1
Production and Properties of 2-Cyano-1,3-butadiene Homo- and Copolymers
Downloaded via 91.204.15.130 on November 10, 2018 at 02:55:53 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
E . M Ü L L E R , R. M A Y E R - M A D E R ,
and K. DINGES
Bayer, Leverkusen, West Germany
2-Cyano-l,3-butadiene cyano-1-cyclohexene
was synthesized and characterized
by pyrolysis of 1by physical
data.
Soluble homopolymers and copolymers with butadiene, isoprene, styrene, and chloroprene have been prepared solution
polymerization
Ziegler-Natta ethers or
by
under free-radical, anionic, and
initiation.
Radical
toluene/ether
mixtures
homopolymerization yielded
in
thermoplastic
polymers consisting mainly of 1,4- and 3,4-adducts in a ratio of 3:1. 10°C.
The polymers show glass stages of about
Anionic
initiation below 0°C with lithium alkyls,
metal phosphide, or metal amide catalysts gave thermoplastic
products
stages of about
with 57-70% of 1,2-linkages and glass 80°C.
Initiation with metal acetyl aceto-
nates and organoaluminum
compounds resulted in poly-
mers that in large part correspond to the radical-produced polymers.
Block
polymerization
was
carried
out
with
lithium alkyl compounds, as well as with alkali amides or alkali phosphides.
Cyanoprene polymerized onto polymer
ions formed of styrene, butadiene, or isoprene; the reverse reaction does not occur.
J ) o l y c h l o r o p r e n e has a n u m b e r o f d e s i r a b l e properties s u c h as w e a t h e r a n d o z o n e resistance, flame r e t a r d a n c e , a n d m e d i u m o i l resistance. Its s w e l l i n g b e h a v i o r t o w a r d a r o m a t i c oils, h o w e v e r , is m o d e r a t e , a n d i n f e r i o r t o that of b u t a d i e n e / a c r y l o n i t r i l e c o p o l y m e r s . synthesis b y a d d i n g H C N t o v i n y l a c e t y l e n e .
D u r i n g w o r k o n the
Instead, H C N addition
t i o n a n d c o p o l y m e r i z a t i o n b e h a v i o r o f c o m o n o m e r s s u i t a b l e f o r this purpose
was studied generally.
presence o f a n i t r i l e g r o u p ,
I n v i e w o f its c o n s t i t u t i o n a n d t h e
cyanoprene
(2-cyano-l,3-butadiene)
ap
p e a r e d s u i t a b l e a n d , o w i n g t o l i t t l e reference i n the l i t e r a t u r e , e s p e c i a l l y interesting. 1 Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
2
POLYMERIZATION REACTIONS A N D N E W POLYMERS
Monomer
Synthesis
2 - C y a n o b u t a d i e n e is n o t accessible a l o n g t h e lines o f c h l o r o p r e n e synthesis b y a d d i n g H C N t o v i n y l a c e t y l e n e .
Instead, H C N addition
results i n l - c y a n o - l , 3 - b u t a d i e n e . H C = CH - C = CH
2 HC = CH
2
HCN
HCI
H C=C-CH=CH 2
HC=CH-CH=CH. i CN
2
CI
T h e r e a r e t h r e e processes d e s c r i b e d i n t h e l i t e r a t u r e f o r s y n t h e s i z i n g cyanoprene
(1-5). CHq •
HCN
3
CH II CH,
CH,
CHo " . ^CN CH 3
CH II CH„
n
CH,
-CN
pyrolysis H C = C - C H = CH 2
2
CN .CN b)
2H C=CHCNV
c)
pyrolysis
2
" H C-C 3
6
Oo/NHq —
i
CH II CH
2
•
H C = C-CH = CH 2
CN
2
CN
h C - C N
i
CH II CH
2
I n Process a , v i n y l m e t h y l k e t o n e reacts w i t h h y d r o c y a n i c a c i d t o g i v e c y a n o h y d r i n , w h i c h is either d e h y d r a t e d b y s p r a y i n g w i t h
phos
p h o r i c a c i d a t 5 4 0 ° C ( y i e l d 74%) o r , after a c y l a t i o n w i t h acetic a n h y dride, pyrolized at 400°-550°C.
