pdym. Symp. 1989, 43, 129- 163. ( E l l ) Randall, J. C. Rev. Macromd. 0”.phys. 1989, C29, 201-317. (€12) Bluemich, 6.; Hagemeyer. A.; Schmldtdohr, K.; Spless, H. W. Bev. Bunsen-as. Fhp. Chem. 1989, 93, 1189-1193. (€13) Spless, H. W. Bull. Megn. Reson. 1989, 11, 303-304. (€14) Spiess, H. W. M a k m l . Chem., Makromd. Symp. 1989, 26, 197-207. (€15) Mohan, D.; Radhakrlshnan, G.; Raladural. S.; Joseph. K. T. J. W m . Scl., Part C: h w m . Lett. 1990, 28; 307-314. . ( E W Hill, D. J. T.; Lang, A. P.; O’Donnell. J. H.; O’Sulllvan, P. W. Ew. Pokm. J . 1989, 25, 911-915. (€17) HJertberg, T.; Hargital, T.; Relnholdsson, P. Macromobcubs 1990, 23, 3080-3087. (€18) Jancke, H.; Bohme, F.; Grasshoff, K.; Ratzsch, M.; Rafier, 0. Makomol. Chem. 1989, 190, 3173-3183. (€19) Heatley, F.; Yu, 0. E.; Sun. W. B.; Pywell. E. J.; Mobbs. R. H.; Booth, C. Ew. Powm. J . 1990, 26, 583-592. (€20) Brar, A. S.; Dubey, S. K. Ind. J. Chem., Sect. A 1989, 28A. 570-573. (€21) Brar. A. S.; Arunan, E.; Kapur, G. S. Powm. J . 1989, 21, 689-695. (€22) San Roman, J.; Valero, M. P d y m 1990, 31, 1218-1221. (€23) Cheng, H. N. Pdym. Bull. 1990, 23, 589-596. (E24) Ugur, N.; Alyuruk, K. J. Pdym. Scl.. Part A : Pdym. Chem. 1989, 27, 1749-1781. (€25) Dhal, P. K.; Babu, 0. N.; Steigel. A. Po&mw 1989, 30. 1530-1535. (€26) Sepulchre, M.; Kessamaly, A.; Moreau. M.; Spassky, N. Makromol. Chem. 1988, 189, 2485-2501. (E27) Butler, 0. B.; Do. C. H.; Zerner, M. C. Mecromol. Scl., Chem. 1989. A 2 6 , 1115-1135. (E28) Van Doremaele, G. H. J.; German. A. L.; De Vrles, N. K.; Van der Velden. 0. P. M. M a c r e u / e s 1990. 23, 4206-4215. (€29) Muhl, J.; Srlca, V.; Jarm, V.; Kovac-Filipovlk, M. I d . €ng. Chem. Res. 1990, 29, 707-709. (€30) Shashldar, G. V. S.;Rao. K. R.; Satyanarayana, N.; Sundaram, E. V. J. pdym. &I., Part C: Pdym. Lett. 1990, 28, 157-161. (€31) Willams, E. A.; Frame, E. M. S.; Donahue, P. E.; Marotta. N. A.; K a m bour, R. P. Appl. Spectrosc. 1990, 44, 1107-1 110. (€32) Cheng, H. N. ACS Symp. Ser. (Comput. Appl. Appl. P a m . Scl.) 1990, No. 404, 174-188. ANALYTICAL CHEMISTRY, VOL.

63,NO. 12, JUNE 15, 1991 27R

ANALYSIS OF SYNTHETIC POLYMERS

m.

Symp. 1989, 44. 1-9. (E33) Tanaka, Y. J . Appl. Po&m. Scl., Appl. (E34) Edtlna, M. V.; Khachaturov. A. S.; Krentsel, L. 6.; Lltmnovich, A. D. Ew. Po@. J . 1990, 2 6 , 181-188. (E351 Bednarski. R.; Braun, D. Makrmd. Chem. 1990, 797, 773-782. (E381 &to. H.; Ishikawa, T.; Takebayashi, K.; Tanaka. Y. Macromobcules . 1888, 2 2 , 1748-1753. (E37) Herbert, I. R.; Clague, A. D. H. Macromolecules 1989, 2 2 , 3267-3275. - --. - -. -. (€38) Hale, A.; Macosko, C. W.; Bair, H. E. J. Appl. Polym. Sci. 1989, 3 8 , 12531269. .-. . (E39) Peny, B. C.; Koenig, J. L. J . Polym. Scl., Part A: Polym. Chem. 1989, 27. 3429-3438. (E40) Nleminen, A. 0. K.; Koenig, J. L. J. Adhes. 1989, 30, 47-56. (E411 Wdsenberger, L. A.; Koenig, J. L. J . porLm. Scl., Part C : Polym. Lett. 1989, 2 7 , 55-57. (E42) Cory, D. G.; de Boer. J. C.; Vwman, W. S. Macromdecuks 1989, 22, 1618-1821. (E43) Cottrell, S. P.; Haise, M. R.; Strange, J. H. Mees. Scl. Technd. 1990, 7 , 824-629. (E44) Wllllams, D. R. G.; Alien, P. E. M.; Simon, 0. P. Mater. Forum 1989, 73. 108-117. (E49 Allen, P. E. M.; Bennett, D. J.; Haglas, S.; Hounslow, A. M.; Ross, G. S.; Simon, G. P.; Williams, D. R. G.; Wllllams, E. H. Eur. Polym. J . 1989, 25. 785-789. .. (E481 Schlothhauer, K.; Taenzer, W.; Fischer, A.; Fedtke, M. Polym. Bull. 1989. 2 2 . 221-226. (€47) Dicklnson, L. C.; Chien, J. C. W.; MacKnight. W. J. Macromolecules 1990, 2 3 , 1279-1288. (E48) Simon, G.; Blrnstiei, A.; Schimmel, K.-H. Polym. Bull. 1989, 2 7 , 235-241. (E491 Yang, D.; Li, F.; Qui, 2. J. Macromol. Scl. Chem. 1990, A27, 149-165. (E50) Yamada-Nosaka, A.; Ishiklriyama, K.; Todoki. M.; Tanzawa, H. J. Appl. Polym. Scl. 1990, 39, 2443-2452. (E51) Ganapathy, S.; Badlger, M. V.; Rajamohanan, P. R.; Mashelkar, R. A. M a c r m k u l e s 1980, 22, 2023-2025. (E52) Bain, A. D.; Eaton, D. R.; Hamieiec, A. E.; Mlekuz, M.; Sayer, B. G. Macromokubs 1989, 22, 3561-3564. (E531 Korb, J.-P.; Chachaty, C. Bull. Magn. Reson. 1989, 7 7 , 230-237. (E541 Kennedy, G. J. Polym. Bull. 1990, 2 3 , 605-608. (E59 Perlyasamy, M.; Ford, W. T. J . Polym. Scl., Part A : Polym. Chem. 1989, 2 7 , 2357-2368. (E56) Ute, K.; Kashlyama, M.; Oka. K.; Hatada, K. Makromo/. Chem., Rapid Commun. 1990, 7 7 , 31-35. (E57) Hatada, K.; Ute. K.: Kkayama, T.; Nlshimura, T.; Kashiyama, M.; Fujim oto, N. Polym. Bull. 1990. 2 3 , 549-554. (E581 Hatada, K.; Ute, K.; Kltayama, T.; Yamamoto, M.; Nishimura, T.; Kashiyama, M. Polym. Bull. 1989, 27, 489-495. (E59) Hated, K.; Ute, K.; Hashiyama. M.; Imanari. M. Polym. J. 1990, 2 2 , 2 18-222. (E80) Schenk, W.; Reichert, D.; SchneMer, H. Polymer 1990, 37, 329-335. (E61) Grinsted. R. A.; Koenig, J. L. J . Poly. Sci., Part 8 : Polym. Phys. 1990, 2 8 , 177-188. (E82) Klein Douwel, C. H.; Mass, W. E. J. R.; Veeman, W. S.; Werumeus Buning, G. H.; Vankan, J. M. J. Macromolecules 1990, 2 3 , 406-412. (E63) Grobeiny, J.; Rice, D. M.; Karasz, F. E.; MacKnight, W. J. Macromolecules 1990, 2 3 , 2139-2144. (E84) Grobeiny, J.; Rice, D. M.; Karasz, F. E.; MacKnight, W. J. Polym. Commun. 1990, 31, 88-89. (E89 Liu. L. 6.; Sumlta, M.; Miyasaka. K. Macromokules 1988. 27, 3424-3430. (E66) Dumais, J. J.; Jelinski, L. W.; Galvin, M. E.; Dybowski, C.; Brown, C. E.; Kovacic, P. Macromolecules 1989, 2 2 , 612-817. (E67) Zhang, X.; Qui, L.; Wang, D.; Wang, Y. Ch. J . Polym. Sci. 1988, 6 , 159-164. (E681 Parmer, J. F.; Dickinson, L. C.; Chien, J. C. W.; Porter, R. S. MacromOleC~le~ 1989, 2 2 , 1078-1083. (E69) Chu, C. W.; Dickinson, L. C.; Chien, J. C. W. J . Appl. Polym. Sci. 1990. 4 7 . 2311-25. (E70) thang, X.; Wang, Y. Polymer 1989, 30, 1887-71. (E71) Sultany. C. M. Polym. Bull. 1988. 2 0 , 463-488. (E72) Miller, J. 6.; McGrath, K. J.; Roland, C. M.; Trask, C. A.; Garroway, A. N. Macvomdecules 1990, 2 3 , 4543-4547. (E73) Hirschlnger. J.; Miura, H.; Gardner, K. H.; English, A. D. MacromoleCUleS1990, 2 3 , 2153-2189. (E74) Miura, H.; Hkschlnger, J.; English, A. D. Macromdecules 1990, 2 3 , 2189-2182. (E751 Powell, D. G.; Mathlas, L. J. J . Am. Chem. SOC. ISSO, 772, 669-675. (E761 Mathlas, L. J.; Powell, D. 0.; Autran, J.P.; Porter, R. S. Mat. Sci. Eng. 1990. A 728, 253-263. (E771 Powell, D. 0.; Mathlas, L. J. Macromo/ecuhw 1989, 22, 3812-3814. (E781 Hatfleld. 0. R.; Glans, J. H.; Hammond, W. B. Macromokules 1990, 23. 1854-1658. (E79) Okada, A.; Kawasumi, M.; Tallma, I.; Kurauchi, T.; Kamigalto, 0. J. Appl. Polym. Scl. 1988, 3 7 , 1363-1371. (EBO) Ketels. H.; Van de Ven, L.; Aerdts. A.; Van der Velden, G. Polym. Commun. 1989, 3 0 , 80-83. (Eel) Kubo, K.; Yamanobe. T.; Komoto, T.; Ando, I.; Shiibashi, T. J. Polym. Sci., Part B: Polym. P h p . 1989, 2 7 , 929-937. (E82) Nakagawa, M.; Horii, F.; Kltamaru, R. Po&mer 1990, 37, 323-328. (E83) Perez, E.; Belb, A.; Perena, J. M.; Benavente, R.; Martlnez, M. C.; Agullar, C. Po&mer 1989, 30, 1508-12. (E841 Kogler, G.; Haesenhindl, A.; Moiler, M. Macromolecules 1989, 2 2 , 4 190-4 197.

