18 Appearance Potentials, Ionization Potentials and Heats of Formation for Perfluorosilanes and Perfluoroborosilanes J. D . M c D O N A L D , C. H. WILLIAMS, J. C. T H O M P S O N , Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch018
and J. L. MARGRAVE Rice University, Houston, Texas
A Bendix measure
time-of-flight
mass spectrometer
appearance
species containing
potentials silicon,
has been used to
and ionization
boron, and
potentials
fluorine.
From
data, a mutually
consistent set of average bond energies
thermodynamic
properties
has been
of these and
derived.
Τ η contrast to the l a r g e a m o u n t of d a t a r e p o r t e d o n the heats of f o r m a *
t i o n a n d b o n d strengths of h y d r o c a r b o n s a n d
fluorocarbons,
m u c h less
is k n o w n a b o u t t h e c o r r e s p o n d i n g s i l i c o n a n d s i l i c o n - b o r o n c o m p o u n d s . F o r t h e perfluorosilanes a n d b o r o n c o m p o u n d s , heats of f o r m a t i o n are reported for S i F B F (3). Si H 2
6
4
(12),
SiF
2
and S i F (I, 13), B F
3
(II), B F
2
(5)
and
T h e o n l y v a l u e f o r the s i l i c o n - s i l i c o n b o n d s t r e n g t h is b a s e d o n
d a t a (7),
a n d n o measurements at a l l h a v e b e e n m a d e o n t h e
s i l i c o n - b o r o n b o n d . A v e r a g e b o n d energies are u s e d to d e r i v e the o n l y p u b l i s h e d values of the heat of formation of S i F
3
I n this p a p e r ,
(8).
a p p e a r a n c e p o t e n t i a l studies, w h i c h l e a d to t h e i o n i z a t i o n potentials a n d heats of f o r m a t i o n of S i F , S i F , S i B F , B F , a n d S i F , are r e p o r t e d . 2
6
3
6
2
7
2
3
T h e s e are u s e d to c a l c u l a t e b o n d d i s s o c i a t i o n energies w h i c h m a y b e u s e d to c a l c u l a t e t h e r m o d y n a m i c p r o p e r t i e s of other
fluorosilanes.
Experimental T h e a p p e a r a n c e potentials g i v e n i n this w o r k w e r e m e a s u r e d o n a B e n d i x m o d e l 1 4 - 1 0 7 t i m e - o f - f l i g h t mass spectrometer. T h e i o n source electronics w e r e m o d i f i e d to p r o v i d e o p e r a t i o n a c c o r d i n g to the R e t a r d i n g P o t e n t i a l D i f f e r e n c e ( R P D ) m e t h o d (2, 6). W i t h t h e e l e c t r o n source filament at t h e e l e c t r o n e n e r g y p o t e n t i a l b e l o w g r o u n d , t h e five e l e c t r o n g r i d s of the s t a n d a r d m o d e l 14 i o n source w e r e c o n n e c t e d as f o l l o w s : 261
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
262
M A S S S P E C T R O M E T R Y IN ORGANIC C H E M I S T R Y
g r i d N o . 1, b i a s e d at — 5 volts d . c , p u l s e d to + 5 volts w i t h respect to the filament; grids N o . 2 a n d 4, + 1 v o l t d.c. w i t h respect to the filament; g r i d N o . 3, —1.0 or —1.1 v o l t d.c. to the filament to p r o v i d e a 0.1 v o l t R P D step; a n d g r i d N o . 