6 Conductance and Ionic Association of Several Electrolytes in Binary Mixtures Involving
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
Sulfolane (TMS) and Protic Solvents
1
GIUSEPPE PETRELLA , ANTONIO SACCO, and MAURIZIO CASTAGNOLO Institute of Physical Chemistry, University of Bari, Via Amendola, 173-70126 Bari, Italy
Conductometric and spectrophotometric behavior of several electrolytes in binary mixtures of sulfolane with water, methanol, ethanol, and tert-butanol was studied. In water-sulfolane, ionic Walden products are discussed in terms of solvent structural effects and ion-solvent interactions. In these mixtures alkali chlorides and hydrochloric acid show ionic association despite the high value of dielectric constants. Association of LiCl, very high in sulfolane, decreases when methanol is added although the dielectric constant decreases. Picric acid in ethanol-sulfolane and tert-butanol-sulfolane behaves similarly. These findings were interpreted by assuming that ionic association is mainly affected by solute-solvent interactions rather than by electrostatics. Hydrochloric and picric acids in sulfolane form complex species HCl - and Pi(HPi) -. 2
2
T n r e c e n t years, i n o r g a n i c syntheses studies, d i p o l a r a p r o t i c solvents o r m i x t u r e s o f these w i t h p r o t i c solvents h a v e b e e n u s e d m o r e a n d m o r e f r e q u e n t l y as m e d i a i n w h i c h t o c a r r y o u t t h e r e a c t i o n , b e c a u s e t h e rate of r e a c t i o n is m u c h h i g h e r i n these solvent systems t h a n i n p r o t i c ones. T h e s e findings a r o u s e d t h e interest o f r e s e a r c h w o r k e r s , so t h a t electro1
To whom correspondence should be addressed. 0-8412-0428-4/79/33-177-077$05.50/l © 1979 American Chemical Society Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
78
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
II
c h e m i c a l studies m u l t i p l i e d w i t h t h e a i m of o b t a i n i n g u s e f u l i n f o r m a t i o n o n ion-solvent a n d i o n - i o n interactions i n aprotic a n d m i x e d p r o t i c a p r o t i c solvents. I n t h i s r e g a r d a s y s t e m a t i c i n v e s t i g a t i o n has b e e n p l a n n e d i n o u r laboratory to study the behavior
of
s e v e r a l electrolytes
i n sulfolane
( T M S ) a n d i n its m i x t u r e s w i t h different p r o t i c solvents. T M S possesses a h i g h v a l u e of t h e d i p o l a r m o m e n t (μ
— 4.65 D . U . ) (I) a n d a d i e l e c t r i c
30
constant of i n t e r m e d i a t e v a l u e ( c
=
30
43.33) ( 2 ) .
T h e s m a l l changes
of
these t w o q u a n t i t i e s o v e r a w i d e t e m p e r a t u r e r a n g e (1 ) shows t h a t T M S is a s c a r c e l y s t r u c t u r e d solvent, e v e n t h o u g h i t has l o w AH a n d A S f u s i o n Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
v a l u e s (2.84 c a l / g ( 3 ) a n d 1.1 e u ( 4 ) , r e s p e c t i v e l y ) , w h i c h are c o n n e c t e d t o t h e f a c t t h a t i t first solidifies i n t o p l a s t i c crystals of a
mesomorphic
p h a s e at 2 8 . 4 5 ° C a n d t h e n at 15.43 ° C i n t o a n o n r o t a t i o n a l c r y s t a l l i n e p h a s e w i t h t r a n s i t i o n AS h i g h e r t h a n t h a t of f u s i o n ( 8 e u (4) ). T M S has a l o w a u t o p r o t o l y s i s constant ( p K = 25.45) ( 5 ) , a n d , i n spite of its h i g h d i p o l e m o m e n t , i t has v e r y w e a k a c i d i c a n d b a s i c p r o p e r t i e s ( p K H B
—12.88 ( 6 )
and p K
a
> 31 ( 7 ) .
+
—
T M S has b e e n c h o s e n for o u r studies
b e c a u s e i t appears a n o m a l o u s a m o n g n o n a q u e o u s
solvents since i n t h i s
m e d i u m s e v e r a l ions h a v e v e r y h i g h W a l d e n p r o d u c t s , e v e n h i g h e r t h a n i n w a t e r (8,9,10).
M o r e o v e r , i o n i c a s s o c i a t i o n constants greater t h a n
e x p e c t e d o n t h e basis of its d i e l e c t r i c constant w e r e r e p o r t e d i n l i t e r a t u r e f o r s o m e salts ( 2 1 ) .
These
findings
l e d us t o b e l i e v e t h a t r e s e a r c h o n
i o n i c m o b i l i t y a n d a s s o c i a t i o n to i o n p a i r s e x t e n d e d t o T M S m i x t u r e s w i t h p r o t i c solvents a n d m i g h t p r o v i d e us w i t h some i n t e r e s t i n g results. Experimental
Data
I o n i c m o b i l i t i e s u n d e r c o n s i d e r a t i o n h e r e are b a s e d o n t h e results of c o n d u c t o m e t r i c m e a s u r e m e n t s c a r r i e d o u t o n d i l u t e d solutions ( 1 0 " ^ c ^ 7 . 1 0 ~ m o l / L ) of B u N C l , B u N B r , B u N I , BU4NCIO4, i A m B u N I ( T A B I ) , N a B P h , a n d N a l i n w a t e r - T M S at 3 0 ° C (2,12). Experimental 3
3
4
4
4
3
4
Table I.
Limiting
A,
0 0.0208 0.0744 0.1586 0.3098 0.6080 1
v(cP)
«
0.8004 0.9304 1.282 1.869 2.860 4.988 10.29
76.77 73.95 68.32 62.51 55.79 48.40 43.33
Bu NBr
BuiNCl
h
107.57 91.277 66.297 47.109 31.298 19.12 11.722
105.29 90.782 66.83 45.59 30.36 17.69 12.27
•For B u N C l , B u N B r , B u N I , B u N C 1 0 , iAmaBuNI, N a B P h , and N a l in water-TMS mixtures at 30°C. 4
4
4
4
4
4
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
PETRELLA
Conductance
ET AL.
and Ionic
79
Association
d a t a w e r e a n a l y z e d a c c o r d i n g to F u o s s - O n s a g e r - S k i n n e r t r e a t m e n t (13) a n d t h e v a l u e s of d e r i v e d l i m i t i n g e q u i v a l e n t c o n d u c t a n c e s Λ are s u m m a r i z e d i n T a b l e I t o g e t h e r w i t h T M S m o l e f r a c t i o n x , v i s c o s i t y η, a n d d i e l e c t r i c constant c of solvent m i x t u r e s . L i m i t i n g i o n i c e q u i v a l e n t c o n d u c t a n c e s h a v e b e e n o b t a i n e d o n t h e basis of the h y p o t h e s i s s u g g e s t e d b y C o p l a n a n d F u o s s (14) V ( i A m B u N ) = V ( B P h " ) = [ A ( i A m B u N B P h ) ] / 2 . M o r e o v e r , since i A m B u N B P h ( T A B B P h ) was not s o l u b l e i n w a t e r - s u l f o l a n e m i x t u r e s , t h e v a l u e of its l i m i t i n g e q u i v a l e n t c o n d u c t a n c e has b e e n c a l c u l a t e d b y t h e e q u a t i o n : 0
2
+
3
4
Λ
0
3
(TABBPh ) — Λ 4
0
(TABI) +
4
0
4
Λ
0
3
4
(NaBPh ) 4
Λ
0
(Nal)
(1)
g i v e n t h a t t h e salts T A B I , N a B P h a n d N a l are s o l u b l e i n w a t e r - T M S mixtures. Information on ionic association phenomena have been obtained c o n d u c t o m e t r i c a l l y i n w a t e r - T M S at 3 5 ° C f o r d i l u t e d solutions of L i C l ( 1 5 ) , N a C l ( 1 6 ) , K C 1 ( 1 7 ) , H C 1 ( 1 8 ) , a n d N a C 1 0 ( 1 9 ) . T h e s t u d y of a s s o c i a t i o n to i o n p a i r s has b e e n e x t e n d e d c o n d u c t o m e t r i c a l l y t o d i l u t e d solutions of L i C l i n m e t h a n o l - T M S at 35 ° C ( 2 0 ) , a n d s p e c t r o p h o t o m e t r i c a l l y t o p i c r i c a c i d ( H P i ) i n solutions of e t h a n o l - T M S , a n d tertb u t a n o l - T M S at 3 0 ° C (21). A l s o , i n this case, c o n d u c t i v i t y d a t a w e r e a n a l y z e d b y F u o s s - O n s a g e r - S k i n n e r e q u a t i o n s a n d l i m i t i n g e q u i v a l e n t c o n d u c t a n c e s A a n d a s s o c i a t i o n constants K are c o l l e c t e d i n T a b l e I I t o g e t h e r w i t h p h y s i c a l p r o p e r t i e s of solvent m i x t u r e s . F u r t h e r m o r e , T a b l e I I I shows e t h a n o l and ferf-butanol concentration i n the mixture [ R O H ] , the relevant dielec t r i c constant c, a n d t h e p K of p i c r i c a c i d .