-..

28R

ANALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

(E85) Kogier, G.; Loufakis, K.; Moller, M. Powmer 1990, 37, 1538-1545. (E86) Kobayashl, M.; Murano, M.; Kaji, A. Macronwkules 1990, 2 3 , 3051-3055. (E871 Hkai. A.; Horli, F.; Kltamaru, R.; Fatou, J. 0.; Belb, A. Mawomokules 1990, 2 3 , 2913-2917. (E88) Henrichs, P. M.; Nicely, V. A. Macromolecules 1990, 23.3193-3194. (E89) Taylor, M. G.; Sundararajan, P. R. Macromolecules 1990, 2 3 , 2602-2804. (E90) Poliks. M.; Schaefer, J. Macromolecu/es 1990, 23. 2882-2685. (€91) Poliks. M.; Gullin, T.; Schaefer, J. Macromolecules 1990, 2 3 , 2678-2781. (E92) Henrichs. P. M.; Luss, H. R.; Scaringe, R. P. Macromolecules 1989, 22, 2731-2742. (E93) Duff, D. W.; MaClei. G. E. MaCromdeculeS 1990, 23. 3069-3079. (E94) Spevacek, J.; SchneMer, 6.; Straka, J. Macromolecules 1980, 2 3 , 3042-3051. (E951 Gomz, M. A.; Jasse, 6.; Corine. M. H.; Toneiii, A. E. J . Am. Chem. SOC. 1990. 772, 5881-5882. (E96) Gomez, M. A.; Toneill, A. E. Macromolecules 1990, 2 3 , 3385-3386. (E97) Grassi, A.; Longo, P.; Guerra. G. Makromol. Chem., RapHCommun. 1989, 70, 687-90. (E981 Poliks, M. D.; Schaefer, J. Macromolecules 1990, 23, 3428-3431. (E99) Horii, F.; Chen, Y.; Nakagawa, M.; Gabrys, 6.; Kltamaru, M. Bull. Inst. Chem. Res., Kyoto Univ. 1988, 66.317-329. (E100) Schaefer, D.; Spiess, H. W.; Suter, U. W.; Fleming, W. W. Macromolecules 1990, 2 3 , 3431-3439. (€101) Yang, Y.; Hagemeyer, A.; Spless, H. W. Macromolecules 1989, 2 2 , 1004- 1006. (E102) Kaplan, S . ; Conwell, E. M.; Richter, A. F.; MacDlarmid. A. G. Macromobcules1989, 2 2 , 1669-1675. (E1031 Parker, A. A.; Marcinko, J. J.; Shleh, Y. T.; ShieMs, C.; Hedrick, D. P.; Rltchey, W. M. Polym. Bull. 1989, 2 7 , 229-34. (E104) Parker, A. A.; Marcinko, J. J.; Shieh, Y. T.; Hedrick, D. P.; Rltchey, W. M. J. Appl. Polym. Scl. 1990, 4 0 , 1717-1725. (E105) Meadows, M. D.; Christenson, C. P.; Howard, W. L.; Harthcock, M. A.; Guerra, R. E.; Turner, R. 8. Macromolecules 1990, 23. 2440-2444. (E106) Perez, E.; Bello, A.; Perena, J. M.; Benavente, R.; Martinez, M. C.; Agullar, C. Polymer 1989, 30, 1508-1512. (E107) Hosoda, S.; Nomura. H.; Gotoh, Y.; Kihara, H. Polymer 1990, 37, 1999-2005. (E108) Hughes, C. D.; Sethi, N. K.; Baltlsberger, J. H.; Grant, D. M. Macromolecules 1989, 22, 2551-2554. (E1091 Kauffman. J. S.; Dybowski, C. J . Polym. Sci., Part B: Polym. Phys. 1989, 27. 2203-2209. (E110) Nakagawa, M.; Horii, F.; Kitamaru, R. Polymer 1990, 37,323-328. (€111) Kajl, A,; Ohta, Y.; Yasuda, H.; Murano, M. Po/ym. J . 1990, 22, 455-462. (E112) Akiyama, S.; Komoto, T.; Ando, I.; Sato, H. J. Polym. Scl., Part 8 : Powm. mys. 19so, 2 8 , 587-594. (E113) Bruckner, S.; Meiile, S. V.; Sozzani, P.; Torri, G. Makromol. Chem., RapHCommun. 1990, 7 7 , 55-60. (E1141 Salto, S.; Motekl, Y.; Nakagawa, M.; Horii, F.; Kkamaru. R. Macromolecules 1990, 2 3 , 3256-3260. (E115) Tanaka, H.; Takagi, K. Br. Polym. J . 1989. 27. 519-521. (E116) Nakai, T.; AshIda, J.; Terao, T. Magn. Reson. Chem. 1889, 2 7 , 668-868. (E117) Vogt, V.Q.; Dettenmaler, M.; Spiess, H. W.; Pietralla, M. Cdl. P w m . Sci. 1990, 268, 22-27. (E1181 Hong, J.; Harbison, G. S. Coll. Surf. 1990, 45, 313-321. (Ell9) Walton, J. H.; Lizak, M. J.; Conradi, M. S.; Guilion, T.; Schaefer, J. Macromolecules 1990, 2 3 , 416-422. (E120) Cain, E. J.; Wen, W.-Y.; Jost, R. D.; Llu, X.; Dong, 2.; Jones, A. A.; Inglefield, P. T. Polym. Mater. Scl. Eng. 1989, 67, 512-517. (E121) Liu. Y.; Roy, A. K.; Jones, A. A.; Inglefleld, P. T.; Ogden, P. Macromokules 1900, 2 3 , 968-977. (E122) Smith, P. 6.; Moil, D. J. Macromolecules 1990, 2 3 , 3250-3256. (E123) Weeding, T. L.; Veeman, W. S.; Jenneskens, L. W.; Gaur, H. A.; Schuurs. H. E. C.; Huysmans, W. G. B. Macromokules 1989. 2 2 , 706-714. (E124) Huijgen, T. P.; Gaur, H. A.; Weeding, T. L.; Jenneskens, L. W.; Schuurs, H. E. C.; Huysmans. W. G. 6.; Vwman, W. S. Macromolecules 1990, 23. ., 3063-3068. - - -.- .... (€125) Aharoni, S. M.; HatfieM, G. R.; O'Brimn, K. P. Macromo&cules 1900, 23. 1330-1342. (E126 Schleicher, A.; Mueller, K.; Kothe. 0. Lip. Cryst. 1989, 6 , 489-496. (E127) Hatfieid, G. R.; Aharoni, S. M. Macromolecules 1989, 22, 3807-3810. (E128) Whittaker, A. K.; Falk, U.; Spiess. H. W. Makromol. Chem. 1889, 790, 1603-1612. (E129) Mauzac, M.; Richard. H.; Latie, L. Macromolecules 1890, 23. 753-758. (€130) Pew, B. C.; Hahn, B.; Perec, V.; Koenig, J. L. Polymer 1890, 37, 721-727. (E1311 Cosgrove. T.; Finch, N.; Webster, J. Coll. Surf. 1990, 45, 377-389. (E132) Cosgrove. T.; Ryan, K. Lsngmuir 1890, 6, 138-142. (E133) Blum, F. D.; Slnha, B. R.; Schwab, F. C. Macromolecules 1980, 2 3 , 3592-3598. (E134 Denault, J.; Moresa-Seguela, 8.; Seguela, R.; Prud'homme, J. Macromolecule~1900. 2 3 , 4658-4670. (E1351 Ll, K.I.; Jones, A. A,; Inglefleld, P. T.; English. A. D. Macromolecules 1989, 2 2 , 4198-4202. (E136) Kauffman. J. S.; Dybowski, C. J . W m . Sci., Pert B : Polym. Phys. W89, 2 7 , 2203-2209. (E137) Mlrau, P. A.; Bovey, F. A. Macronwkules 19gO. 2 3 , 4548-4552. (E138) Bruch, M. D. Macromolecules 1989, 2 2 , 151-155.