5, at g r o u n d p o t e n t i a l . T h i s a p p a r a t u s , w h e n tested o n 0 , N , a n d the n o b l e gases, gave results s i m i l a r to those r e p o r t e d b y M e l t o n a n d H a m i l l ( 6 ) , b u t w h e n the s i l i c o n fluorides w e r e i n t r o d u c e d , some difficulty w a s e n c o u n t e r e d . T h e e l e c t r o n t r a p c u r r e n t , a n d h e n c e the i o n c u r r e n t , decreased w i t h t i m e , a n d the m e a s u r e d a p p e a r a n c e p o t e n t i a l of the s t a n d a r d ( N ) d r o p p e d several tenths of a n e.v. d u r i n g the experiment. B o t h effects w e r e p r o b a b l y c a u s e d b y the t h e r m a l d e c o m p o s i t i o n of the samples, d e p o s i t i n g a s i l i c o n m e t a l r e s i d u e o n the e l e c t r o n g r i d s . T h e effect w a s m i n i m i z e d b y o p e r a t i n g at l o w s a m p l e pressures ( 1 - 2 X 10" t o r r ) a n d c l e a n i n g t h e i o n source f r e q u e n t l y . T h e l o w e r signal-to-noise r a t i o c a u s e d b y l o w s a m p l e pressure r e s u l t e d i n r e d u c i n g the a c c u r a c y of measurement. T h e a p p e a r a n c e potentials ( A P ) w e r e c a l i b r a t e d against N / N , A P = 15.57 volts a n d H e / H e , AP — 24.58 volts ( 4 ) . 2
2
2
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch018
6
2
+
2
+
T h e S i F gas w a s p u r c h a s e d f r o m M a t h e s o n a n d w a s f r e e d of S 0 b y p a s s i n g i t o v e r i r o n at 8 0 0 ° C . S i F was p r o d u c e d b y flowing the S 0 - f r e e S i F over S i m e t a l at 1 1 7 5 ° C ; the gaseous p r o d u c t s w e r e l e a k e d i n t o the i o n source of the mass spectrometer b y a line-of-sight p a t h . A t t e m p t s to detect S i F i n the gaseous p r o d u c t s w e r e unsuccessful. T h e S i F , S13F8, a n d S i B F w e r e f r a c t i o n a l l y d i s t i l l e d f r o m the v o l a t i l e p r o d ucts f o r m e d b y h e a t i n g a S i — F or S i — F — Β p o l y m e r ( 9 , 1 0 ) ; the s a m p l e fractions w e r e a b o u t 9 7 % p u r e . 4
2
2
2
4
3
2
f i
2
7
Calculations T h e a p p e a r a n c e potentials m e a s u r e d for the p r o d u c t i o n of the v a r i o u s p a r e n t a n d f r a g m e n t ions are l i s t e d i n T a b l e I ; a l l h a v e a n e x p e r i m e n t a l r e p r o d u c i b i l i t y of ± 0 . 1 volt. T h e process of f o r m a t i o n of a g i v e n i o n m u s t b e chosen to p r o d u c e the most consistent set of results. I n the c a l c u l a t i o n s w h i c h f o l l o w the i n t e r n a l e x c i t a t i o n energy a n d excess k i n e t i c e n e r g y of t h e f r a g m e n t i o n are neglected. F o r this reason, o n l y those f r a g m e n t a t i o n reactions l i k e l y to i n v o l v e a m i n i m u m a m o u n t of i n t e r n a l e x c i t a t i o n energy a n d excess k i n e t i c energy w e r e u s e d i n the c a l c u l a t i o n s . A s a n e x a m p l e of the m e t h o d of c o m p u t a t i o n , c o n s i d e r Process 6: Si F = SiF 2
6
2
+
+ SiF
4
O n e has for the change i n e n t h a l p y , Δ Η , for this f r a g m e n t a t i o n r e a c t i o n Δ Η = ΔΗ,° ( S i F ) + I P ( S i F ) + Δ Η / ( S i F ) - Δ Η / ( S i F ) = 13.02 e.v. Γ
2
2
4
2
6
U s i n g the values for the heats of f o r m a t i o n of S i F a n d S i F g i v e n i n T a b l e I I a n d the appearance p o t e n t i a l of S i F f r o m S i F i n T a b l e I., this e q u a t i o n is s o l v e d for Δ Η / ° ( 8 ΐ Ρ ) = —565 k c a l . / m o l e . S u b t r a c t i n g 2
2
2
+
4
2
6
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
18.
MCDONALD ET AL.