I n Process b , a c r y l o n i t r i l e is d i m e r i z e d
b y U V i r r a d i a t i o n t o give 1,2-dicyanocyclobutane; t r i l e is c o n v e r t e d after 84 hours.
8.5% o f t h e a c r y l o n i
T h e c y c l o b u t a n e d e r i v a t i v e reacts b y
c a t a l y t i c s p l i t t i n g at 4 5 5 ° C t o g i v e 2 - c y a n o b u t a d i e n e Process c i n v o l v e s a m m o n o x i d a t i o n o f isoprene.
( c o n v e r s i o n 20%).
O n e p e r cent b y v o l -
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
1.
MULLER ET AL.
2-Cyano-l,3-Butadiene
3
Polymers
u m e of i s o p r e n e reacts w i t h a m m o n i a , steam, a n d a i r at 4 2 5 ° C o n z e o l i t e catalysts c o n t a i n i n g c o p p e r ( c o n v e r s i o n 30%, y i e l d 60%).
T h e process
u s e d b y us ( 6 ) is b a s e d o n t h e g e n e r a l r o u t e of s y n t h e s i z i n g 1,3-dienes b y r e t r o - d i e n e s p l i t t i n g of c y c l o h e x e n e d e r i v a t i v e s .
T h e synthesis goes f r o m c y c l o h e x a n o n e
via c y a n o h y d r i n t o
1-cyano-l-
cyclohexene, w h i c h is s p l i t b y p y r o l y s i s .
Pyrolyse *
H C = C-CH 2
= CH
2
CN T h e y i e l d of 2 - c y a n o b u t a d i e n e is 75%.
Properties
of
2-Cyano-l,3-butadiene
2 - C y a n o b u t a d i e n e is l i q u i d at r o o m t e m p e r a t u r e .
Its b o i l i n g p o i n t
at 760 t o r r c a n n o t b e m e a s u r e d d i r e c t l y b u t c a n b e e x t r a p o l a t e d f r o m the v a p o r pressure c u r v e : 9 0 ° C . d e n s i t y at
— 3 0 ° C is 0.89.
polymerize and dimerize.
A t 4 torr, its b o i l i n g p o i n t is 0 ° C .
T h e c o m p o u n d has a s t r o n g t e n d e n c y
to
P o l y m e r i z a t i o n , b u t not d i m e r i z a t i o n , c a n b e
prevented by adding phenothiazine. at r o o m
Its
D i m e r i z a t i o n takes p l a c e q u i c k l y
t e m p e r a t u r e , various k i n d s of
dimers
being
possible.
For
e x a m p l e , l , 4 - d i c y a n o - 4 - v i n y l c y c l o - l - h e x e n e forms i n a b o u t 86% y i e l d ( 7 ) . S t a b i l i z a t i o n of 2 - c y a n o b u t a d i e n e against d i m e r i z a t i o n c a n b e a c h i e v e d by
storage
at l o w
temperatures
and by
dilution w i t h benzene,
for
example. Homopolymerization
of
2-Cyano-l,3'butadiene
T a n a k a ( 8 ) r e p o r t e d p o l y m e r i z a t i o n experiments w i t h b e n z o y l p e r oxide.
H e o b s e r v e d t h e f o r m a t i o n of i n s o l u b l e p o l y m e r s i n a d d i t i o n to
dimer.
Wei
(9)
c a r r i e d out
organoaluminum compounds
polymerizations with
butyllithium
and
a n d obtained amorphous a n d partly crys
t a l l i n e p r o d u c t s w i t h t h e r m o p l a s t i c p r o p e r t i e s ; the m a t e r i a l s m e l t e d at 157°C
and
decomposed
at 3 3 6 ° C .