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
4
4
A
Discussion Ionic Walden Products.
Fundamental work by K a y and Evans
(22)
has s h o w n t h a t a c o r r e c t i n t e r p r e t a t i o n of t h e c o n d u c t o m e t r i c
behavior
of ions i n w a t e r c a n n o t b e m a d e w i t h o u t c o n s i d e r i n g b o t h t h e
complex
t h r e e - d i m e n s i o n a l s t r u c t u r e of w a t e r a n d t h e s t r u c t u r e - b r e a k i n g , s t r u c t u r e - m a k i n g p r o p e r t i e s of ions. O n t h e other h a n d , i f w a t e r is a n a t y p i c a l Equivalent
Conductances
0
A,-0 Bu NI t
106.14 87.46 60.854 43.205 29.744 18.703 9.996
B NClO Ui
95.84 78.76 52.635 37.249 26.34 16.771 9.481
iAm BuNl s
107.43 86.09 59.86 42.29 29.29 18.47 9.80*
NaBPhi 77.63 67.30 49.93 36.46 24.85 14.19
Nal 140.23 118.33 85.67 61.56 41.31 24.25 10.87"
* Value obtained from the data of A . P . Zipp in Ref. 10. •Value obtained from the data of R . Fernandez-Prini and J . E . Prue i n Ref. 11.
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
Table II.
Limiting Equivalent Conductances and Association Constants 0
η(θΡ)
Χ*
c
Λ
Κ
0
A
Water-TMS
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
LiCl 0 0.0190 0.0633 0.1522 0.3115 0.4445 0.6259 1
0.7194 0.8225 1.093 1.620 2.574 3.398 4.543 9.033
74.64 72.43 68.05 61.82 54.87 51.08 47.33 42.71
140.22* 122.83 96.19 66.61 42.45 31.51 24.33 15.92
—
— —
2 10 13 36 14595
NaCl 0 0.0206 0.0731 0.1585 0.3119 0.4323 0.6248 0.7443 0.8298
0.7194 0.8304 1.150 1.665 2.602 3.338 4.537 5.466 6.117
74.64 72.27 67.20 61.42 54.69 51.34 47.34 45.60 44.54
153.84" 133.76 101.90 71.85 45.93 35.53 26.10 21.89 19.67
— — — •— 3 7 19 25 40
KCl 0 0.0200 0.1584 0.2735 0.4335 0.6282
0.7194 0.8271 1.665 2.428 3.347 4.555
74.64 72.33 61.43 56.03 51.31 47.30
180.53" 157.93 81.21 55.29 37.58 26.56
3 7
HCl 0 0.0206 0.0731 0.1583 0.3116 0.6248 1
0.7194 0.8304 1.150 1.663 2.602 4.537 0.033
74.64 72.27 67.18 61.42 54.69 47.34 42.71
489.92 426.80 310.33 199.13 99.30 32.63
—
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
— — —
26 51 76 10*
II
6.
PETRELLA
ET AL.
Conductance
and Ionic
81
Association
Table I I . Continued v(cP)
X*
Λ
€
K
A
0
NaClOj,
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
0 0.0205 0.0731 0.1573 0.3050 0.6111 1
74.64 72.30 67.24 61.47 55.09 47.57 42.71
0.7194 0.8287 1.145 1.658 2.545 4.441 9.033
142.15 120.94 87.22 61.79 42.99 25.52 11.74
Methanol-TMS LiCl 0 0.0440 0.1566 0.2960 0.4973 0.7927 1
0.4813 0.5178 0.6832 1.010 1.790 4.408 9.033
104.63 99.16 84.19 64.08 42.36 24.30 15.92
30.71 32.37 34.52 36.90 39.27 41.55 42.71
16 25 32 121 14595
For L i C l , N a C l , KC1, HC1, and N a C 1 0 in w a t e r - T M S mixtures and L i C l in methanol-TMS mixtures at 35°C. Ref. 49. Ref. 60. β
4
b
0
s o l v e n t because of its s t r u c t u r a l c h a r a c t e r i s t i c s , w e c a n w h o l l y agree w i t h F . F r a n k s w h e n h e says, " I f t h e r e is one w a y of p r o d u c i n g a s o l v e n t e v e n m o r e e c c e n t r i c a n d a n o m a l o u s t h a n p u r e w a t e r , t h e n this is a c h i e v e d b y t h e a d d i t i o n of s m a l l a m o u n t s of s o m e o r g a n i c c o m p o u n d s " ( 2 3 ) . N u m e r ous c o n d u c t o m e t r i c studies o n electrolytes i n m i x t u r e s of w a t e r
with
o r g a n i c solvents h a v e b e e n r e p o r t e d i n t h e l i t e r a t u r e ; b u t i t is o n l y r e c e n t l y , t h a n k s to K a y a n d B r o a d w a t e r , t h a t i o n - s o l v e n t i n t e r a c t i o n s i n these b i n a r y m i x t u r e s h a v e b e e n s t u d i e d , p a r t i c u l a r l y w i t h respect t o w h a t h a p p e n s i n w a t e r - r i c h m i x t u r e s . T h e y use (24),
teri-butanol
ethanol ( E t O H ) (25), a n d dioxane ( D i o x )
(26)
(terf-BuOH) as co-solvents.
A m o n g these solvents, t h e a l c o h o l s , w h e n a d d e d i n s m a l l a m o u n t s , are a b l e to generate m i x t u r e s w h i c h are m o r e s t r u c t u r e d t h a n p u r e w a t e r . T h i s effect is greater f o r tert-BuOH
than for E t O H .
does n o t e n h a n c e t h e l o n g - r a n g e o r d e r i n w a t e r ( 2 6 ) .