ANALYSIS OF SYNTHETIC POLYMERS (E139) Mlrau, P. A.; Heffner, S. A.; Bovey, F. A. Macromokcu/es 1990, 23, 4482-4484. INFRARED AND RAMAN SPECTROSCOPY (Fl) Mendelkern, L. pdym. Mater. Scl. Eng. 1988, 59, 464-465. (F2) Bukln, 8. J.; Lewln, M. Inst. Symp. Pdym. A&. 1987. Pub. 1988). Technol.; Lewln, M., E d VCH: New Yo&. (F3) McMlHan, P. F.; Hofmeister. A. M. Rev. Mineral 1988. 78 (Spectrosc. Methods Mlneral). 99-159. (F4) Leyden, D. E.; Mutthy. R. S. S. TrAc, Trends Anal. Chem. 1988, 7 , 184-169. (F5) IsMde,H. W m . Mater. Scl. Eng. 1988, 59. 919-923. (F6) Thulstrup, E. W.; Mlchl, J. Spectrmhlm. Acta 1988, 44A, 787-782. (F7) Braknan, M. S.; Rothchlld, K. J. Annu. Rev. Bbphys. B/ophp. Chem. 1088, 77, 541-570. (F8) Harthcock, M. A.; Atkln, S. C.; Davis, B. L. Mkrobeam Anal. 1988, 23, 203-208. (F9) Cole, K. C.; Noel, D.; Hechler, J. J. pdym. Compos. 1988, 9 , 395-403. (F10) Ishbnl, A.; Kamota, R.; Ishlda, H. Mlcrobeam Anal. 1988, 23, 221-222. (F11) Day, R. J.; Zaklkanl, M.; Young, R. J.; Robinson, I . M. Roc. SPIEINT. Soc. Opt. Eng. 1988. 978(Appl. Infrared Technol). 94-99. (F12) Selllttl, C.; Koenlg, J. L.; Ishlda, H. Interfaces Polym., Ceram., Met. MaMx Compos ., R o c . Int. Conf. Compos. Interfaces; Ishlda, H.; Ed.; Elsevler, New York. 1988, pp 163-177. (F13) DeBlase, F. J.; Harrlck, N. J. Mlcrobeam Anal. 1988, 23, 236-238. (F14) Perrln, E.; Faulques, E.; Lefrant, S.; Mulazzi, E.; Lelslng, G. phys. Rev. 8 : Condens. Matter 1988, 38, 10845-10651. (F15) Wu, G.; Tashlro, K.; Kobayashl, M. Macromolecules 1988, 22, 188- 196. (F16) Raynor, M. W.; Davis, I. L.; Bartle, K. D.; Clifford, A. A.; Williams, A,; Chalmers, J. M.; Cook, B. W. Anal. Appl. Spectrosc. 1987 (Pub. 1988), 227-229. (F17) Wleboldt, R. C.; Lowrv, S. R.: Rosenthal. R. J. M/kroch/m. Acta 1987 (Pub. 1988), 7 , 179-1621 (F18) Ichlmura, K.; Ohta, H.; Tajlma. T.; Oklno, T. MlkrocMm. Acta 1987, 7, 157-16 1. (F19) Duncan, W. P. Am. Lab. 1988.20, 42-46. (F20) Dothee, D.; Vlgoureux, J. M.; Camelot, M. Polym. Degrad. Stab. 1988. 22. 181-174. (F21) Zerbi. G.: Roncone. P.: Lonohi. G.: Wunder. S. L. J. Chem. phvs. 1088, 89. 166-173. (F22) Zerbl, 0.NATO AS1 Ser., Ser. C 1988. 242 (Polorlz. SDectrosc. Ordered Syst.), 185-196. (F23) Zerbl. G.; Longhl, G. Polymer 1088, 2 9 , 1827-1830. (F24) Housakl, T.: Satoh, K.; Nlshlklda, K.; Morlmoto, M. Makromol. Chem., RapM Commun. 198& 9 . 525-528. (F25) Pepper, R. E.; Samuels, R. J. Polym. Mater. Scl. Eng. 1988, 59, 454-458. (F26) Burfield, D. R.; Lol. P. S. T. J. Appl. Polym. Sci. 1988, 36, 279-293. (F27) Marchand, H. E.: Slpos, P. J . Plest. f i m Sheetlng 1988, 4 . 144-154. (F28) Escoubes, M.; Jeanne, P.; Lam, T. M.; Chabert, B.; Chauchard, J. Int. J . A h S . A h s . 1980. 8 , 219-224. (F29) Wu, 0.; Tashko, K.; Kobayashl, M.; Komatsu, T.; Nakogawa, K. Macromoiecules 1989, 22, 758-765. (F30) Me, D.; M o c k s , A. R.; Akalln, M. Br. Pdym. J . 1988, 20, 61-67. (F31) Younes, H.; Cohn, D. EM. pdym. J. 1988, 24, 765-773. (F32) Yamaura, K.; Takeyama, K.; Tanlgaml, T.; Matsuzawa, S. J. Appl. polym. Scl. 1988, 36.957-981. (F33) Roy, R. B.; Kradjel, C.; McDermott, L. Polym. Mater. Scl. Eng. 1988, 58. - - 542-546 - .- - .- . (F34) Mlrabella, F. M., Jr.; Shankemarayanan, M. J. pdym. Mater. Scl. Eng. 1988, 59, 450-453. (F35) Zhou, V.; Zhang, J.; Zhang, X.; Yang, J. Mekromol. Chem. 1988, 789, 2153-2158. (F36) Chabot. P.; Pezolet. M.: Prud'homme. R. E. Mikrochim. Acta 1987 (Pub. 1988). 7 , 283-286. (F37) Carter, R. O., 111; Carduner, K. R.; Gierczak, C. A.; Van Oene, H. Eur. W m . J . 1988. 2 4 , 751-758. (F38) Plrnla, A.; Sung, C. S. P. Macromolecules 1988, 27, 2699-2706. (F39) EeMrt, N. J.; Dlmnle, V.; ECAasser, M. S.; Vanderhoff, J. W. Pdym. Mater. SCl. EW. 1988, 59, 471-473. (F40) Belke, R. E.; Cabasso, 1. Polymer 1988, 29, 1831-1842. (F41) Mackenzle, M. W.; Sellors, J. Polym. w a d . Stab. 1988, 22, 303-312. (F42) Chalmers, J. M.; Wilson, J. Mlkrochlm. Acta 1987 (Pub. 1988), 2 , 109-1 11. (F43) Castlglionl, C.; Gussoni, M.; Lopez Navarrete, J. T.; Zerbl, G. Mikrochkn. Acta 1987 (Pub. 1988), 7 , 247-249. (FU) Cole, K. C.; Noel, D.; Hechler, J. J.; Wilson, D. Mkrochlm. Acta 1987. 7. 291-295. (F45) Bertlnelll, F.; Blzzarrl, P. C.; Della Case, C.; Florlnl, M. J. Polym. Scl, Part 8 : Pdym. phys. 1988, 26, 2203-2214. (F46) Mlrabella, F. M., Jr.; Shankemarayanan, M. J. Mlcrobeem Appl. 1988, 23, 233-235. (F47) Decker, C.; Moussa. K. Makrromd. Chem. 1988, 789, 2381-2394. (F48) Sawah, S. M.: Rashed, I . H.; Sabry, A. I . Acta W m . 1988. 39. 715-719 . .- . . -. (F49) Nku, M.; Nlcu, V.; Rlcinschl, C.; Asandel, N. Acta Polym. 1988, 39, 361-363. (F50) Sawah, S. M.; Bahgat. A. A.; Sabry, A. I.; Said, F. I. A.; ECHamouly, S. H. Acta pd)*n. 1988, 39, 399-403. (F51) Cooper, E. A.; Urban, M. W.; Prowler, T. Pdym. Meter. Sci. Eng.

-

.

1988., 59. ~ . 316-320. . ..

(F52j Janssen, K.; Samyn, C.; Van Beylen, M.; Maes, G. Spectrochim. Acta 1988, 44A. 1015-1017.