IR
spectroscopy
showed,
a
1,4-
trans s t r u c t u r e . I n our w o r k , the h o m o - a n d c o p o l y m e r i z a t i o n of
2-cyanobutadiene
were s t u d i e d f r o m the p o i n t of v i e w of t h e i n i t i a t i o n system ( r a d i c a l ,
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
4
POLYMERIZATION REACTIONS A N D N E W POLYMERS
ionic, and coordinate),
a n d t h e m i c r o s t r u c t u r e a n d properties of
the
products obtained were determined. Radical-Initiated H o m o p o l y m e r i z a t i o n .
W h e n this h o m o p o l y m e r i -
z a t i o n is c a r r i e d out w i t h b e n z o y l peroxides or other r a d i c a l formers i n a m a n n e r analogous
to e m u l s i o n p o l y m e r i z a t i o n of
c r o s s l i n k e d p o l y m e r s are f o r m e d . s u c h as toluene, b e n z e n e ,
chloroprene, highly
T h e y are i n s o l u b l e i n o r g a n i c solvents
or c h l o r o f o r m .
Radical polymerization i n
toluene, b e n z e n e , or hexane leads o n l y t o i n s o l u b l e p r o d u c t s . I n assessing these results, i t s h o u l d b e r e m e m b e r e d t h a t t h e t e m peratures i n most cases w e r e a b o v e 0 ° C so that d i m e r f o r m a t i o n has to be
t a k e n i n t o account.
O n t h e one h a n d , d i m e r i z a t i o n reduces
the
y i e l d a n d , o n the other h a n d , i t influences t h e course of p o l y m e r i z a t i o n t h r o u g h a r e g u l a t i n g effect.
Since w e wished to obtain soluble p o l y m
ers, w e h a d t o look f o r different routes.
I n d o i n g so, w e f o u n d that
s o l u b l e p o l y m e r s c a n b e o b t a i n e d w h e n t h e r e a c t i o n is c a r r i e d out i n p o l a r solvents s u c h as ethers or i n i n e r t solvents s u c h as t o l u e n e or hexane i n the p r e s e n c e of cocatalysts—ethers, p h o s p h i n e s , amines, or organoaluminum compounds.
T h e p o l y m e r s o b t a i n e d are t h e r m o p l a s t i c
a n d consist m a i n l y of 1,4-and 3,4-adducts i n a 3:1 r a t i o . CN
Besides the 1,4- a n d 3,4-adducts, c y c l i c structures are also present. Four
representative r a d i c a l p o l y m e r i z a t i o n s of
p a r e d i n T a b l e I.
cyanoprene
are
com
D i f f e r e n t i a l t h e r m a l anlysis shows, f o r t h e m a t e r i a l
m a d e f r o m toluene, a glass stage of a b o u t 10 ° C a n d a m e l t i n g r a n g e above 90°C.
T h e m a t e r i a l has m e d i u m c r y s t a l l i n i t y w h i l e t h e m a t e r i a l
m a d e i n T H F is l a r g e l y a m o r p h o u s . T h e d i s a d v a n t a g e of t h e s o l u b l e p o l y c y c a n o p r e n e s r a d i c a l r e a c t i o n was
obtained by a
that they have molecular weights b e l o w
a n d the y i e l d s w e r e not a l w a y s g o o d .
5000,
T h e r e f o r e , i t was necessary to
l o o k f o r different catalyst systems. Anionically Initiated Polymerization.
T h e disadvantages of r a d i c a l
p o l y m e r i z a t i o n of c y a n o p r e n e r e s u l t f r o m t h e o p e r a t i n g c o n d i t i o n s ( t e m p e r a t u r e s ) ; too
m a n y s i d e reactions, c h a i n - t e r m i n a t i n g reactions, a n d
c o n s e c u t i v e reactions occur.
B e c a u s e of this a n d t h e d i m e r i z a t i o n t e n
d e n c y of c y a n o p r e n e , catalysts h a d t o b e f o u n d that c o u l d f u l f i l l t w o contradictory requirements.
T h e y s h o u l d b e so reactive t h a t i t w o u l d
b e p o s s i b l e to w o r k at temperatures that e x c l u d e d i m e r i z a t i o n s as c o m -
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
1.
MULLER ET AL.
Table I.