H o w e v e r , dioxane K a y and Broad
w a t e r observe t h a t i n t h e case of a l c o h o l i c m i x t u r e s , i n w a t e r - r i c h r e g i o n s , a l k a l i a n d h a l i d e ions s h o w m a x i m a i n W a l d e n p r o d u c t s . T h i s c o u l d b e e x p l a i n e d b y t h e f a c t t h a t , i n these regions of t h e m i x t u r e s , solvent s t r u c t u r e is h i g h e r t h a n t h a t of p u r e w a t e r , so t h a t t h e m o b i l i t y of s t r u c t u r e -
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
82
T H E R M O D Y N A M I C BEHAVIOR OF E L E C T R O L Y T E S
II
Table III. T h e p K Values of Picric A c i d in E t h a n o l - T M S and i e r f - B u t a n o l - T M S Mixtures at 3 0 ° C [ROH](mol/L)
€
K
v
HPi
Ethanol-TMS
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
16.95 15.36 12.07 8.10 5.31 1.93 0
23.8 25.2 28.2 31.8 36.0 40.5 43.3
3.66 3.62 3.72 3.72 4.40 5.54 7.6
£er£-Butanol-TMS 10.46 9.44 7.39 5.33 3.26 1.12
11.5 13.3 18.3 24.6 31.6 39.3
4.60 4.82 4.56 4.22 4.82 5.90
b r e a k i n g ions is e n h a n c e d . H o w e v e r , t h e m o b i l i t y increase is greater f o r s m a l l e r ions, a n d this does n o t agree w i t h w h a t w o u l d b e e x p e c t e d i f t h e m a x i m a w e r e c a u s e d s o l e l y b y s t r u c t u r e - b r e a k i n g effects, g i v e n t h a t these effects are m o r e m a r k e d f o r l a r g e r ions. T h u s K a y a n d B r o a d w a t e r s u g gest t h a t m a x i m a i n W a l d e n p r o d u c t s c a n b e e x p l a i n e d b y
supposing
t h a t the i n t e r a c t i o n s b e t w e e n t h e c o m p o n e n t s of t h e solvent m i x t u r e a n d t h e ions are m a i n l y of t h e a c i d - b a s e t y p e . T h e r e f o r e , as a r e s u l t of i o n i c c h a r g e d e n s i t y a n d the great differences i n a c i d - b a s e p r o p e r t i e s b e t w e e n w a t e r a n d t h e o r g a n i c co-solvent, the i o n c o s p h e r e is e n r i c h e d w i t h w a t e r t o a greater d e g r e e t h a n t h e b u l k m i x t u r e . C o n s e q u e n t l y , t h e ions h a v e a h i g h e r m o b i l i t y since t h e v i s c o s i t y a r o u n d t h e m is less t h a n t h e b u l k v i s c o s i t y , as c a n b e seen f r o m t h e t r e n d o f t h e v i s c o s i t y of t h e t w o s o l v e n t m i x t u r e s (24,25).
S o r t i n g effect is o b v i o u s l y greater f o r s m a l l e r ions a n d
this agrees w i t h e x p e r i m e n t a l results. R e g a r d i n g w a t e r - d i o x a n e mixtures, the m a x i m a observed i n W a l d e n p r o d u c t s are s m a l l e r t h a n i n w a t e r - a l c o h o l m i x t u r e s a n d i n these m i x tures too t h e ions h a v i n g a l o w e r s t r u c t u r e - b r e a k i n g c a p a c i t y s h o w
a
h i g h e r increase i n W a l d e n p r o d u c t s t h a n i n w a t e r . I n t h e case of w a t e r - T M S m i x t u r e s t h e r e is e v i d e n c e i n l i t e r a t u r e t h a t T M S b r e a k s d o w n w a t e r s t r u c t u r e i n w a t e r - r i c h m i x t u r e s . T h i s has b e e n p r o v e d b y studies c o n c e r n i n g t h e influence of s m a l l a d d i t i o n s of T M S o n t h e t e m p e r a t u r e of t h e m a x i m u m d e n s i t y of w a t e r (27),
the heat
of m i x i n g , a n d t h e v a p o r p r e s s u r e of w a t e r - T M S m i x t u r e s ( 2 8 ) .
Figure 1
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
PETRELLA
ET AL.
Conductance
and Ionic
83
Association
reports i o n i c W a l d e n p r o d u c t s n o r m a l i z e d t o t h e i r v a l u e s i n w a t e r R = [K>^)s]/[\ ^)w] 0
as a f u n c t i o n o f m o l e p e r c e n t T M S f o r N a , C l " , B r " , T , +
CICV, B u N \ T A B \ and BPh ". 4
4
L e t us n o w c o n s i d e r i n o r g a n i c i o n i c b e h a v i o r .
Na
+
shows R v a l u e s
greater t h a n u n i t y t h r o u g h o u t a l m o s t the e n t i r e r a n g e o f t h e solvent c o m position w i t h a m a x i m u m at about 30 m o l % T M S . C I " and B r " , u p to 6 0 m o l % i n T M S , possess n e a r l y constant v a l u e s , a n d are r o u g h l y e q u a l t o those i n w a t e r , w h i l e I " a n d C 1 0 " , w h i c h are t h e b e s t s t r u c t u r e 4
b r e a k i n g ions i n w a t e r , s h o w a m i n i m u m i n W a l d e n p r o d u c t s a t a b o u t 10 m o l % T M S . T h e r e f o r e N a , c o n t r a r y t o a n i o n s , b e h a v e s i n w a t e r Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
+
T M S as i t does i n t h e m i x t u r e s s t u d i e d b y K a y a n d B r o a d w a t e r .
MOLE X S U L F O L A N E Journal of Solution Chemistry
Figure 1. Ionic Walden products normalized to their values in water as a function of mole percent TMS at 30°C: (O), TAB* = BPhf; (β), Bufl ; (Μ), Na ; (A), Cl; (Π), Br'; (Α), Γ; (φ), ClOf (12). +
+
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
84
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
A m o b i l i t y increase s h o w n b y N a
+
II
w i t h respect t o t h a t i n w a t e r
c a n n o t b e i n t e r p r e t e d b y s u p p o s i n g t h a t its s t r u c t u r e - b r e a k i n g a b i l i t y is e n h a n c e d i n w a t e r - T M S m i x t u r e s , because t h e y are less s t r u c t u r e d t h a n p u r e w a t e r . T h e r e f o r e , t h e b e h a v i o r of N a i o n m a y b e a t t r i b u t e d t o t h e +
s o r t i n g of w a t e r i n its cosphere.
I n fact, T M S possesses v e r y l o w a c i d -
base p r o p e r t i e s , a n d viscosities i n the m i x t u r e s s t e a d i l y increase i n p a s s i n g f r o m w a t e r to T M S , as s h o w n i n T a b l e I . O n the c o n t r a r y the b e h a v i o r of C I " , B r " , Γ , a n d C 1 0 ~ c e r t a i n l y c a n 4
n o t b e e x p l a i n e d b y the s o r t i n g effect since i n t h a t case one w o u l d expect
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
a m o b i l i t y increase a n d t h u s a n R m a x i m a . O n t h e other h a n d , t h e o b s e r v e d o r d e r i n R values at a b o u t 10 m o l % T M S ( C I " > C10 ")
agrees
4
Br" >
Γ
w i t h t h e i n c r e a s i n g s t r u c t u r e - b r e a k i n g a b i l i t y of
>
ions.
B e c a u s e the a d d i t i o n of T M S b r e a k s d o w n w a t e r s t r u c t u r e , t h e b e h a v i o r of these anions m a y b e e x p l a i n e d b y s u p p o s i n g t h a t t h e i r m o b i l i t y is affected m a i n l y b y s t r u c t u r a l effects. W i t h r e g a r d to anions, i t is i n t e r e s t i n g to c o m p a r e o u r d a t a w i t h those r e p o r t e d b y K a y a n d B r o a d w a t e r . I n F i g u r e 2, R v a l u e s i n H terf-BuOH,
2
0 -
H 0 - E t O H , H 0 - D i o x , a n d H 0 - T M S are p l o t t e d a g a i n s t 2
2
2
m o l e p e r c e n t of n o n a q u e o u s
solvent i n w a t e r - r i c h regions.