(F53) Waldman, D. A.; Kolb, B. U.; McCarthy. T. J.; Hsu, S. L. PoJLm. Mater. Sci. Eng. 1088, .59, 326-333. (F54) Conti, 0.; I__ Santoro, ... E.; Resconl, L.; Zerbl, 0.Mboch/m. Acta 1987, 7 , 297-300. (F55) Garrell, R. L.; Beer, K. D. Spectr&/m. Acta 1988, 438, 817-628. (F56) Lange, J.; Hergeth, W. D.; Wartewig, S. Acta Polym. 1988, 39, 479-481. (F57) Lantman, C. W.; Tassln, J. F.; Sergot, P.; Monnerie, L. Macromolecules isas, 22,483-485. (F56) Siusarczyk, C.; Wlochowlcz, A.; Gronowski, A.; Wojtczak, 2. Pdymer 1988. 2 9 , 1581-1585. (F59) Wu, C. R.; Liedberg, 8. J. Polym. Scl. Parts: Polymerphys. 1988, 26, 1127-1136. (F60) Gallotis. C.; Melanltls, N.; Batchelder, D. N.; Robinson, I. M.; Placock, J. A. Composites 1988, 79. 321-324. (F61) Flna, L. J.; Bower, D. I.; Ward, I . M. Polymer 1988, 29, 2146-2151. (F62) Young, P. H. Spectroscopy 1988, 3 , 24, 26-28. (F63) Stewart, M. T.; Urban, M. W. Polym. Mater. Scl. Eng. 1988, 59, 334-338. (F64) Gaboury. S. R.; Urban, M. W. Polym. Prepr. 1988. 2 9 , 356-357. (F65) Allen, R. 0.; Sanderson, P. Appl. Spectrosc. Rev. 1988, 2 4 , 175-187. (F66) Cole, K. C.; Pllon, A.; Noel, D.; Hechler, J. J.; Choullotls, A,; Overbury, K. C. Appl. Spectrosc. 1988, 42, 761-769. (F67) Tuckerman, R. Polym. Palnt Colour J . 1988, 778 (4225), 826, 838. (F68) Hallmark. V.; Robolt, J. F. Macromo/ecules 1989, 22, 500-502. (F69) Bretzloff, R. S.; Sandlln. S. L.; Yasumatsu, M. A. Electron Mater. Processes, Int. SAMPE Electron Conf. 7st; Kordsmeler, N. H., Jr., Harper, C. A., Lee, S. M., Eds.; SAMPE: Covina, CA, 1987; pp 9-17. (F70) Davidson, R. G. Mikrochim. Acta 1987 (Pub. l988), 1 . 301-304. (F71) Siesler, H. W.; Perl, W. Mkrochim. Acta 1987 (Pub. 1988), 7. 323-328. (F72) Choe, S.; MacKnlght, W. J.; Karasz, F. E. Polym. Mater. Scl. Eng. 1988, 59, 702-706. (F73) Ahern. A. M.; Garrell, R. L. Langmuir 1988, 4 , 1162-1 168. (F74) Doslere, M. Mikrochlm. Acta 1987 (Pub. 1988), 7. 251-254. (F75) Garton, A. J. M a c r m l . Sci. Chem. 1989, A26, 17-41. (F76) Urban, M. W. Prog. Org. Coat. 1989, 76, 321-353. (F77) Salazar-Rojas, E. M.; Urban, M. W. Prog. Og. Coat. 1989. 76, 371-386. (F78) Cousin, P. J. Vinyl Techno/. 1988, 70, 175-177. (F79) Fink, H. P.; Gesiss, D.; Walenta, E.;Purz, H. J.; Schmoke. R.; Frlgge, K. Acta POW. 1989, 40, 186-197. (FBO) Jasse, B. J. M a c m l . Sci. Chem. 1989, A26, 43-67. (F81) Grasselll, J. G.; Mocadlo, S. E.; Mooney, J. R. Appl. Pdym. Anal. Charact. 1987, 315-328. (F82) Procella, M.; Galleschi, F.; D'Alessio, A.; Benedettl, E. T h e r m h / m . Acta 1988, 737, 95-103. (F83) Benedetti, E.; Galleschi, F.; D'Alessio, A.; Ruggerl, G.; Aglietto, M.; Pracella, M.; Clardelll, F. Makromol. Chem., Macromol. Symp. 1989, 23, 265-275. (F64) Zheng, X.; Pu, H. H.; Yang, Y.; Liu, J. J. Polym. Scl., Part C : Polym. Lett. 1989, 27, 223-227. (F85) Lantman, C. W.; Tassin, J. F.; Monnerie, L.; Fetters, L. J.; Helfand, E.; Pearson, D. S. Macromolecules 1989, 2 2 , 1184-1188. (F86) Xu, 2.; Jasse. B.; Monnerie, L. J. Polym. Scl., Part 8 : Polym. phys. i ..~. m .27., 355-368. ... ... (F87) Foster, C. M.; Kim, Y. H.; Uotanl, N.; Heeger. A. J. Synth. Met. 1989, 29. E135-El40. (F88) 'Willlami K. P. J.; Parker, S. F. Polym. Commun. 1988, 29, 314-316. (F89) Synder, R.; W.; Painter, P. C. Polym. Mater. Sci. Eng. 1988, 59, 57-60. (F90) Pryde, C. A. J. Polym. Sc/. Part A : Polym. CHem. 1989, 27, 711-24. (F91) Young, R. J.; Day, R. J. Br. Polym. J. 1989, 27. 17-21. (F92) Volka, K.; Skorvaga. J.; Vzamazal, 2. Spectrochim. Acta, Part A 1988, 44A. 1341-1350. (F93) Prasad, K.; Grubb, D. T. J. Pdym. Sci. Parts: folym. phvs. 1989, 27, 381-403. (F94) Sakata, H.; Dresselhaus. G.; Dresselhaw, M. S.; Endo, M. NTIS. From Gov. Rep. Announce. Index (US.) 1988, 88, Abstr. No. 841, 762. (F95) Feldman, D.; Banu. D.; Khoury, M. J. Appl. Polym. Sci. 1989, 37, 877-887. (F98) Parmer, J. F.; Dickinson. L. C.; Chkn, J. C. W.; Porter, R. MacromoleC U ~ Si m , 2 2 , 1076-1083. (F97) Cassel, 6.; McClure, G. Am. Lab 1989, 27, 32, 34-36. 38-39. (F98) Hues, S. M.; Colton, R. J.; Mowery, R. L.; McGrath, K. J.; Wyatt, J. R. ~ p p i surf. . sci. isas, 35, 507-519. (F99) Druy, M. A.; Elandjian. L.; Stevenson, W. A. Proc. SPIE-INT SOC. Opt. Eng. 1889, 986, 130-134. (F100) Urban, M. W.; Gaboury, S. R. Macromolecules 1989, 2 2 , 1486-1487. (F101) Kornfield, J. A.; Fuller, 0.G.; Pearson, D. S. Macromokules 1989, 22. 1334-1345. (F102) Song, K.; Krimm, S. Macromolecules 1888, 22, 1504-1505. ( F W Baker, B. B., Jr. Appl. Pdym. Anal. Charact. 1987, 329-339. (F104) Lee, H. S.; Hsu, S. L. Macromoku/es 1989, 22, 1100-1105. (F105) Theophllou, N.; Swanson, D. B.; Macdiirmld, A. G.; Chakrabortz, A.; Javadl, H. H. S.; McCail, R. P.; Treat, S. P.; Zuo, F.; Epstein, A. J. Synth. Met. isas, 28,035-42. (F106) Mulazzi, E.; Lefrant. S. Synth. Met. 1989, 28. D323-D329. (F107) Kobayashi, E.; Ohashi, T.; Furukawa, J. Polym. J. 1989. 27, 11 . . 1-1 . .17 .. . (F108) WalHnoefer, W.; Faulques, E.; Kuzmany, H.; Elchinger, K. Synth. Met. 198% 28, C533-C538.

PrNALYTICAL CHEMISTRY, VOL. 63, NO. 12, JUNE 15, 1991

2BR

ANALYSIS OF SYNTHETIC POLYMERS (Flog) Furer, V. L.; Abdullln, S. N.; Alekseev, V. V. Zh. RUrl. Speklrosk. 1989. 50. 248-253. (Fllb) 'Wang, P.-G.; Woodward, A. E. Makromol. chem. 1989, 190, 875-882. (F111) Merino, J. C.; Pastor, J. M.; De Sa@, A. J. Pdym. Bull. 1989, 2 1 ,

85-88.

(F112) Compton, D. A. C.; Johnson, D. J.; Mittleman. M. L. Res. Dev. 1989, 31, 142-147. (F113) Yamagiwa, S.; Kawaguchi. M.; Kato, T.; Takahashl, A. MacromoleCUleS 1989, 22, 2199-2203. (F114) Young, R. J.; Day, R. J.; Zaklkhani. M.; Roblnson. I.M. Compcs. Scl. rechnd. 1989, 34, 243-258. (F115) Pandey, G. C. Analyst 1989, 114, 231-232. (F116) Mulazzi, E.; Brivlo, 0. P.; Lefrant, S.; Penln, E.; Arbuckle, G. A.; Macdlarmid, A. 0. Synth. Met. 1989, 28. D309-D316. (F117) Botta. C.: Luzzatl, S.; Dellepiane, G.; Talianl, C. Synth. Met. 1989. 28, D3314337. (Fll8) Perrin, E.; Faulques, E.; Lefrant, S.; Mulazzi, E.; Lelslng, G. Synth. Met. 1989, 28, D3174322. (Fll9) Hanfland. M.: Brlllante, A.: Syassen, K.; Stamm, M.; Flnk, J. Synth. . Met. 1989, 29, E13-El6. (F120) Pelous, Y.; Froyer, G.; Herold, C.; Lefrant, S. Synth. Met. 1989, 29, -E l.I.- E I 2 (F121) Lefrant, S.; Perrin, E.; Buisson, J. P.; Eckhardt, H.; Han. C. C. Synth. Met. 1989, 2 9 , E91-E96. (F122) Cestlglloni, C.; Gussoni, M.; Zerbi, G. Synth. Met. 1989, 29, El-€& (F123) Humeckl, H. J. R a d . Spectrosc. 1988, 6 , 51-72. (F124) Fwukawa. Y.: Sakamoto, A,: Tasumi. M. J. Phys. Chem. 1989, 93, . 5354-5346. (F125) Carl, R. T. Microbeam Anal. 1989, 24, 163-185. (F126) Hotta, S.; Soga, M.; Sonoda, N. J. Phys. Chem. 1989, 93, 4994-4998. (F127) Compton, D. A. C.; Johnson, D. J.; Mittleman, M. L. Res. Dev. 1989, 3 1 , 88-73. (F128) Mhabella, F. M. Ract. Spectrosc. 1988. 6 , 85-92. (F129) Gerson, D. J.; Chess, C. A. Ract. Spectrosc. 1988. 6 , 73-83. IF130) Zlmba. C. 0.; Rabolt, J. F.: Emllsh. A. D. Macmmofacuks1889, 22, . 2863-2867. (F131) Chase, B. Ract. Spectrosc. 1988, 6 , 93-102. (F132) Shen, D. Y.; Pollack, S. K.; Hsu, S. L. Macromolecules 1989, 22, -2564-2569. - - . - - - -. (F133) Carter, R. O., 111; Peck, M. C.; Paputa; Bauer, D. R. Polym. -rad. Stab. 1989, 23, 121-134. (F134) Vorenkamp, E. J.; Van Rutten, J.; Kroesen, F. A,; Meyer, J. G.; Hoekstra, J.; Chalia, G. Polym. Common. 1989, 30. 118-120. (F135) Church, S. P.; Stephenson, P. J.; Hendra, P. J. Chem. Ind. (London) 1989, 339-340. (F136) Yang, Y. S.; Lee, L. J.; Lo, S. K.; Menardi, P. J. J . Appl. Polym. Scl. 1989. 37, 2313-2330. (F137) Tassln, J. F.; Lantman, C. W.; Fetters, L. J.; Monnerie, L. Polym. Prepr. (Am'. Chem. Soc., Div. Polym. Chem.) 1989, 30, 61-62. (F138) Qaboury, S. R.; Urban, M. W. Pokm. Mater. Sci. Eng. 1989. 80, 875-879. (F139) Popll, R.; Dwlvedi, A. M. J. Appl. Polym. Sci. 1989, 37, 2489-2484. (F140) Tanaka. N.; Kltano. H.; lee, N. Macromolecules 1989, 2 2 , . 2652-2658. (F141) Nyquist, R. A. Appl. Spectrosc. 1989, 43, 440-442. (F142) Reymlds, N. M.; Savage, J. D.; Hsu, S. L. Macromdecules 1989, 22, 2867-2869. - -. - -. . (F143) Jo, W. H.: Cruz, C. A.: Paul, D. R. J . Polym. Scl. fart B : Polym. PhyS. 1989, 2 7 , 1057-1076. (F144) Nyqulst, R. A.; MaLanga. M. Appl. Spectrosc. 1989, 43, 442-444. (F145) Storey. R. F.; Hoffman, D. C. Polym. R e p . 1989, 30, 270-272. (F148) Kumler, P. L.: Kallanl, M. H.: Schober, B. J.; Kolasa, K. A.: Dent, S. J.; Boyer, R. F. MaMomokCules 1989, 22, 2994-2999. (F147) Plaggb, P.; Cunlbertl. C.; Dellepiane, G.; Campanl, E.; Gorlnl, G.; Masettl, G.; Novl, M.; Petrlllo, 0. Spectrochlm. Acta, Part A 1989, 45A, 347-356. (F148) Kumler, P. L.; Matteson, H. L.; Boyer, R. F. Polym. Prepr. 1989, 30, 168-169. (F149) Brasch. J. W.; Lustlger, A. Ract. Spectrosc. 1989, 6 , 103-114. (F150) Gavlsh, M.; Woodward, A. E. pdLmer 1989, 30, 905-909. (F151) Ishltanl, A.; Shoda. K.; Ishida, H.; Watanabe, T.; Yoshida, K.; Iwakl, M. Nucl. Instrum. Methods Phys. Res. Sect. B 1989, 839, 783-788. (F152) Maddams, W. F.; Morris, D. B.; Wlllls, H. A. Polym. Commun. 1989, 30, 180-181. (F153) Carl. R. T. Microbeam Anal. 1988. 23, 223-226. IF1541 Lana. P. L.: Katon. J. E.: Bonanno. A. S.: Pacey. 0. E. Pract. Smc. &C. 1688. 8 , 41-50. (F155) Aurelb da Costa, R.; Carrno Goncolves, M. D.; Ganzarolll de OliveIra, M.; RubIra, A. F.; Gaiembeck, F. J. Appl. Pdym. Sci. 1989, 37, 3105-3117. (F156) Maddams, W. F.: Parker. S. F. J. PoLvm. Scl. Part B : Polym. Phys. . 1080, 27. 1691-1898. (F157) Hagemann, H.; Synder, R. 0.; Peacock, A. J.; Mendelkern, L. Macrotnokwxbs 1989. 22. 3800-3806. (F158) Carter, R. 0;-brduner, K. R.; Peck, M. C. P.; Moby, D. H. Appl. SpeCfrosC. 1989, 43, 791-794. (F159) Cardum,K. R.; Peck, M. C. P.; Carter, R. O., 111; Klllgoar, P. C., Jr. Polym. -d. Stab. 1989, 26, 1-10. (F 160) S c h W , J.; Erdeien, C.; Rlngsdorf. H.; Rabolt, J. F. Macromdecules 1989, 2 2 , 3475-3480. (F161) Zhao, Y.; Bazuln, C. G.; Prud'homme, R. E. Macrom&cules 1989, 22, 3768-3793. (F162) Bouton, C.; Arrondel, V.; Rey, V.; Sergot. P.; Manguln, J. L.; Jasse, B.; Monnerie, L. Pokmer 1989. 30, 1414-1418.