Perfluowsilanes
263
and Perfluoroborosilanes
Process 6 f r o m Process 10 gives Si F 3
+ SiF =
8
2Si F
4
2
6
where AH
= 2AH/(Si F ) -
r
2
AH, (Si F ) e
6
e
B y i n s e r t i n g t h e v a l u e for A H ° ( S i F ) /
2
A H / ( S i F ) = 0.43 e.v.
e
4
calculated above a n d that for
6
A H ° ( S i F ) f r o m T a b l e I I , t h e h e a t of f o r m a t i o n of S i F /
4
3
=
aH,°(SiJFs)
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch018
Table I. Ion/Compound Si F Si F Si F Si F SiF SiF SiF SiF Si BF SiBF BF 3
8
8
7
2
5
2
4
4
3
2
Appearance
SiF
SiF^
2
Si F 2
6
12.89
+
15.71 16.20 27.35 28.75
+
+
11.29
+
c
Si F
Si BF
10.84 15.62 11.77 11.43
12.97 11.32
3
+
4
a
in Volts"
+
+
2
Potentials
+
2
is d e t e r m i n e d ,
8
- 7 5 4 kcal./mole.
14.30 (15.8) 13.02 14.16
8
2
15.51 13.45
15.42 13.21 11.56 15.36 11.95 14.67
+
+
+
Experimental reproducibility =
±
0.1 e.v.; Absolute accuracy =
±
7
0.3 e.v.
It is n o w p o s s i b l e to set u p t w o s i m u l t a n e o u s e q u a t i o n s i n v o l v i n g D(Si-F)
a v g
. andD(Si-Si)
a v g
.:
A H / ( S i F ) = 6 A H / ( F ) + 2ΔΗ/(Si,gas) 2
6
Atf/(Si F ) =8AH 3
8
/
(F)
e
+ 3ΔΗ/(Si,gas) -
B y s o l v i n g these, one finds D ( S i - F )
a v g
. =
141 a n d 142 k c a l . r e s p e c t i v e l y .
8D(SiF)
a v g
a v g
. - D(Si-Si)
. -
2
and S i F
4
.
a v g
2D(Si-Si)
138 k c a l . a n d D ( S i - S i )
58 k c a l . F r o m s i m i l a r c a l c u l a t i o n s o n S i F =
6D(SiF)
a v g
.
one gets D ( S i F )
A s a "best" value D ( S i - F )
a v g
.
w
— a v g
.
=
139 z t 3 is chosen.
W i t h t h i s v a l u e i n the a b o v e e q u a t i o n s one o b t a i n s
D(Si-Si)
10 k c a l .
. =
a v g
55±
T h e r e is a b r e a k i n the i o n i z a t i o n efficiency c u r v e for S i F Si F . 2
6
and
3
+
from
B e l o w the b r e a k the i o n i z a t i o n is a t t r i b u t e d to i o n p a i r p r o d u c t i o n
a b o v e the b r e a k to m o r e c o n v e n t i o n a l d i s s o c i a t i v e i o n i z a t i o n . W i t h
this
l a t t e r i n t e r p r e t a t i o n , Process
AH °(SiF ) f
8
=
-253
combined
with
k c a l . / m o l e as c o m p a r e d
5
with
Process —254
1
gives
kcal./mole
c a l c u l a t e d o n the basis of t h e average S i - F b o n d d i s s o c i a t i o n energy. using A H ° ( S i F ) f
IP(SiF ) 3
=
3
=
13.3 volts.
—253
kcal./mole
i n Process
1, one
By
calculates
Recent quantum mechanical calculations, h o w
ever, s t r o n g l y s u p p o r t I P ( S i F ) = 3
8.5 ±
1 volts [ H a s t i e , J . W . M a r g r a v e ,
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
264
M A S S S P E C T R O M E T R Y IN INORGANIC C H E M I S T R Y
J . L . ( u n p u b l i s h e d w o r k , 1967-1968)] a n d y i e l d t h r o u g h Process 1 the value A H ° ( S i F ) = f
-235
3
v a l u e for S i F
3
±
20 k c a l . / m o l e .
give A H ° ( S i F ) = f
2
r i
i n Process 4 y i e l d s I P ( S i F , ) = 2
r
—358 ±
7.5 ±
Process 9 a n d this l a t t e r
20 k c a l . / m o l e a n d this heat
1 volts. A c o m b i n a t i o n of a p p e a r -
ance potentials for Processes 8 a n d 12 y i e l d s A H ° ( S i B F ) = £
2
—637
7
±
25 k c a l . / m o l e . W i t h this v a l u e a n d Process 14, one calculates A H ° ( SiBF >) f
=
r
—454 ± 25 k c a l . / m o l e a n d f r o m Process 11 one derives A H ° ( B F ) f
-150 ±
20 k c a l . / m o l e . Process 15 y i e l d s I P ( B F ) — 2
9 ±
process s i m i l a r to that u s e d for s i l i c o n , one computes D ( B - F ) * 3 kcal./mole and D ( B - S i )
a v g
. =
55 ±
=
2
1 volts. B y a v f ?