A s can be
seen, f o r e a c h solvent m i x t u r e , m o b i l i t y increases w i t h a decrease i n i o n size, i n a g r e e m e n t w i t h the s o r t i n g effect.
A t t h e same t i m e , h o w e v e r , R
v a l u e s f o r e a c h i o n decrease i n p a s s i n g f r o m one m i x t u r e t o a n o t h e r w i t h a decrease i n t h e o r g a n i c solvent's a b i l i t y t o e n h a n c e l o n g - r a n g e o r d e r i n w a t e r - r i c h m i x t u r e s , as e x p e c t e d o n t h e basis of s t r u c t u r a l effects.
We
b e l i e v e t h a t these findings suggest t h a t s o r t i n g a n d s t r u c t u r a l effects exist at t h e same t i m e i n s o l u t i o n a n d t h a t b o t h affect t h e b e h a v i o r of ions i n solution. I t is difficult to e x p l a i n t h e different b e h a v i o r s h o w n i n w a t e r - T M S b y N a a n d h a l i d e s a n d C 1 0 ~ ions; m o r e o v e r , i t w a s n o t f o u n d i n t h e +
4
m i x t u r e s s t u d i e d b y K a y a n d B r o a d w a t e r . T h i s difference p r o b a b l y arose e i t h e r f r o m t h e differences b e t w e e n c a t i o n - T M S a n d a n i o n - T M S i n t e r actions or f r o m t h e fact t h a t t h e s o r t i n g effect p r e v a i l s over s t r u c t u r a l effects for N a , c o n t r a r y to w h a t h a p p e n s t o anions. +
L e t us n o w c o n s i d e r t h e o r g a n i c ions. A s f a r as t h e B u N 4
+
i o n is
c o n c e r n e d , F i g u r e 1 shows t h a t R v a l u e s , after some d e v i a t i o n s f r o m t h e u n i t y w h i c h is p r o b a b l y c a u s e d b y e x p e r i m e n t a l errors, increase w i t h i n c r e a s i n g o r g a n i c solvent p e r c e n t a g e , as K a y a n d B r o a d w a t e r f o u n d for t h i s i o n i n the m i x t u r e s t h e y s t u d i e d . T h i s t r e n d is c a u s e d b y a r e d u c t i o n of h y d r o p h o b i c effects c h a r a c t e r i s t i c of B u N 4
v e r y difficult to e x p l a i n t h e b e h a v i o r of T A B a m i n i m u m at a b o u t 30 m o l %
+
+
i n pure water. It appears
a n d B P h " ions w h i c h s h o w 4
T M S . O n the other h a n d , t h e l a c k of
c o n d u c t o m e t r i c d a t a for these ions i n o t h e r aqueous m i x t u r e s p r e c l u d e s any useful comparison.
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
6.
PETRELLA E T AL.
Conductance
and Ionic
MOLE % ORGANIC
85
Association
SOLVENT
Figure 2. Ionic Walden products normalized to their values in water as a function of mole percent organic solvents: (- · · · -), tert-BuOH-H 0; ( λ EtOH-H 0; ( λ Diox-H 0; (~ · ~), TMS-H 0; (O), CI'; (Ώ), Br; (A) Γ. 2
2
2
2
f
Association
Phenomena
According
to
the
theoretical model
spheres i n a d i e l e c t r i c c o n t i n u u m t h e ions are r e p r e s e n t e d as
of
rigid,
c h a r g e d spheres t h a t d o n o t i n t e r a c t w i t h solvent, w h i c h is c o n s i d e r e d to b e a m e d i u m w i t h o u t a n y k i n d of s t r u c t u r e . T h e o n l y i n t e r a c t i o n is t h a t w h i c h occurs b e t w e e n t h e ions, a n d t h e f o r m a t i o n of i o n p a i r s is c o n t r o l l e d o n l y b y electrostatic forces.
O n these bases, t h e a s s o c i a t i o n
constant m a y b e expressed b y t h e F u o s s e q u a t i o n (29) :
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
86
T H E R M O D Y N A M I C BEHAVIOR OF E L E C T R O L Y T E S
K
=
A
4πΝα
II
3
3000
exp
(2)
\aekT)
T h u s , a c c o r d i n g to this e q u a t i o n , the a s s o c i a t i o n constant increases w i t h a decrease of d i s t a n c e of closest a p p r o a c h of ions a a n d t h e d i e l e c t r i c constant c. A g r a p h of l o g K
A
vs 1/c s h o u l d b e l i n e a r . N e v e r t h e l e s s , sev
e r a l d a t a i n t h e l i t e r a t u r e s h o w t h a t a s s o c i a t i o n to t h e i o n p a i r is n o t expressed a d e q u a t e l y b y E q u a t i o n 2, a n d t h a t s o l u t e - s o l v e n t i n t e r a c t i o n s are f u n d a m e n t a l l y i m p o r t a n t i n d e t e r m i n i n g t h e existence a n d m a g n i t u d e of a s s o c i a t i o n p h e n o m e n a .
T h i s w a s o b s e r v e d also b y us i n t h e m i x t u r e s
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
of T M S a n d s o m e p r o t i c solvents. A s s o c i a t i o n b e h a v i o r of electrolytes i n these m i x t u r e s c a n b e u n d e r s t o o d b e t t e r b y first e x a m i n i n g t h i s p h e nomena i n pure T M S . Pure T M S .
G i v e n t h e i n t e r m e d i a t e v a l u e of t h e d i e l e c t r i c c o n
stant of T M S , n o n o t i c e a b l e i o n i c a s s o c i a t i o n o n t h e basis of t h e F u o s s equation should be expected.
Moreover, m u c h higher association con
stants t h a n e x p e c t e d b y E q u a t i o n 2 h a v e b e e n o b s e r v e d f o r L i C l ( K =
14595 L / m o l )
(15)
A
3 5
w h i l e the t h e o r e t i c a l v a l u e , c a l c u l a t e d f o r a
°
C
=
2.413, the s u m of c r y s t a l l o g r a p h i c r a d i i of L i a n d C I ' ions, is 7 L / m o l ) . +
T h i s h i g h a s s o c i a t i o n also w a s o b s e r v e d at 30 ° C b y P r i n i a n d P r u e ( K =
13860 L / m o l )
(9)
3 0
A
w h o also r e m a r k e d o n t h e i n a d e q u a c y of
°
C
the
t h e o r y a n d e x p l a i n e d i t i n terms of d i e l e c t r i c s a t u r a t i o n . F u r t h e r m o r e , Garnsey a n d P r u e gave apparent p o l y m e r i z a t i o n numbers for L i C l
(3).
W e b e l i e v e t h a t this h i g h a s s o c i a t i o n constant v a l u e also m a y b e
ex
p l a i n e d b y k e e p i n g i n m i n d t h a t T M S , l i k e other d i p o l a r a p r o t i c solvents, s c a r c e l y solvates a n i o n s , p a r t i c u l a r l y the smallest ones s u c h as C I ' ( 3 0 ) . T h u s c h l o r i d e i o n is p a r t i c u l a r l y r e a c t i v e i n T M S a n d this increases t h e i n t e n s i t y of i n t e r a c t i o n w i t h L i . +
T h e f a i l u r e of the F u o s s e q u a t i o n to r e p r o d u c e e x p e r i m e n t a l d a t a a p p e a r s p a r t i c u l a r l y e v i d e n t b y c o n d u c t o m e t r i c m e a s u r e m e n t s of h y d r o c h l o r i c a c i d (18)
a n d b y s p e c t r o p h o t o m e t r i c m e a s u r e m e n t s of p i c r i c a c i d
(21 ) w h i c h w e h a v e c a r r i e d out i n T M S at 3 5 ° a n d 3 0 ° C , r e s p e c t i v e l y . R e g a r d i n g h y d r o c h l o r i c a c i d , i n a c o n c e n t r a t i o n r a n g e of 30.10" 300.10'
4
4
to
m o l / L , e q u i v a l e n t c o n d u c t a n c e assumes a n e x t r e m e l y l o w a n d
constant v a l u e of 0.03 S c m / m o l , as seen i n F i g u r e 3. 2
This behavior
c e r t a i n l y c a n n o t b e e x p l a i n e d o n t h e basis of s i m p l e d i s s o c i a t i o n p h e n o m e n a . T h u s w e h a v e i n t e r p r e t e d these results o n t h e basis of t h e o r e t i cal work b y Caruso a n d co-workers
(31)
w h o consider the
conducto
m e t r i c , p o t e n t i o m e t r i c , a n d s p e c t r o p h o t o m e t r i c b e h a v i o r of w e a k a c i d s and
bases i n n o n a q u e o u s solvents. I n these solvents a w e a k a c i d , H A ,
besides u n d e r g o i n g s i m p l e i o n i c d i s s o c i a t i o n , also m a y u n d e r g o c o n j u g a tion phenomena b y the H ionic complex
species
+
a n d A " ions w h i c h l e a d to t h e f o r m a t i o n of
A(HA)/"
or H ( H A ) / .