30R

ANALYTICAL CHEMISTRY, VOL.

63,NO. 12, JUNE 15, 199

(F183) Yang, C. P.; Lee, L. T. J. Appl. pdLm. Sei. 1988, 35, 449-464. (F184) Harthcock, M. A. PWmer 1989, 30, 1234-1242. (F165) Mato. P.; Karasz. F. E.; MacKnlght, W. J. porLmer 1989, 30, 1012- 1021. ( F W Brlsson, J.; Gegne, J.; Bt'kse, F. Can. J. chsm.1989, 67, 840-849. (F167) Ley. W. W.; Drickamer, H. G. J. phys. chsm.1989, 93, 7257-7261. (F188) Ley, W. W.; Drickamer,H. G. J. phys. Chew. 1989, 93, 7282-7285. (F169) Morl, S. J . Appl. Polym. Scl. 1989, 38, 547-555. (F170) Taylor, J. 0. --Pap. Int. Conf. E m . AATCC 1988, 151-153. (F171) Taboudoucht, A.; Ishida, H. Appl. Specfrosc. 1989, 43, 1016-1021. (F172) Kirret, 0.; Lake, L. AMs of InfrareU Specira of Syniheth and Netwa. Fibers (Atlas InfrakrasnykhSpektrov Khimlcheskkj IPrlrofnykh Vdokon); Valfus: Tallnn, USSR, 1988. (F173) Spells, S. 1.; Sadler. D. M. Macronwkuks 1989, 22, 3948-3954. (F174) Bhat, N. V.; Sundarean, E. J. Appl. Polym. Scl. 1989, 3 8 , 1173-1178. (F175) a n y , A. 0.; Kamden. P. D.; Rledl, B.; Kallaqulne, S. C. Polym. Mater. Scl. Eng. 1989. 61, 723-727. (F176) Boerio, F. J.; Tsal. W. H.; Hong, P. P.; Montaudo, 0. Macrmfacles - 1989, 22, 3955-3960. (F177) Davidson, R. 0. J. Anal. Appl. q.rdyskr lS80, 16, 143-152. (F178) Ishida, H., Ed. Polymer Scknce and Technobgy. V d . 36: FocrrkK Transform Infrared Characterkatlon of Polymers; Plenum Press: New York. 1987. (F179) 'LA: H. S.; Wang, Y. K.; MacKnight, W. J.; Hsu, S. L. Mawom&CUkS 1988. 21. 270-273. (F180) Nguyen, T:T. J. Appl. Porn. Scl. 1988, 38. 765-778. (F181) XU, J. R.; Balik, C. M. J . A&. polvm. Scl. 1989, 38, 173-183. (F182) Wang, L.; Jing, X.; Wang, F. Acta Chlm. Sin (Engl. Ed.) 1989, 7 , 53-58. (F183) Park, J. S.; Seo, K. S.; Forms, R. E.; Gilbert. R. D. f i s t . Rubber Rocess Appl. 1988, 10, 203-209. (F184) Thyagarajan, G.; Janarthanan, V. Pdymer 1989, 30, 1797-1799. (F185) Schmidt, J. J.; Gardella, J. A., Jr.; Salvati, L., Jr. Macromokules 1989. 22, 4489-4495. (F186) Clark, M. B., Jr.; Burkjardt, C. A., Jr. Macromoku/es 1989, 22, 4495-4501. (F187) Kim, K. J.; Reynolds, N. M.; Hsu, S. L. Macromdeculss 1989, 22, 4396-440 1. (F188) MWfehldt, E. R.; Gardella, J. A., Jr. Appl. Spectrosc. 1989, 43, 1172-1179. (F189) Yang, C. P.; Lee, L. T. J. Appl. Polym. Scl. 1988, 35, 449-464. (F190) Zimba, C. G.; Turrell, S.; Swalen, J. D.; Hallmark, V. M.; Rabott, J. F. J . Phys. Chem. 1990, 94, 939-943. (F191) Schuetzle, D.; Carter, R. O., 111; DeVrles, J. E.; Dlckie, R. A. A&. olg. Coat. Scl. Technol. Ser. 1989, 1 1 , 229-245. (Fl92) Krlshman, K. P m S d . Technd. 1987, 36, 97-111. (F193) Roush. P. B.; Hannah, R. W.; Coates, J. P.; Bunn, A,; Wlllls, H. A. Pdym. Sci. Technol. 1987, 36, 261-279. (F194) Ishitani, A. PoMm. Scl. Techno/. 1987, 36, 341-362. (F195) Teramae, N.; Tanaka, S. Polym. Sci. Technol. 1987, 36,315-340. 1989, 61, 132-136. (F196) Urban, M. W. Polym. Mater. Scl. €4. (F197) Sumpter. B. G.; Nold, D. W.; Wundedlch, 8. Pdym. Repr. 1989, 30, 57-58. (F198) a a f , R. T.; Koenig. J. L.; Ishida, H. Polym. Sci. Technol. 1987, 36, 1-32. (Fl99) Khodzhaeva, V. L.; Guseva, E. L.; Kllner. V. I.; Zaikin, V. G.; Krentsei, B. A.; Bobrov, B. N. Vysokomol. S d n . Ser. B 1989, 31, 598-604. (F200) Holland-Morltz. K. Porn. Sci. Techno/. 1987, 36, 163-195. (F201) Zerbi, G.; Gallino, G.; De. Fanti, N.; Balnl, L. P d y m 1989, 30. 2324. (F202) Alamo, R. G.; McLaughlln, K. W.; Mendelkern, L. Pdym. BUN. 1989, 22, 299-306. (F203) Siesler, H. W. Makromd. Chem. 1989, 190, 2653-2863. (F204) Rossignol, J. M.; Seguela, R.; Ritsch, F.; Dupuls-Lallemand, J. J. pdym. sci. PartC: Polym. Lett. 1989, 27, 527-532. (F205) Garcia, D.;Starkweather, H. W., Jr. Poly. Scl. Techno/. 1987, 36, 213-230. (F206) Woebkemeier, M.; Hlnrlchsen, 0. Polym. Bull. 1989, 27, 807-612. (F207) Lee, D. S.; Quln, 0. Polym. J. 1989, 21, 751-762. (F208) Edwards, H. G. M.; Hakiki, S. Er. pdym. J . 1989, 2 1 , 505-512. (F209) Benrashid, R.; Tesora, 0.; McKenzle, M. T., Jr. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 1145, 467-468. (F210) Siesler, H. W. Poly. Sci. Technd. 1987, 36, 123-161. (F211) Kaufmann, W.; P e t m n n , J.; Reynolds, N.; Thomas, E. L.; Hsu, S. L. PolyIlWr 1989, 30, 2147-2152. (F212) McKenzle, M. T.; Culler, S. R.; Koenig. J. L. Polym. Scl. Technd. 1987. 38. 377-384. (F213) Klm,JrH.; krlow, J. W.; Paul, D. R. J. Pdym. Scl. Parts: Polym. PhyS. 1988, 27, 2211-2227. (F214) Tcdorovskli, A. T.; Plotkin, S. Y. Zh. R/kl. Spektrosk. 1980, 51, 3ii-3ia - . . - .-. (F215) Menif, R.; Jasse, B.; Laupretre, F.; Bbck. B. J. Appl. Pdym. Scl. 1989, 38, 1065-1076. (F216) J a w , B. Polym. Scl. Techno/. 1987, 36, 245-259. (F217) Kumar, T. Pdym. Commun. 1989, 30. 306-308. (F218) Magonov, S. N.; Shen, D.; Qlan, R. Makromol. Chem. 1989, 190, 2563-2570. (F219) &ai, R. T.; Koenig. J. L.; Ishide, H. Pdym. SCI. Techml. 1987, 38, 397-413. (F220) Kundu, S . K.; Ray, P. K.; Day, A.; Sen. S. K. J. Appl. Polym. Scl. 1989, 38, 1951-1955. (F221) Klng, J. A., Jr.; Codella, P. J. Macronwk&s 1990, 23, 345-348. (F222) Kokal, F.; Satto. H.; Fujioka. T. Macfomd8cuks 1990, 23, 674-676. (F223) Rable, S. M.; AWeCHekeem, N.; Moharram. M. A. J. Appl. Pokm. Sci. 1989, 38, 2269-2282.