Monomer (mole/l)
Solvent Emulsion in Water Toluene THF Toluene
10 0.29 0.29 0.8
2-Cyano-l,3-Butadiene
5
Polymers
Radical Polymerizations of Cyanoprene Ternperature (°C)
Catalyst (mmole/l) FAS
60
a
A I B N 14.5 AIBN14.5 (AIBN + TEA ) 8.7
6
ReacHon time Yield (h) (%)
50
5
50
50 50 50
24 24 5
50 50 20
Soluble in'
N Analysis (%)
—
17.1
f
— DMF D M F
d
17.9 16.9 16.9
C
° F A S = formamidine sulfinic acid A I B N = azodiisobutyronitrile T E A = triethylaluminum D M F = dimethylformamide • Theoretical nitrogen value = 17.7 The molecular weights of the soluble products were from 1000 to 5000. b
e
d
/
p e t i n g reactions, a n d t h e y s h o u l d b e s l o w e n o u g h to p r e v e n t c r o s s l i n k i n g a n d c y c l i z a t i o n reactions at l o w temperatures. I n v i e w of these p r e c o n d i t i o n s , i t was o b v i o u s to use a n i o n i c initiators. W i t h t h e l i t h i u m alkyls u s e d b y W e i — f o r e x a m p l e , b u t y l l i t h i u m or other organic
alkali compounds—only
insoluble thermoplastic products
are
o b t a i n e d , e v e n at — 80° C i n b o t h T H F a n d t o l u e n e b e c a u s e these i n i tiators are too reactive.
T h e reactions t h a t t a k e p l a c e i n c l u d e attack b y
the m e t a l l o - o r g a n i c c o m p o u n d
a n d the a l r e a d y m e t a l l i z e d c y a n o p r e n e
( o r the m e t a l l i z e d p o l y m e r ) o n t h e n i t r i l e groups of b o t h m o n o m e r a n d polymer. A n i o n i c catalysts of t h e t y p e s h o w n h e r e p r o v e d t o b e s u i t a b l e because t h e y react c o m p a r a t i v e l y s m o o t h l y a n d , u n l i k e o r g a n o - l i t h i u m c o m p o u n d s , t h e y d o not attack t h e C N g r o u p .
(Me=
Li, Na,
K)
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
POLYMERIZATION REACTIONS A N D N E W POLYMERS
I n c a r r y i n g out these experiments, a s o l u t i o n of t h e m o n o m e r is a d d e d d r o p w i s e i n t o a m i x t u r e of catalysts a n d solvents. is d e s t r o y e d , The
products
precipitated from
p l a s t i c i z i n g effect of the solvent. finally
T h e catalyst
a n d the p o l y m e r o b t a i n e d p r e c i p i t a t e d w i t h m e t h a n o l . m e t h a n o l are p l a s t i c , o w i n g t o
the
They swell on drying in vaccum, and
y i e l d t h e r m o p l a s t i c , porous
solids.
D e p e n d i n g on the experi
m e n t a l c o n d i t i o n s a n d t h e catalyst u s e d a n d its q u a n t i t y , the m o l e c u l a r w e i g h t s of the p r o d u c t s are a b o u t 10,000. T h e p r o d u c t s t u d i e d was p r o d u c e d i n T H F w i t h a d i p h e n y l p h o s p h i n e - l i t h i u m catalyst; i t h a d a m o l e c u l a r w e i g h t of 8300.
A f t e r shear
m o d u l u s p l o t t i n g over t e m p e r a t u r e , a glass stage of 81 ° C , a m o d u l u s of
elasticity of
strength of
32,000
661 k g / c m
kg/cm 2
2
(polystyrene^30,000),
(polystyrene^1000)
and a
were found.
flexural
The
glass
t e m p e r a t u r e was 2 0 ° C l o w e r t h a n t h a t of p o l y s t y r e n e , b u t t h e p o l y m e r is m o r e resistant to s w e l l i n g b y aromatics. Table II.
Cyanoprene Homopolymers Produced by Different Catalyst Systems a
Yield Catalyst
(%)