C a r u s o shows t h a t t h e
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
6.
Conductance
PETRELLA E T AL.
and Ionic
87
Association
Electrochimica Acta
Figure 3.
Conductance
of HCl in pure TMS at 35°C (18)
existence o f these species i n s o l u t i o n reflects o n t h e s h a p e o f — l o g Λ vs. — l o g c, Ε vs. — l o g c, a n d — l o g [ A " ] v s . — l o g c p l o t s i n c o n d u c t a n c e , potentiometry, a n d spectrophotometry, respectively. Particularly regard i n g c o n d u c t o m e t r i c m e a s u r e m e n t s , i f t h e r e is u n i l a t e r a l c o n j u g a t i o n b y the H
+
o r A " ions w i t h a n e u t r a l m o l e c u l e o f t h e a c i d H A , t h e c u r v e
— l o g Λ vs. — l o g c assumes a slope e q u a l t o z e r o , w h i c h a p p r o a c h e s
—0.5
o n l y f o r v e r y l o w v a l u e s o f a c i d c o n c e n t r a t i o n . T h i s b e h a v i o r is o b s e r v e d f o r H C l i n T M S a n d w e suppose t h a t i t is c a u s e d b y t h e H C 1 ~ c o m p l e x 2
species, so t h a t the e q u i l i b r i a e s t a b l i s h e d i n s o l u t i o n a r e : HC1^±H
+
+ C1-
K ^ ^ o ç i -
(
3
)
GHCI
CI" + H C l ? ± H C 1 " 2
K
2
=
a H C l 2
"
&C1 - &HC1
(4)
T h e h y p o t h e s i s o f t h e f o r m a t i o n o f t h e H C 1 " i o n agrees w i t h t h e 2
p r o p e r t i e s w h i c h T M S shows i n f a v o r i n g t h e f o r m a t i o n o f l a r g e h y d r o g e n d i h a l i d e ions r a t h e r t h a n s m a l l h a l i d e i o n s , as f o u n d b y B e n o i t a n d c o w o r k e r s (32,33).
M o r e o v e r , a c i d - a n i o n c o m p l e x e s also w e r e
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
observed
88
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
f o r 2 . 6 - d i h y d r o x y l b e n z o i c a c i d i n T M S (34,35)
Π
and for phenol and
p h e n o l a t e i o n i n 3 - m e t h y l - s u l f o l a n e (36), w h i c h h a s a c i d - b a s e
proper
ties s i m i l a r t o those o f T M S . T h e theoretical equation found b y Caruso for the intercept of the l i n e a r p o r t i o n o f t h e p l o t — l o g Λ v s . — l o g c enables us t o e v a l u a t e t h e c o n s t a n t Κχ: intercept = - ^ log 4
Λ ( H HC1 ") +
0
(5)
2
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
I n E q u a t i o n 5, i n s e r t i n g t h e v a l u e s o f 1.52 f o r t h e i n t e r c e p t , 3 5 0 f o r K (32,33),
a n d 13 f o r A ( H
+
2
H C 1 ) , calculated approximately, o n the 2
_
d a t a f r o m t h e l i t e r a t u r e ( 8 , 3 5 ) , afirst a p p r o x i m a t i o n v a l u e o f 1 0 ' m o l / L 9
w a s o b t a i n e d f o r Κχ. M o r e c o m p l e x e q u i l i b r i a t h a n those c o n c e r n e d w i t h s i m p l e a s s o c i a tion to i o n pair have been observed spectrophotometrically i n T M S i n t h e case o f p i c r i c a c i d . F i g u r e 4 shows t h a t Σ%ο [ ^ ( H P i ) / ] v s . — l o g c
Canadian Journal of Chemistry
Figure 4. Spectrophotometric data of picric acid in TMS. The line is the theoretical curve for equilibria 6-8 (K = 10' - , K = 10 - , and K = 10*) (21). HPi
7
6
(HIH)t
1
Pi(HP4)2
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
9
6.
PETRELLA E T AL.
(^J
= 0
[Pi(HPi(/]
Conductance
and Ionic
89
Association
is t h e s u m of a n i o n i c p i c r a t e species, a n d c is t h e
a n a l y t i c a l c o n c e n t r a t i o n of H P i ) . A s m a y b e seen, t h e r e are t w o l i n e a r p o r t i o n s w i t h slopes of 0.46 f o r c < 0 . 0 8 M a n d 1.56 f o r c > 0 . 0 8 M . v e r y s i m i l a r g r a p h has b e e n o b s e r v e d b y K o l t h o f f a n d c o - w o r k e r s H P i i n a c e t o n i t r i l e (37)
A for
w i t h slopes of 0.48 a n d 1.45 f o r c o n c e n t r a t i o n s
b e l o w a n d a b o v e 0.1 A i , r e s p e c t i v e l y . T h e a n a l y s i s c a r r i e d o u t b y C a r u s o a n d c o - w o r k e r s (31)
o n these d a t a confirms t h e h y p o t h e s i s m a d e b y K o l t
hoff a n d c o - w o r k e r s t h a t the p r e d o m i n a t i n g species i n a c e t o n i t r i l e at h i g h e r c o n c e n t r a t i o n s is the i o n P i ( H P i ) " .
Moreover,
2
conductometric
measurements on H P i i n T M S have been interpreted b y E l l e r a n d C a r u s o Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
p r e s u m i n g t h a t H P i p o l y m e r s are f o r m e d i n solutions ( 3 8 ) .
O n these
bases w e h a v e h y p o t h e s i z e d t h a t p i c r i c a c i d i n T M S too forms the c o m p l e x species P i ( H P i ) " a c c o r d i n g to the f o l l o w i n g r e a c t i o n s : 2
HPi^±H* +
Pi-
2HPi-(HPi)
Κ
K
2
P i " + (HPi) ^±Pi(MPi) 2
Kp
2
(
1 ( H
" "
Η
P
H
P
i ) 2
i
)
[
2
- -
Η
[ Η Κ ] "
1
Ρ
(
= ^Hpffi
6
)
( 7 )
^ - ^ H P i ) ! ]
( 8 )
S p e c t r o p h o t o m e t r i c d a t a h a v e b e e n a n a l y z e d m a t h e m a t i c a l l y as s u g gested b y C a r u s o a n d the t h e o r e t i c a l c u r v e w h i c h fits the e x p e r i m e n t a l data very w e l l was Kp HPi) - = i(
4
2
and H S 0 2
2
obtained
for
10 . C o m p a r i s o n of p K 4
Κ ρι=10 · , Η
A
7
6
K pi) = ( H
2
10" , 1 9
and
values i n T M S for H C 1 0 , H S 0 F , 4
(2.7, 3.3, a n d 5, r e s p e c t i v e l y ( 3 9 ) )
3
w i t h t h e ones o b t a i n e d
f o r H C l ( 9 ) a n d H P i (7.6) shows t h a t the w e a k e s t a c i d i n this solvent is h y d r o c h l o r i c a c i d . T h i s is f u r t h e r p r o o f t h a t i n T M S l a r g e anions are s t a b i l i z e d b y s o l v a t i o n m o r e t h a n l i t t l e ones. T h e results o b t a i n e d for L i C l , H C l , a n d H P i i n T M S s h o w the f u n d a m e n t a l i m p o r t a n c e of the effect of i o n - s o l v e n t i n t e r a c t i o n s o n a s s o c i a t i o n phenomena.