ANALYSIS (F224) Miller, J. A.; Obremdci, R. J. polvm. Sd. Techno/. 1987, 36, 281-298. (F225) Qaf, R. T.; Koanlg, J. L.; Ishlda, H. polvm. Sd. Techno/. 1987, 36, 385-395. (F226) McCludtey, P. H.; Snyder, R. L.; Condrate. R. A. J . W State chem.1889. 83. 332-339. (F227) Bowky,’H. J:; G a r d , D. L.; Smlth, M. J. C.; Biggln. I. S. A&. &g. Coet. Scl. Tsdmd. Ser. 1989, 11, 1-6. (F228) Urban, M. W. A&. C b m . Ssr. 1989, 223(Polym.Aqueous Media). 295-314. (F229) Pfeffer, G. A.; NOM, D. W. Macromolecules 1990, 23, 2573-2576. (F230) Snyder, R. G. Maw-s 1990. 23. 2081-2087. (F231) Birch. J. R. Inhvrrsd Phys. 1990, 30, 195-197. (F232) Painter, P. C.; Brozoskl, B. A.: Coleman, M. M. pdym. Scl. Technol. (Rbnum) 1987, 36 (Fourier Transform Infrared Charact. Polym.), 299-313. (F233) Verdu, E.; Devesa. J. Rev. e s t . Mod. 1989, 58, 545-551. (F234) Bohan. s. P.; Strauss, H. L.; Snyder, R. 0. J . Phys. Chem. 1990, 94, 2801-2808. (F235) Miller, C. E. Appl. Spectrosc. 1989, 43, 1435-1443. (F238) sheha&, L. A. H.; ECShekell, A.; Mounler, M. Oetar Unlv. Sci. Bdl. 1989, 9,95-101. (F237) Carter, R. O., 111; Paputa Peck. M. C.; Samus, M. A.; Klllgoar, P. C.. Jr. Appl. SpeCtrOSC. 1989, 43, 1350-1354. (F238) Amram, 6.; Bokobza, L.; &got, P.; Monnerle, L.; Queslei, J. P. Mac1990, 23, 1212-1214. (F239) DeSknone. L.: Block. 1. ACS S m . Sw. LACS Mc81 1988 (Pub. 1989), 410,220-238. (F240) Yang, C. 0.;Perenlch, T. A.; Fateley. W. G. Text. Res. J . 1989, 59, ’

- -- -- -.

~.

562-568

(F241) FHnk. P.; Stenberg, B. Br. W m . J . 1990, 22, 147-153. (F242) Mlchell. A. J.; Nelson, P. J.; Garland, C. P. Appl. Spectrosc. 1989, 43, 1482-1487. (F243) Aharonl, S.; Hatfbld,G. R.; O&n. K. P. Mac#nw/scuh9s 1990, 23. 1330-1342. (F244) Mdkneld, W. F.: Goettler. H.; Urban, M. W. Appl. Spectrosc. 1989, 43, 1387-1393. (F245) Pecansky, J.; Schneider, S. J . Phys. (2”.1990, 94,3168-3179. (F246) Taylor, J. G. Text. chem.Cdw. 1989, 27. 87-89. (F247) &manta, S. R.; Lank, W. W.; Miller, R. W.; Gibson, M. E., Jr. Appl. SpsclrosC. 1990, 44,286-289. (F248) Todorovskli. A. T.; Plotkln. S. Y. Zh. Ml. Spectrosk. 1989. 57, 597-803. (F249) Ueeml, T.; Itoh, T.; Ohtanl, H.; Tsuge, S. Macromdecules 1990, 23. 2460-2485. (F250) Feng, L.; Ng, K. Y. S. Macrorolecules 1990. 23. 1048-1053. (F251) SchbttW, N. E. J . Php. chem.1990, 94. 1692-1899. (F252) Tassln, J. F.; Baschwltz, A.; Moise, J. Y.; Monnerle, L. MecromoleCUleS 1990. 23, 1879-1881. (F253) Shashidhar, G. V. S.; Reo, K. R.; Satyanarayana. N.; Sundaram, E. V. J . W m . Scl. PartC: W m . Len. 1990, 28, 157-181. (F254) Dybai. J.; Krimm, S. Macromdecules 1990, 23, 1301-1308. (F255) Terlemezyan, L.; Mlkhailov, M.; Ivanova, B. Polym. Bull. (Berlin) 1990, 23, 95-102. (F256) Klm, Y. H.; Heeger, A. J. Mys. Rev. B : Condens. Mener 1989, 40, 8393-8398. (F257) Hankln, S.; Sandman, D. J. Porn. Commun. 1990. 37, 22-4. (F258) Ryde, C. A. ACS Sym. Ser. [ACS MCB] 1989, 407(Polym. Mater. Electron. Packag. Interconnect.), 57-66. (F259) Snyder, R. W.; Painter, P. C. ACS Symp. Ser. [ACS Mc8] 1989, 407 (Potym. Mater. Electron. Packag. Interconnect.), 49-56. (F280) Tlnh, N.; Byrd, W. E. FATIEC-Kongr. 1988. 3 , 255-274. (F281) Druy, M. A.; Elandjlan. L.: Stevenson, W. A.; Ferer, S. K.; Baudais, F. Roc. SPIE-Int. Soc.Opt. Eng. 1989, 7145 (Int. Conf. Fourier Transform Spsctrosc. 7th). 471-472. (F262) Plazek, D. J.; Frund, A. N., Jr. J . Polym. Sci. Part 6 : Po”. Phys. 1990, 28, 431-448. (F263) Fukuda, M.; Kawal, H.; Yagi, N.; Klmura, 0.; Ohta, T. Polymer 1900, 31,295-302. (F264) Khoo, C. 0. L.; Lando, J. 6.; IshMa, H. J. Po&m. Sci. Part B : Po@?.PhyS. 1990, 28, 213-232. (F265) k W b , F. J.; Hong, P. P.; Clark, P. J.; Okamoto. Y. Langmulr 1990, 6. 721-727. (F266) Cabasso, I.; SmM, J.; Sahnl, S. K. J. Appl. Polym. Scl. 1989, 38, 1653- 1666. (F287) Devaux, J.; S M z , J.; Schue, F.: Glral. L.; Naarmann, H. Makromol. Chsm. 1990. 191. 139-146. (F268) K.; Krlmm. S. M a c r ~ u l e 1990, s 23, 1948-1957. (F269) Song, K.; Krimm, S. J . Pdym. Scl. Parts: Pdym. Phys. 1990, 28, 35-50. (F270) Song, K.; Krlmm, S. J . W m . Scl. Part 6 : Polym. Phys. 1990, 28, 51-61. (F271) Song, K.; Krlmm, S. J. Po&“. Scl. PartB: W m . Phys. 1900, 28, 63-69. (F272) Qln. C.; Chsng, C.; Plres, A. T. N.; Belfiore. L. A. Polym. Meter. Scl. EW. 1989, 61,945-949. (F273) b-ttl, E.; DAlesdo. A.; Bertoluttl, C.; Vergamlni, P.; De. Fanti, N.; Plana. M.; Moggl. G. Pol$“. Bull. (Berlk,) 1989. 22, 645-851. (F274) Andrews, J. E.; DeHaseth, J. A. Roc. SPIE-lnt. Soc. Opt. Eng. 1988, 1145 (Int. Conf. Fowler Transform Spectrosc. 7th), 474-475. (F275) Doske. M. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 1145(Int.Conf. Fowler Transform Spectrosc. 7th), 355-356. (F276) Chang, C.; Hsu. S. L. Macromdecules 1990, 23, 1484-1486. (F277) TidrlCk, S. L.; KWnlg, J. L. J . Adhes. 1989, 29, 43-51. (F278) Noda, I.; Dowrey, A. R.; Marcott, C. Polym. Scl. Technol. (Pksnum) 1987, 36 (Fourier Transform Infrared Charact. Polym.), 33-59.