.=
152
±
15 k c a l . / m o l e .
T h e results of these c a l c u l a t i o n s are s u m m a r i z e d i n T a b l e I I I .
The
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch018
uncertainties l i s t e d are o b t a i n e d b y a s s i g n i n g a n e r r o r of 0.1 v o l t or 2.3 k c a l . to e a c h a p p e a r a n c e p o t e n t i a l u s e d i n c a l c u l a t i n g a g i v e n q u a n t i t y . T h e final d a t a h a v e b e e n u s e d to c a l c u l a t e a n a p p e a r a n c e p o t e n t i a l f o r e a c h of t h e reactions i n T a b l e I I I . A l t h o u g h i n some processes t h e m e a s u r e d a n d c a l c u l a t e d values agree to w i t h i n 0.1 e.v., i n others—e.g., the p r o d u c t i o n of S i F
2
+
f r o m S i F , i n t e r n a l excitation energy a n d excess 4
k i n e t i c energy considerations are i m p o r t a n t , a n d the difference
between
t h e m e a s u r e d a p p e a r a n c e p o t e n t i a l a n d that c a l c u l a t e d for the "best fit" process is l a r g e r . Processes i n v o l v i n g e x c i t e d fragments w e r e not u s e d i n the c a l c u l a t i o n s of t h e r m o d y n a m i c properties g i v e n i n T a b l e I I . Table II.
AH °
Species SiF SiF SiF SiF Si F Si F Si F BF SiBF Si BF
f
3
4
5
2
6
3
8
2
5
2
7
D(Si-F) D(Si-Si) D(B-F) D(B-Si) . a v g
a v g
a v g
a v g
= 139 ± =55 ± =152 ± = 55 ±
1
7.3 ± 0 . 2 11.29 ± 0.1 8.5 ± I 15.7 ± 0.1 7.5 ± 1 (10.6 ± 1.0) 10.84 ± 0.1 9 ± I (11 ± 1.0)· (10.6 ± l ) c
5 20 ± 0.2 25 5 10 20 20 25
e
e
a
3kcal./mole 10kcal./mole 3kcal./mole 15 k c a l . / m o l e
Parent ion not observed. * Other quantities used in calculations:
a
AH °(F) àH °(F~) Atf,°[Si(g)] AH °[B(g)] AH °(BF ) r
f
r
r
c
3
= = = = =
6
IP (volts)
(kcal./mole- )
-2 ± 3 -136 ± -235 ± -386.0 -358 ± -565 ± -754 ± -150 ± -454 ± -637 ±
2
2
Heats of Formation and Ionization Potentials
18.8 ± 1 kcal./mole - 6 4 . 8 ± 1 (4) 105 ± (4) 133 ± 3 (4) - 2 7 1 ± 2 (11)
(4)
Hastie, J . W . , Margrave, J. L . (unpublished work, 1967).
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
a
18.
MCDONALD E TAL.
Perfluorosilanes
265
and Perfluoroborosttanes
Table III. Probable Fragmentation Reactions and Calculated Appearance Potentials Calc. A P , volts a
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch018
Process 1.
SiF = SiF
3
2.
SiF = SiF
2
4
4
Meas. A P , volts
+
+ F
16.2 ± 0.5
16.20
+
+ 2F
23.6 ± 0.5
27.35
3.
SiF = SiF + 3F
28.4 ± 0.5
28.75
4.
Si F = Si F
12.9 ± 1.0
12.89
5.
Si F = SiF
6.
Si F = SiF
7.
Si F = Si F
8.
Si F = Si F
9.
Si F = SiF
10.
Si F = SiF
11.
Si BF = Si F
5
12.