These
effects also h a v e b e e n
evidenced
when studying
T M S - p r o t i c solvent m i x t u r e s w h e r e i o n a s s o c i a t i o n is c o n d i t i o n e d m a i n l y b y t h e presence of T M S . Water-TMS
Conductometric
Mixtures.
studies o n
L i , Na, and
Κ chlorides a n d hydrochloric a c i d i n w a t e r - T M S have s h o w n association constants h i g h e r t h a n t h e F u o s s e q u a t i o n p r e d i c t s i n these m i x t u r e s too. I n t h e case of H C l , K
A
v a l u e s e q u a l to 26 ± 5, 51 ± 9, a n d 76 ± 4 c o r r e
s p o n d e d to d i e l e c t r i c constant v a l u e s of 61.42, 54.69, a n d 47.34, respec tively.
O n the c o n t r a r y , K
A
v a l u e s for t h e same systems c a l c u l a t e d o n
the basis of the F u o s s e q u a t i o n u s i n g the r e a s o n a b l e v a l u e of 4 A f o r t h e
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
90
T H E R M O D Y N A M I C BEHAVIOR OF
ELECTROLYTES—Π
d i s t a n c e of closest a p p r o a c h of ions a are 1.5, 1.9, a n d 2.8, r e s p e c t i v e l y . T h e difference b e t w e e n e x p e r i m e n t a l a n d t h e o r e t i c a l t r e n d s of l o g K
A
vs.
1 0 0 / c is s h o w n i n F i g u r e 5. I n the case of L i C l , N a C l , a n d K C 1 , F i g u r e 6 enables e x p e r i m e n t a l v a l u e s t o b e c o m p a r e d w i t h t h e o r e t i c a l ones c a l c u l a t e d b y t h e F u o s s equation, substituting for the a parameter the lowest value w i t h a p h y s i c a l m e a n i n g (a = 2.413, t h e s u m of L i a n d C I " c r y s t a l l o g r a p h i c r a d i i ) , +
i n o r d e r to get l a r g e r t h e o r e t i c a l v a l u e s f o r K . A s seen f r o m F i g u r e s 5 A
a n d 6, the o b s e r v e d trends i n a l m o s t t h e w h o l e r a n g e of solvent c o m p o s i
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
t i o n are l i n e a r b u t w i t h different slopes f r o m the t h e o r e t i c a l one i n the
100/f Figure 5. Dependence of association constants on the dielectric constant for HCl in water-TMS at 35°C: ( ), association constants calculated from the Fuoss equation (a = 4 A).
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
Figure 6. Dependence of association constants on the dielectric constant for LiCl, NaCl, and KCl in water-TMS mixtures at 35°C: (---), association constants calculated from the Fuoss equation (a = 2.413 A); (O), LiCl; (Π), NaCl; (Δ), KCl.
case of a l k a l i c h l o r i d e s , a m o n g w h i c h those of N a a n d K +
+
are s c a r c e l y
s o l u b l e i n T M S . I n t h e case of L i C l a n d H C l , as t h e s o l v e n t b e c o m e s richer i n T M S , log K
A
a b r u p t l y increases.
H i g h e r a s s o c i a t i o n constants t h a n those e x p e c t e d
o n t h e basis of
E q u a t i o n 2 h a v e b e e n o b s e r v e d also i n s e v e r a l p r o t i c solvents b y E v a n s a n d co-workers
(40),
between cation M
+
who
explained it b y assuming that association
a n d a n i o n A " i n a p r o t i c solvent S H is a t w o - s t e p
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
92
T H E R M O D Y N A M I C BEHAVIOR OF E L E C T R O L Y T E S
II
process w h e r e t h e r e is, first, f o r m a t i o n of a s o l v e n t - s e p a r a t e d i o n p a i r a n d t h e n , f o l l o w i n g the loss of a solvent m o l e c u l e b y t h e a n i o n , f o r m a t i o n of a c o n t a c t i o n p a i r . T h i s h a p p e n s a c c o r d i n g to the e q u a t i o n s :
(SH)
m
M + A(SH) " 5 M ( S H ) A ( S H ) +
M(SH) A ( S H ) Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
.!
(9)
. i + SH
(10)
n
m + n
_i 5 MA(SH)
m + n
Ki m a y be calculated b y the Fuoss equation a n d K
2
m + n
b e c o m e s l a r g e r as
t h e b o n d b e t w e e n the a n i o n a n d t h e solvent m o l e c u l e w e a k e n s .
The
a s s o c i a t i o n constant o b s e r v e d is t h e r e f o r e :
^^•(' + ϊΕτ)
u
T h i s e q u a t i o n accounts f o r e x p e r i m e n t a l a s s o c i a t i o n constant v a l u e s h i g h e r t h a n t h e o r e t i c a l ones b e c a u s e K t h a t w h e n cations are e q u a l , K
A
> Ki. Moreover, w e m a y deduce
A
is s m a l l e r f o r s m a l l e r a n i o n s , w h i c h m e a n s
t h a t t h e y h a v e a greater c h a r g e d e n s i t y a n d thus are m o r e b a s i c , since K
2
is l o w e r f o r t h e m . O n t h e c o n t r a r y , K
values d e c r e a s i n g w i t h a n
A
increase i n t h e size of t h e a n i o n h a v e b e e n o b s e r v e d i n a p r o t i c solvents l i k e T M S (II), a c e t o n i t r i l e (44),
acetone (41),
nitrobenzene
(42),
a n d 1,1,3,3-tetramethylurea (45).
nitromethane
(43),
T h i s order can be
u n d e r s t o o d i f one considers t h a t i n t h i s class of solvents the anions are s c a r c e l y s o l v a t e d so t h a t a s s o c i a t i o n is affected m a i n l y b y t h e s t r e n g t h of c a t i o n - a n i o n i n t e r a c t i o n , w h i c h , w i t h t h e cations b e i n g e q u a l , increases w i t h a n increase i n the a n i o n c h a r g e d e n s i t y . I n o r d e r to see w h e t h e r t h e h i g h K
A
values w e f o u n d i n w a t e r -
T M S mixtures can be explained b y the multiple-step mechanism sug gested b y E v a n s a n d c o - w o r k e r s w e h a v e s t u d i e d c o n d u c t o m e t r i c b e h a v i o r of N a C 1 0 i n these m i x t u r e s (19).
T h e results of these m e a s u r e m e n t s
4
s h o w t h a t N a C 1 0 is n o t associated, w h e r e a s f o r N a C l a s s o c i a t i o n a p 4
pears to start f r o m w
2
~ 70 w t %
K
A
T M S (c~55).