sone,

OF

SYNTHETIC POLYMERS

(F279) Duerst, R. W.; Mahmoodi, P.; Duerst. M. D. Pdym. S d . Tsdmd. (Plenum) 1987, 36 (Fourier Transform Infrared Charact. Polym.), 113-122. (F280) Mellunas. R. J.; Bentsen. J. G.; Steinberg, A. Stud. C o n m . 1990, 35,33-51. (F281) Jansen, J. A. J. Fresenlus’ J. Anal. Ct”. 1990, 337,398-402. (F282) Yang, C. 0. polvm. Mater. Sc. Eng. 1990, 62, 903-910. (F283) Farquharson. S.; Arnoudse, P. 6.; Wyckoff. M. H.; Keiilor. P. T., I11 Roc. SPIE-lnt. Soc. Opt. Eng. 1990, 7772, 164-73. (F284) Washall, J. W.; Wampler. T. B. J. Appl. Polym. Sci.: Appl. W m . Symp. 1990, 45,377-392. (F285) Davis, B. L.; Harthcock, M. A.; Christenson. C. P.; Turner, R. B. Roc. SPIE-Int. Soc. Opt. Eng. 1989. 7145,542-543. (F286) Fanington, P. J.; HUI, D. J. T.; O’Donnell, J. H.; Pomery, P. J. Appl. SpeCtrOSC. ISSO, 44, 901-903. (F287) Tungoi, M. W.; Bartlck, E. G.; Montaser, A. Appl. Spectrosc. 1990, 44, 543-549. (F288) Jackson. K. D. 0.; Loadman, M. J. R.; Jones, C. H.; Ellis, 0. Spectrochem. Acta, PartA 1990, 46A. 217-226. (F289) McClure, D. J.; Ouderkirk. A. J.; Hill, J. P.; Dunn, D. S. J. Vac. Sci. Technol. A 1990, 8 . 2295-2299. (F290) Zhao, Y.; Wang, J.; Cui, Q.; Uu. 2.; Xang. M.; Shen, J. pOlrymer1990. 37,1425-1428. (F291) Wolf, S.; SchmM, C.; Haegele, P. C. Polymer1990, 37, 1222-1227. (F292) Patei, S. P. A&. Insbvm. 1989, 4 4 , 1331-1337. (F293) Qureshi, F.; Amin, M. 6.; Maadhah, A. G.; HamM, S. H. Po/ym.-PYest. Techno/. Eng. 1989. 28, 649-662. (F294) Badilescu, S.; Badilescu, I.I.Can. J . Spectrosc. 1989, 34, 152-155. (F295) Krishnan. K.; Stout, P. J.; Hili, S. L. Soc. Opt. Eng. 1989, 1145, 302-304. (F296) Passingham, C.; Hendra, P. J.; Cudby, M. E. A.; Zichy, V.; Weller, M. E u . Polym. J . 1990, 26, 631-638. lF297) Ratmer. B. D. ADD/. Saectrosc. 1990. 4 4 . 576-580. iF298j Milk, C. E.; Elcbger,rB. E. Appl. S&ctrosc. 1990, 44, 887-894. (F299) Ellis, G.; Claybourn, M.; Richards, S. E. Spectrochem. Acta , Part A 1990. 46A. 227-241. (F300) Carter, R. 0.;111; Palmer, R. A.; Dittmar, R. M.; Manning, C. J.; Bains, S. S.; Chao, J. L. Roc. SPIE-Int. SOC.Opt. Eng. 1989, 7145. 362-363. (F301) Snyder, R. W. polvknides: Meter. Chem. Charact. Roc. Int. Conf. PO/ym&s. 3rd 1989, (Pub 1989), 363-369. (F302) So, S.; Rudin, A. J. Appl. Polym. Scl. 1990, 4 7 , 205-232. (F303) Langer, J. J. Synth. Met. 1990, 35, 301-305. (F304) Chabot, P.; Prud’homme, R. E.; Pezolet. M. J . Polym. Sci. Part B : polvm. Phys. 1990, 28. 1283-1296. (F305) Bower, D. I.; Jackson, R. S. J . Polym. Scl. Part 8 : Polym. Phys. 1990, 28, 1589-1598. (F306) Selbles. L. J . Polym. Scl. Part A : Polym. Chem. 1990, 28. 2 179-2 186. (F307) Jackson, R. S.; Bower, D. I.; Maddams, W. F. Polymer 1990. 37, 857-880. (F308) Bartholln, M.; Bensemra. N.; Van Hoang. T.; Guyot, A. Polym. BUN. (Berlin) 1990, 23. 425-430. (F309) Jackson, R. S.; Bower, D. 1. J . Po/ym. Scl. Part B : Polym. Phys. 1990, 28, 837-859. (F310) Suglmoto, I.; Miyake, S. J . Appl. Phys. 1990, 67,4083-4089. (F311) Miller, C. E.; Edelman, P. G.; Ratmer, B. D.; Eichinger. B. E. Appl. SpeCffOSC. 1990, 4 4 , 581-586. (F312) Yang, E. Q.; Bresee. R. R.; Fateley, W. G. Appl. Spectrosc. 1990. 4 4 , 1035-1039. (F313) Ma, D. 2.; Prud’homme, R. E. Polymer 1990. 31. 917-923. (F314) Fina, L. J.; Bower, D. I.; Ward, 1. M. Roc. SfI€-Int. Soc. Opt. Eng. 1989, 7145,546-547. (F315) Cesteros, L. C.; Rego, J. M.; Vazquez, J. J.; Katime. I. Polym. Commun. 1990, 37, 152-155. (F316) Taylor, M. A.; Odell, J. A.; Batchelder, D. N.; Cambeli. A. J. Polymer 1990, 31, 1116-1121. (F317) Ancelln. H.; Hauptman, 2. V.; Banister, A. J.; Yarwood, J. J . Polym. Sci. PartB: Polym. Phys. 1990, 28, 1811-1619. (F318) Cole, K. C.; Noel, D.; Hechler, J. J. J. Appl. Polym. Scl. 1990. 39, 1887-1902. (F319) Vittorla, V. Polym. Commun. 1990, 3 7 , 263-265. (F320) Rwolo Filho, A.; Vittoria, V. Mekromol. Chem. RapH Commun. 1990, 7 7 , 199-203. (F321) El-Agramy. A. A.; Shabaka, A. A. Isotopenpraxls 1990, 28, 229-231. (F322) Onylriuka, E. C.; Hersh, L. S.; Hertl. W. Appl. Spectrosc. 1990, 44, 808-81 1. (F3231 Noda. I. Kobunshi 1990. 39. 214-217. iF324j Miller, C. E.; Eichinger. ’6. E.;Gurley, T. W.; Hermiller, J. G. Anal. Chem. 1990. 62. 1778-1785. (F325) Foti. G.; Rekno. R. Nucl. Instrum. Methods Phys. Res. Sect. 8 . 1990, 846,306-308. (F326) Tlan, 6.; Zerbi. G. J . Chem. h y s . 1990. 92, 3886-3891. (F327) Dekiert, S.; Siesier, H. W.; Lohmar, J. Roc. SPIE-lnt. Soc. Opt. Eng. 1989, 7145. 280-282. (F328) Sellitti, C.; Koenlg, J. L.; Ishida. H. Carbon 1990, 28, 221-228. (F329) Saunders, C. W.; Taylor, L. T. Appl. Spectrosc. 1990, 44,967-969. (F330) Agbenyega, J. K.; Ellis. G.; Hendra. P. J.; Maddams, W. F.; Passlngham. C.; Willis, H. A.; Chaimers, J. Spectrochem. Acta, Part A 1990, 46A, 197-216. (F331) Kalasinski. K. S.; Llghtsey. G. R.; Short, P. H.; Durlg, J. R. Appl. Spectrosc. 1990, 4 4 , 404-407. ANALYTICAL CHEMISTRY, VOL.

63,NO. 12, JUNE 15, 1991 31 R

ANALYSIS

OF

SYNTHETIC POLYMERS

(F332) U M , H. G.J . A H . Pdym. Sd. 1990, 40, 2049-2063. (F333) Bocwio, F. J.; HUIg, P. P. M W . Sd. EW. A 1090, A 126,245-252. (F334) Henba, P. J.; Maddam, W. F.; Royaud, I. A. M.; WIlHs, H. A.; Zlchy, v. ~ c t amrt . A . 1990. MA 747-758. (F335) Lee. Y. S. K.; hdd, K.; Wrlght, W. W.; Barton, J. M. Br. Pdym. J. 1990, 22. 97-105. (F336) Buy, M. A.; Elandjbn, L.; Stevenson, W. A.; Driver, R. D.; Leskowltz, G. M.; Curtlss, L. E. Roc. SPIE-Int. Soc. opt. Eng. 1989, 7170, 150-1 59. (F337) Polltou, A. S.; Morterra, C.; Low, M. J. D. Carbon 1990. 28, 529-538. (F338) Node, I.; Dowrey. A. E.; Marcott, C. pdym. Repr. 1990, 31, 578-577. (F339) ECAgrami, A. A.; Shabaka, A. A. I s o t q " & 1990, 26, 231-233. (F340) S h a m . P.; Karan, V. K.; Varma, I. K.; Bhabnagar, A. K. J. Pdym. Mater. 1989, 6, 245-255. (F341) Cowle, J. M. 0.; Swlnyard, B. P W 1990, 37, 1507-1513. (F342) Xanopoubs, A.; W u M l c h , B. porLmer 1090, 31, 1260-1288. (F343) Lkben, M. W.; Evanson, K. W. Pdym. 1990, 37,279-282. J. Text. Res. 1989, 14. 180-183. (F344) Pandey, G. C. I&n (F345) Bovgeols, D.; Church, S. P. S p e c t " . Acta, PartA 1990, 46A, 295-301. -.. .. (F348) Valero, M.; Iruin, J. J.; Espinosa, E.; Fernandezgenldl, M. I. pdym. Commun. 1990. 31. 127-129. (F347) hvellec, J. Y:; Bulsson, J. P.; Lefrant, S.; Eckhard, ti.; Jen. Ky. Synth. Met. 1990. 35, 209-213. (F348) Rakovic, D.; Kostlc, R.; Grlbov, L. A.; Davldova, T. mys. Rev. ff: COnamS. Matter 1990, 41. 10744-10761, (F349) Grlbox, L. A.; Davldova. I.E.; Kostlc, R.; Rakovic. D. J. Mol. Struct. 1090, 216, 241-254. (F350) Brassett, A. J.; Colanerl. N. F.; Bradley, D. D. C.; Lawrence, R. A,; Friend, R. H.; Murata, H.; Tokito, S.; Tsutsui, S. S. Phys. Rev. B : Condens. Matter ISSO, 47, 10588-10594. (F351) Abetz, V.; Fuller, G. G.; Stadler, R. P w m . Bull. (Berlin) 1990, 23, 447-454. (F352) Shlmmura, M.; Tanabe, Y.; Watanabe, Y.; Kobayashl, M. pdymer 1990, 31. 1411-1414. (F353) Vlehbeck, A.; Goldbect, M. J.; Kovac, C. A. J. E k m h e m . Soc. 1990, 137, 1480-1468. (F354) Molls, S. E. Wvhi&s: Mater. Chem. Cheract. Roc. Int. Confl. POlyhnMeS, 3rd 1988 (Pub. 1989), 859-772. (F355) Johnson, C.; Wunder, S. L. S A M E J . 1990, 2 6 , 19-25. (F356) Lee, K. W.; Kowalczyk, S. Pdym. Frepr. 1990, 37, 712-713. (F357) Wang, J.; Pang, D.; Huang, B. pdym. Bull. (Berln) ld90, 24, 241-248. (F358) WleboMt, R. C.; Kempfest, K. D.; Dabrymple, D. L. Appl. Spectrosc. 1990, 44, 1028-1034. (F359) Lefrant, S.; Bulsson, J. P.; Eckhardt, H. Synth. Met. 1990, 37, 91-98. (F360) --ma, G.; Musto, P.; Karasz, E.; MacKnlght, W. J. Makromol. Chem. 1990. 191. 2111-2119. (F381) Evanson, K. W.; Urban, M. W. Polym. Mater. Scl. Eng. ISSO, 6 2 , 895-899. (F382) Perry, S. S.; Campion, A. Surf. Scl. 1990. 234, L275-L280. (F383) Sack, S.; Haudel, 0. Angew. Makromo/. Chem. 1990, 780, 13 1- 143. (F384) Margalit, E.; Dodluk, H.; Kosower, E. M.; Katzlr, A. SIA , Swf. Interlace AM/. 1990, 15, 473-478. (F385) hmanta, S. R.; Lanier, W. W.; Mlller, R. W.; Gibson, M. E., Jr. Appl. SpeCtrOSC. 1990, 44, 1137-1142. (F388) Bummer, P. M.; Knutson, K. Macromokuks 1990, 23, 4357-4382. (F387) Nlshkkle. K.; Housakl, T.; Morlmoto, M.; Kinoshtta, T. J . Chromatcgr. 1990, 517, 209-217. (F368) Chlen, J. C. W.; Rleger, B.; Herzog, H. M. J. Polym. Scl. Part A : pdym. Chem. 1990. 28, 2907-2915. (F389) Baker, 8. B.. Jr.; Bonesteel, J. K.; Keating, M. Y. Thermochm. Acta 1990, 166, 53-88. (F370) Tanabe, Y . ; Shlmomura, M. Meuom&cules 1990. 23. 5031-5034. (F371) Vlsscher, K. B.; Manners, 1.; Allcock, H. R. Macromokules 1990, 23. 4885-4886. (F372) Pinther, P.; Hartmann, M. Makromol. Chem. Rap@ Commun. 1990, 7 7 . 403-408. (F373) Yarwood, J. Spectroscopy 1990, 5, 34, 38-9. (F374) Freld, J. R.; LI, W. Appl. Polym. Scl. 1990, 47, 1123-1131. (F375) Rasad, K.; (Lubb. D. T. J . Appl. Pdym. Sd. 1990, 41, 2189-2198. (F376) Borlonettl, 0.; Zannonl, G.; Zerbl, 0.J . Mol. Struct. 1990, 224, 425-444. (F377) Mllkr, C. E.; Archlbald, D. D.; Myrlck, M. L.; Angel. S. M. Appl. SpeCtrOSC. 1990, 44, 1297-1300. (F378) Davenas, J.; Xu, X. L.; Francols, B.; Mathis, C.; Lefront, S. Synth. Met. 1990, 38, 143-156. (F379) Marcos, J. I.; Oriandl. E.; Zerbl, G. Polymer 1990, 37, 1899-1903. THERMAL ANALYSIS