Si BF = Si F
4
13.
Si BF = SiF
14.
Si BF = SiF
15.
Si BF = BF
α
+
4
2
0
2
2
6
2
6
3
8
3
8
2
7
2
7
2
+ SiF
+
+ SiF
3
2
7
4
13.02
14 ± 1
11.77
—
11.43
+ SiF
4
+ Si F
5
+ Si F
+
2
2
2
7
2
15.8
13.0 ± 0.5
2
7
2
12 ± 1
3
+
4
+
3
+ SiF
+
5
2
8
3
2
+
2
8
3
3
+ F-
+
5
2
2
15.51
13.5 ± 0.5
13.45
+
+ BF
2
13 ± 1
12.97
+
+ BF
3
—
11.32
+
3
6
15.5 ± 0.5
+
+
+ SiBF
4
15.7 ± 1.0
15.42
+ SiBF
5
13 ± 1
13.21
15 ± 1
14.67
+ Si F 2
5
6
Based on Table II data.
(Meas.-Calc. Values) > experimental error; fragment may possess kinetic energy, or may be in excited electronic or vibrational states, or the reaction products may be different than assumed. 6
Conclusions F r o m these d a t a , o n e c a n n o w p r e d i c t t h e heats o f f o r m a t i o n o f Si-B-F
compounds
b a s e d o n t h e f o l l o w i n g average b o n d
dissociation
energies D(Si-F) D(B-F)
.
=
139 ± 3 k c a L / m o l e
.
=
152 ± 3 k c a l . / m o l e
a v g
. =
5 5 ± 10 k c a l / m o l e
.
55 ± 15 k c a l . / m o l e
a v g
a v g
D(Si-Si) D(Si-B)
a v g
=
F o r t h e m o n o s i l i c o n species o n e c a n c a l c u l a t e i n d i v i d u a l b o n d disso c i a t i o n energies as f o l l o w s : D(SiF -F)
=
170 ± 10 k c a l . / m o l e
D(SiF -F)
=
118 ± 10 k c a l . / m o l e
D(SiF-F)
=
153 ± 5 k c a l . / m o l e
D(SiF)
=
130 ± 3 k c a L / m o l e
3
2
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
266
MASS SPECTROMETRY I N INORGANIC
CHEMISTRY
Acknowledgments T h i s w o r k has b e e n s u p p o r t e d w i t h f u n d s f r o m t h e A d v a n c e d R e s e a r c h Projects A g e n c y , t h r o u g h t h e A r m y R e s e a r c h Office i n D u r h a m , and b y the Robert A . W e l c h Foundation.
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch018
Literature
Cited
(1) Ehlert, T.C.,Margrave, J. L.,J.Chem. Phys. 41, 1066 (1966). (2) Fox, R. E., Hickam, W. M., Grove, D. J., Kjeldass, T., Jr., Rev. Sci. Instr. 26, 1101 (1955). (3) Hildenbrand, D. L., Murad, E., J. Chem. Phys. 43, 1400 (1965). (4) Kiser, R. W., "Tables of Ionization Potentials," U. S. At. Energy Comm. TID-6142 (June, 1960). (5) Margrave, J. L.,J.Phys. Chem. 66, 1209 (1962). (6) Melton, C. E., Hamill, W. H., J. Chem. Phys. 41, 546 (1964). (7) O'Neal, H. E., Ring, Μ. Α., Inorg. Chem. 5, 435 (1966). (8) Stull, D. R., editor, "JANAF Thermochemical Tables," No. PB-168-370, Clearinghouse for Federal Scientific and Technical Information, Spring field, Va., August, 1960. (9) Timms, P. L., Kent, R. Α., Ehlert, T.C.,Margrave, J. L., J. Am. Chem. Soc. 87, 2824 (1965). (10) Ibid., 87, 3819 (1965). (11) Wise, S. S., Feder, Η. M., Hubbard, W. N., Margrave, J. L.,J.Phys. Chem. 67, 2157 (1961). (12) Ibid., 67, 815 (1963). (13) Zmbov, K. F., Hastie, J. W., Uy, M., Margrave, J. L. (unpublished, 1967). RECEIVED October 11, 1966.
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.