(C1-) > K
A
So, t h e o r d e r
(CKV)
ob-
(12)
s e r v e d i n w a t e r - T M S is a n a l o g o u s to t h a t f o u n d i n a p r o t i c solvents. I t therefore excludes the f a c t t h a t anions f o r m i n g i o n p a i r s i n w a t e r - T M S m i x t u r e s are p r e f e r e n t i a l l y s o l v a t e d b y w a t e r , since i n t h a t case s o d i u m p e r c h l o r a t e s h o u l d b e m o r e associated t h a n c h l o r i d e , as suggested b y the E v a n s m e c h a n i s m . I n s t e a d i t suggests t h a t i o n i c a s s o c i a t i o n p h e n o m e n o n
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
PETRELLA
Conductance
ET AL.
and Ionic
93
Association
i n w a t e r - T M S m i x t u r e s are m a i n l y affected b y T M S . I n fact w e
have
a l r e a d y seen t h a t t h e C I " i o n is s c a r c e l y s t a b i l i z e d i n T M S a n d t h u s tends t o f o r m v e r y stable i o n p a i r s . I o n i c a s s o c i a t i o n i n the case of a l k a l i chlorides a n d hydrochloric a c i d i n w a t e r - T M S mixtures m a y
therefore
b e e x p l a i n e d b y a s s u m i n g t h a t the s m a l l f r a c t i o n of c h l o r i d e i o n w h i c h interacts w i t h T M S forms v e r y stable i o n p a i r s , d e s p i t e t h e h i g h v a l u e of t h e d i e l e c t r i c constant. Alcohol-TMS
Furthermore, convincing
Mixtures.
c e r n i n g the i n a d e q u a c y
of t h e t h e o r e t i c a l m o d e l
evidence
con
i n describing
ionic
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
a s s o c i a t i o n m a y b e o b t a i n e d o n t h e basis of results of studies o n
con-
d u c t o m e t r i c a l b e h a v i o r of L i C l i n M e O H - T M S a n d s p e c t r o p h o t o m e t r i c a l b e h a v i o r of H P i i n E t O H - T M S a n d
terf-BuOH-TMS
mixtures.
R e g a r d i n g L i C l , F i g u r e 7 shows t h a t e v e n i n a l c o h o l i c m i x t u r e s experimental K
A
is h i g h e r t h a n t h e t h e o r e t i c a l one i n n e a r l y the w h o l e
r a n g e of the solvent c o m p o s i t i o n . is t h e n o n c o u l o m b i c
F u r t h e r m o r e , the m o s t i n t e r e s t i n g f a c t
t r e n d of t h e a s s o c i a t i o n constant w h i c h decreases
e v e n t h o u g h the d i e l e c t r i c constant decreases o n p a s s i n g f r o m T M S to m e t h a n o l (c ~ 31).
43)
(t^
G i v e n t h a t L i C l is not associated i n M e O H ,
i o n i c association is a s c r i b a b l e to T M S , w h i c h also occurs i n its m i x t u r e s w i t h water.
T h e t r e n d of l o g K
A
vs. 100/e
also c a n b e e x p l a i n e d b y
a s s u m i n g t h a t i o n - s o l v e n t i n t e r a c t i o n s s t r o n g l y i n f l u e n c e i o n i c associa t i o n , m u c h m o r e t h a n t h e d i e l e c t r i c constant does. T h e K
A
decrease t h a t
o c c u r s w h e n m e t h a n o l is a d d e d to T M S is c a u s e d m a i n l y b y the greater c a p a c i t y of m e t h a n o l as c o m p a r e d w i t h T M S to solvate the ions.
This
is p r o v e d b y t h e s t r o n g l y n e g a t i v e v a l u e s of transfer e n t h a l p i e s
from
TMS
to m e t h a n o l of b o t h L i (-9.1 +
K c a l / m o l ) a n d C l " (-4.8
K cal/mol)
(46). N o n c o u l o m b i c v a r i a t i o n of i o n i c a s s o c i a t i o n w a s o b s e r v e d f o r H P i too, as s h o w n i n F i g u r e 8 b o t h for the E t O H - T M S a n d the TMS
mixtures. L o g K
A
vs. 100/c
is not l i n e a r a n d K
A
tert-BuOH-
decreases i n these
m i x t u r e s w i t h a decrease i n t h e d i e l e c t r i c constant, i n spite of the t h e o r y b a s e d o n electrostatic c o n t r o l of i o n a s s o c i a t i o n (c toH = 23.8,
etert-Buon =
E
11.5). L i k e L i C l i n M e O H - T M S , the greatest decrease of K
A
is o b s e r v e d
w i t h s m a l l a d d i t i o n s of alcohols t h a t are better a b l e to solvate p i c r i c a c i d than T M S w i t h w h i c h they establish hydrogen bonds. is stronger i n a l c o h o l s ( p K ( p K p i = 7.6). H
E T
I n fact p i c r i c a c i d
0 H = 3.7 a n d p K i - B u O H = 4.6) ier
T h e trends of K
A
than i n T M S
values m a y b e e x p l a i n e d b y p r e f e r e n t i a l
s o l v a t i o n of H P i b y the a l c o h o l s . O n this basis a n a t t e m p t w a s m a d e t o e x p l a i n m o r e t h o r o u g h l y t h e k i n d of s o l u t e - s o l v e n t i n t e r a c t i o n s i n t h e case of p i c r i c a c i d . G i v e n t h e n o t i c e a b l e difference b e t w e e n p K v a l u e s i n T M S a n d those i n E t O H a n d
terf-BuOH,
we hypothesized that T M S
b e h a v e s l i k e a n i n e r t solvent a n d p i c r i c a c i d m a i n l y reacts w i t h a l c o h o l s a c c o r d i n g to t h e reactions
(47):
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
II
H P i + n-FvOH ± ? H P i · n R O H K
HPi · nROH^±ROH
2
+
[HPi · nROH] 1
=
(13)
[HPi][ROH]»
· ROH(„.i)Pi" 2
=
[ROH * · ROH 2
( ( t
.i)Pi-]
[HPi · nROH]
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
K
Zeitschrift fur Naturforschung
Figure 7. Dependence of association constants on the dielectric constant for LiCl in methanol-TMS mixtures at 35°C: ( ), association constants calculated from the Fuoss equation (a = 2.413 A) (20).
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(14)
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
6.
PETRELLA E T AL.
Conductance
and Ionic
95
Association
Canadian Journal of Chemistry
Figure 8. Association constants of picric acid in ethanol-TMS and tertbutyl alcohol-TMS mixtures: (O), EtOH-TMS; (9), tert-BuOH-TMS (21).
ROH
2
+
·ROH^.DPi-^RO^
+ ROHin.DPi [ROH^tROH^pPi-] · R O H ^ . D P I - ] -
[ROW
U
O
J
T h u s p i c r i c a c i d reacts w i t h η a l c o h o l m o l e c u l e s f o r m i n g a c o m p l e x ( E q u a t i o n 13) w h i c h rearranges t o f o r m a n i o n p a i r ( E q u a t i o n 14) w h i c h t h e n dissociates ( E q u a t i o n 15 ). T h e processes i n v o l v e d i n E q u a t i o n s 13 a n d 14 are c o n d i t i o n e d b y specific s o l u t e - s o l v e n t i n t e r a c t i o n s , w h i l e t h e process d e p i c t e d b y E q u a t i o n 15 is c o n t r o l l e d b y electrostatics. equal to 1 / K , where K A
A
K
3
is
is t h e t h e o r e t i c a l association constant g i v e n b y
E q u a t i o n 2. I t c a n b e easily s h o w n t h a t t h e e x p e r i m e n t a l a s s o c i a t i o n constant is g i v e n b y t h e e q u a t i o n :
Atexp) — [
R
0
H
] »
K
l
K
2
-
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(16)
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
96
T H E R M O D Y N A M I C BEHAVIOR O F E L E C T R O L Y T E S
Π
Canadian Journal of Chemistry
Figure 9. Test of Equation 17 ( n = 4) for ionization of picric acid in ethanol-TMS and text-butyl alchol-TMS mixtures: (O), EtOH-TMS; tert-BuOH-TMS (21). E q u a t i o n 16 m a y b e r e w r i t t e n as f o l l o w s : logK
A ( e x p )
l
0
g
+nlog[ROH] =
-3ÔÔÔ- "
l
0
g
2
(
+ ïôô^kT ( τ " )
1
7
)
I t m a y b e a s s u m e d t h a t p i c r i c a c i d reacts w i t h f o u r a l c o h o l m o l e cules. O n e o f t h e m n e u t r a l i z e s t h e a c i d f o r m i n g t h e i o n R O H
+ 2
a n d the
r e m a i n i n g t h r e e m o l e c u l e s solvate t h e p i c r a t e a n i o n b y h y d r o g e n b o n d s w i t h the three nitro groups. D ' A p r a n o a n d Fuoss have observed a similar m e c h a n i s m i n m i x t u r e s o f a c e t o n i t r i l e a n d p r o t i c solvents (48). I f this h y p o t h e s i s is correct, w h e n s u b s t i t u t i n g t h e v a l u e o f f o u r f o r η i n E q u a t i o n 17, a g r a p h o f l o g K
MeTp)
straight line.