.-

I

~

(Gl) Thompson, E. Encycl. of Polym. Scl. Tech. 1989. 16, 711-747. (G2) Cheng. S. J. App/. Polym. S d . , Appl. Pdym. Symp. 1989. 43, 315-371. (03) Lee, H.; McGerry, F. J. Macfomol. Scl. h y s . 1990, 829, 11-29. (04) Lam, P. Polym. Compos. 1989, 10, 439-448.

32R

ANALYTICAL CHEMISTRY, VOL.

63,NO. 12, JUNE 15, 1991

(a) Cenoulno, S.: Le*,

G.; Rdla. P.; Tombed, E. Po&m. Eng. Scl. 1990. 30, 388-373. (W Wng, S.; Heberw, D.; Lkn, H . S . ; Hanls, F. J . Sd., Part 8: Pdym. phvs. 1990, 28, 655-674. (07) Nakamwa, S.; Todokl, M.; Nakamwa, K.; Kanetsuna, H. Thennodrkn. Acta 1988. 136, 163-178. (W) Fan, M.; Harrison, I. Thw"n.Acta 1989, 754, 255-282. (G9) Adam, G.;Farris, R. porLmw 1989, 30, 1824-1828. (010) Adam. G.; Farrls, R. Pol)lmcK 1989, 30, 1829-1835. (G11) LI, C.; Dickle. R.; Morman, K. pdym. Mater. Scl. Eng. 1989, 61, 574-578. (012) Kawabata. S. Roc. Fouth JPN-US Conl. cwnposlte Materials 1989, 253-262. (013) Qrebowicz, J.; Pan, R.; WurdsrRch, B. J. Appl. Po&m. Sd. 1989, 38, 707-718. (GI41 Selivansky. D. Thennochkn. Acta 1989, 148. 381-388. ( G W cohen,A.; Ceniere, C. R h d . Acta 1989, 28, 223-232. (G18) Canbe, C.; Cohen, A.: AfOnds, C. J. Rheokgy 1989, 33, 881-689. (GI71 Skovby. M.; Lessel. R.; Kops, J. J. Pdym. Scl., Part A : Chem. 1990, 28, 75-87. ((318) Lenz, R.; Reo, A.; Reddy, C.; Bafna, S.; Bhattacharya, S. J. Pdym. Sci.: Parts: Polym. mys. 1989, 27. 2117-2130. (G19) Lee, 0.; Dufty, J.; Lee, J.; Hartmann, B. pdym. Mater. Scl. Eng. 1989, 60, 822-826. (G20) Howell. B. Th". Acta 1989, 148, 375-380. (G21) Montaud0, 0.; Pugllsl, C.; Marianuccl, E.; Pilati, F. J. Pdym. Scl., Part A : Pdym. Chem. 1989, 27, 2857-2872. (022) Tagle, L.; Dlaz, F. Thennochkn. Acta 1989, 144, 283-292. (023) Kuroda. S.; Mita, 1. EM. Pdym. J. 1989, 25, 811-820. (024) 765-774. Chan. H.; Teo, M.; Khor, E.; Llm, C. J. Thermel Anal. 1989, 35, . - - . . .. M a m e , P.; Carnltl, P.; Audisb. 0.; Bertini, F. Pdym. Degvad. Stab. 1989, 26, 209-220. (G28) Trobn. M.; Daro, A.; Jacobs, R.; DavM, C. pdym. w a d . a b . 1990. 28. 275-287. (G27) &pG. D.; Agrawal, J.; Sharma. R. J. App/. polvm. Scl. 1989, 38, 285-970. (G28) Trebacz, E. 7?"&h.Acta 1989, 143, 51-58. (G29) Bul, V.; Bark D.; Vu, T. Macnmwl. & e m . Macmmd. Symp. 1988, 16, 287-279. (G30) Sullivan. M.; Welss. R. polvm. Rep. 1990, 31, 287-288. (031) Assman, K.; Schnelder, H. A. J. 7hermlAnal. 1989, 35, 459-488. (@2) Lemleux, E.; Rud'home, R.; Forte, R.; Jerome, R.; Teyssle, P. MacromdeculeS 1988, 21, 2121-2148. (@a) Racella, M.; DePetrls, S.; Butta, E. J. Mater. Scl. 1990, 25, 3893-3700. ((334) Li, Y.; Wllllams, H. J . Appl. Pdym. Sd. 1990, 40, 1881-1890. (635) Corterer. M.; Egulazabal, J.; Iruin, J. Br. polvm. J . 1989, 21, 395-397. (038) Bhardwaj, I.; Kumr, V.; Das, A. Thermhlm. Acta 1989, 744, 165-172. (037) Schwarz, T.; Stelnec, G.; Koppeknann, J. J. Appl. Pdym. Sc/. 1989, 36, 1-7. (G38) Halkankar, G.; Spencer, H. J . Appl. Polym. Scl. 1989, 37, 3137-3148. (@9) Ohandhi, K.; Sabvey, R. PoWm. R e p . (Am. Chem. Soc., Div. PoWm. Cham.) 1988, 29, 358-359. (040) Cheng. S.; WunderllCh. B. 7k/tWchimka Acta 1988, 734, 161-188. (041) Mll, B.; Klllan, H.; Schenk, H. Cd.Pdym. Scl. 1990, 268,205-221. (042) BurReM, D.; Lol, P.; Dol. Y.; MeJzlk, J. J. Appl. polvm. sci. 1990. 4 7 , 1095-1114. (643) &lung, C.; Cakmk, M.; Whke, J. Polym. Eng. Scl. 1990, 30, 987-980. m y , M.; Suprunchuk, T.; Cooney, J.; Wlles, D. J. Appl. Pdym. Scl. 1988, 36, 1097-1106. (645) Hosoda. S. pdym. J. 1988, 20, 383-397. (048) Mathot, V.; Pljpers, M. J. Appl. Poly. Scl. 1990, 39, 979-994. (647) V a m , H.; Choudher. V.; Varma. I.J. Themvl AM/. 1989. 35, 1257- 1268. (048) Choudhwy, N.; Chakl, T.; Dutta, A.; Bhowmlck, A. pdymer 1989, 30, 2047-2053. (049) Kamal, M.; Khennache, 0.; Goyal, S. P w m . Eng. Sci. 1989, 29, 1089-1096. (G50) Chen, M.; Lee, C.; Chang. N.; Chang. 6.; Tsai, H. pdymer 1989. 30, 1472-1474 . . . - . .. ,. (G51) Hsiao, B.; Shaw, M.; Samulskl, E. T. J. Polym. Scl.. Part 8: Pdym. mys. ISSO, 28, 189-202. (G52) Kobayashl, M.; Nakaokl. T.; Ishlhara, N. Mac"&xuks 1989, 22, 4377-4382. (053) Maemura, E.; Cakmak, M.; Whlte, J. Poly. Eng. Scl. 1989, 29, 140- 150. (G54) Jo. W.; Balk, D. J. Poly. Scl., Part B : Polym. mys. 1989, 27. 873-687. (055) Fosong, W.; Jlnsong, T.; Llxiang. W.; Hongfang, 2.; Z h i s h , M. Mol. C f W . Lh. CWSt. 1988. 160, 175-184. (G56) Oeiss. D.; Hofmann, D. Rog. Pdym. Scl. 1990, 15, 1-101. (G57) VIUanI. V. ThWIlW&h. Acta 1SSO. 162, 189-193. (058) Khanna, Y.; Chomny, G.; Kumar, R.; Murthy, N.; O'Brlen, K.; R e i n schmssel, A. Macrcnrwkuks 1990, 23, 2488-2494.

m.