+ 4 l o g [ R O H ] vs. 100/c should b e a
T h i s , i n fact, c a n b e seen f o r b o t h s o l v e n t m i x t u r e s , as
s h o w n i n F i g u r e 9. Literature Cited 1. Lamanna, U., Sciacovelli, O., Jannelli, L., Gazz. Chim. Ital. (1966) 96, 114. 2. Petrella, G., Castagnolo, M., Sacco, Α., DeGiglio, Α., J. Solution Chem. (1976) 5, 621.
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
6.
PETRELLA ET AL.
Conductance and Ionic Association
97
3. Garnsey, R., Prue, J. E., Trans. Faraday Soc. (1968) 64, 1206. 4. Della Monica, M., Jannelli, L., Lamanna, U., J. Phys. Chem. (1968) 72, 1068. 5. Kreshkov, A. P., Aldarova, N. S., Tanganov, Β. B., Zh. Fiz. Khim. (1970) 44, 2089; Chem. Abstr. (1970) 73, 124160. 6. Hall, S. K., Robinson, Ε. Α., Can. J. Chem. (1964) 42, 1113. 7. Bordwell, F. G., Imes, R. H., Steiner, E . C.,J.Am. Chem. Soc. (1967) 89, 3905. 8. Della Monica, M., Lamanna, U., Senatore, L., J. Phys. Chem. (1968) 72, 2124. 9. Della Monica, M., Lamanna, U.,J.Phys. Chem. (1968) 72, 4329. 10. Zipp, A. P.,J.Phys. Chem. (1973) 5, 718. 11. Fernández-Prini, R., Prue, J. E., Trans. Faraday Soc. (1966) 62, 1257. 12. Petrella, G., Sacco, Α., Castagnolo, M., Della Monica, M., De Giglio, Α., J. Solution Chem. (1977) 6, 13. 13. Fuoss, R. M., Onsager, L., Skinner, J. T.,J.Phys. Chem. (1965) 69, 2581. 14. Coplan, Μ. Α., Fuoss, R. M., J. Phys. Chem. (1964) 68, 1177. 15. Petrella, G., Castagnolo, M., Sacco, Α., Lasalandra, L., Z. Naturforsch., Teil A (1972) 27, 1345. 16. Castagnolo, M., Jannelli, L., Petrella, G., Sacco, Α., Ζ. Naturforsch., Teil A (1971) 26, 755. 17. Sacco, Α., Petrella, G., Castagnolo, M., Z. Naturforsch., Teil A (1971) 26, 1306. 18. Castagnolo, M., Petrella, G., Electrochim. Acta (1974) 19, 855. 19. Petrella, G., Castagnolo, M., Sacco, Α., Ζ. Naturforsch., Teil A (1975) 30, 533. 20. Petrella, G., Castagnolo, M., Z. Naturforsch., Teil A (1973) 28, 1149. 21. Castagnolo, M., De Giglio, Α., Dell'Atti, Α., Petrella, G., Can.J.Chem. (1975) 53, 1651. 22. Kay, R. L., Evans, D. F.,J.Phys. Chem. (1966) 70, 2325. 23. Franks, F., "Physico-Chemical Processes in Mixed Aqueous Solvents," F. Franks, Ed., p. 50, Heineman, London, 1967. 24. Broadwater, T. L., Kay, R. L., J. Phys. Chem. (1970) 74, 3802. 25. Kay, R. L., Broadwater, T. L., J. Solution Chem. (1976) 5, 57. 26. Kay, R. L., Broadwater, T. L., Electrochim. Acta (1971) 16, 667. 27. Macdonald, D. D., Smith, M. D., Hyne, J. B., Can. J. Chem. (1971) 49, 2818. 28. Benoit, R. L., Choux, G., Can. J. Chem. (1968) 46, 3215. 29. Fuoss, R. M., J. Am. Chem. Soc. (1958) 80, 5059. 30. Parker, A. J., Chem. Rev. (1969) 69, 1. 31. Sellers, N. G., Eller, P. M. P., Caruso, J. Α., J. Phys. Chem. (1972) 76, 3618. 32. Benoit, R. L., Beauchamp, A. L., Domain, R., Inorg. Nucl. Chem. Lett. (1971) 7, 557. 33. Benoit, R. L., Rinfret, M., Domain, R., Inorg. Chem. (1972) 11, 2603. 34. Coetzee, J. F., Bertozzi, R. J., Anal. Chem. (1973) 45, 1604. 35. Ibid. (1971) 43, 961. 36. Morman, D. H., Harlow, G. Α., Anal. Chem. (1967) 39, 1869. 37. Kolthoff, I. M., Bruckenstein, S., Chantooni, M., J. Am. Chem. Soc. (1961) 83, 3927 38. Eller, P. M. P., Caruso, J. Α., Can. J. Chem. (1973) 51, 448. 39. Benoit, R. L., Buisson, C., Choux, G., Can. J. Chem. (1970) 48, 2353. 40. Evans, D. F., Matesich, S. Μ. Α., "The Physical Chemistry of Aqueous Systems," R. L. Kay, Ed., p. 95, Plenum, New York and London, 1973. 41. Evans, D. F., Thomas, J., Nadas, J. Α., Matesich, S. Μ. Α.,J.Phys. Chem. (1971) 75, 1714. 42. Witschonke, C. R., Kraus, C. Α.,J.Am. Chem. Soc. (1947) 69, 2472.
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
98
THERMODYNAMIC BEHAVIOR OF ELECTROLYTES II
43. 44. 45. 46. 47.
Wright, C. P., Murray-Rust, D., Hartley, H.,J.Chem. Soc. (1931) 199. Evans, D. F., Zavoyski, C., Kay, R. L.,J.Phys. Chem. (1965) 69, 3878. Barker, B. J., Caruso, J. Α.,J.Am. Chem. Soc. (1971) 93, 1341. Choux, G., Benoit, R. L.,J.Am. Chem. Soc. (1969) 91, 6221. Shedlovsky, T., "Electrolytes," B. Pesce, Ed., p. 146, Pergamon, New York, 1962. 48. D'Aprano, Α., Fuoss, R. M.,J.Phys. Chem. (1969) 73, 400. 49. Kay, R. L.,J.Am. Chem. Soc. (1960) 82, 2099. 50. Goffredi, M., Shedlovsky, T.,J.Phys. Chem. (1967) 71, 2176.
Downloaded by GEORGETOWN UNIV on October 26, 2017 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0177.ch006
RECEIVED February 21, 1978.
Furter; Thermodynamic Behavior of Electrolytes in Mixed Solvents—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.