7 Application of Mössbauer Spectroscopy to
Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007
Coal Characterization and Utilization PEDRO A. M O N T A N O Department of Physics, West Virginia University, Morgantown, W V 26506
To characterize a coal completely, a careful identification of its mineral matter is necessary.
D u e to the presence of
iron in a large percentage of the minerals appearing in coal, the
Mössbauer
effect became a very powerful tool to iden
tify iron-bearing minerals. In this chapter we review the applications of and list the
Mössbauer
Mössbauer
spectroscopy
in coal research,
parameters of the major iron-bearing
minerals in United States coals. The use of the
Mössbauer
effect as a quantitative analytical tool to determine pyritic sulfur is discussed initially, and we find the standard procedures to be as accurate as the also have used the
Mössbauer
Mössbauer
ASTM
results. W e
effect to determine the sto-
ichiometry of the pyrrhotites present i n liquefaction resi dues.
There is considerable interest in the study of the
transformation of the iron minerals in coal conversion processes, and several examples
of such applications of the
Mossbauer effect are included.
T 7 x i s t i n g a n d p r o j e c t e d shortages of n a t u r a l gas a n d p e t r o l e u m p r o d u c t s i n t h e U n i t e d States h a v e c r e a t e d a s t i m u l a t i n g e n v i r o n m e n t f o r extensive r e s e a r c h o n the u s e of c o a l as a m a j o r source o f e l e c t r i c i t y a n d s y n t h e t i c fuels.
D u e t o i t s i m p o r t a n c e as a source of e n e r g y a n d t h e
e n v i r o n m e n t a l h a z a r d s i n v o l v e d i n its u s e , c o n s i d e r a b l e
research has
b e c o m e necessary t o u n d e r s t a n d f u l l y the different c o m p o u n d s i n coal a n d h o w they transform d u r i n g processing.
appearing
T h e acceptance of a
c o a l f o r a p a r t i c u l a r process d e p e n d s c r i t i c a l l y o n b o t h t h e o r g a n i c a n d inorganic components.
A careful identification of the mineral matter is
necessary f o r a c o m p l e t e c h a r a c t e r i z a t i o n o f a c o a l . D u e t o t h e p r e s e n c e of i r o n i n a l a r g e p e r c e n t a g e o f t h e m i n e r a l s a p p e a r i n g i n c o a l , t h e M o s s -
©
0065-2393/81/0194-0135$10.25/0 1981 American Chemical Society
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
136
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
b a u e r effect b e c a m e a u s e f u l , a n d to a c e r t a i n degree, u n i q u e a n a l y t i c a l t o o l i n t h e i d e n t i f i c a t i o n of i r o n - b e a r i n g m i n e r a l s i n c o a l . compounds,
Iron-sulfur
a l t h o u g h m a k i n g u p a r e l a t i v e l y s m a l l p o r t i o n of c o a l o r
c o a l m i n e r a l c o m p o s i t i o n , a r e significant i n t h a t t h e y m a y affect a l l phases of
the coal
industry i n c l u d i n g m i n i n g , processing,
reclamation, a n d
u t i l i z a t i o n . F o r t h e most p a r t , t h e i n f l u e n c e is deleterious a n d results i n intolerable environmental impacts, namely water a n d air pollution. H o w ever, there a r e cases s u c h as c o a l l i q u e f a c t i o n w h e r e s u l f u r c o m p o u n d s Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007
actually m a y be beneficial ( 1 , 2 , 3 ) .
T h e importance of the i r o n - s u l f u r
m i n e r a l s i n c o a l has i n c r e a s e d interest i n t h e use o f t h e M o s s b a u e r effect as a q u a n t i t a t i v e a n a l y t i c a l t o o l to d e t e r m i n e t h e a m o u n t s u l f u r (4,5,6).
of p y r i t i c
W e h a v e c a r r i e d o u t extensive studies i n the classification
of i r o n - b e a r i n g m i n e r a l s i n c o a l a n d h a v e s t u d i e d t h e t r a n s f o r m a t i o n o f the i r o n - b e a r i n g m i n e r a l s d u r i n g p r o c e s s i n g .
I n t h e f o l l o w i n g sections,
w e r e v i e w t h e subject s t a r t i n g w i t h a b r i e f d e s c r i p t i o n of c o a l a n d a fisting
of t h e m a j o r i r o n - b e a r i n g m i n e r a l s i t contains.
T h e t r a n s f o r m a t i o n of t h e i r o n - b e a r i n g m i n e r a l s , e s p e c i a l l y p y r i t e , is d i s c u s s e d i n t h e last sections of this c h a p t e r . A c r i t i c a l e v a l u a t i o n of t h e M o s s b a u e r effect as a p o s s i b l e q u a n t i t a t i v e a n a l y t i c a l t o o l is d i s c u s s e d , a n d f a v o r a b l e a n d u n f a v o r a b l e aspects of this t e c h n i q u e a r e c o n s i d e r e d .
Coal: Organic and Inorganic Components C o a l has a v e g e t a b l e o r i g i n (7,8).
T h e m a t e r i a l f r o m w h i c h i t is
c r e a t e d a c c u m u l a t e d i n marshes f r o m t h e r e m a i n s of p l a n t s , i n lakes f r o m algae a n d t h e r e m a i n s of a n i m a l p l a n k t o n , o r i n lagoons f r o m s h a l l o w water organic muds.
Three major periods c a n be distinguished i n the
f o r m a t i o n of c o a l : T h e first is t h e peat p e r i o d , t h a t is, w h e n p l a n t r e m a i n s are d e c o m p o s e d a n d a l t e r e d , m a i n l y b y b i o c h e m i c a l processes t a k i n g p l a c e i n t h e v e g e t a b l e mass w i t h t h e h e l p o f a n a e r o b i c b a c t e r i a . I n t h e s e c o n d p e r i o d , after t h e b e d is c o v e r e d , a p h y s i c o c h e m i c a l a l t e r a t i o n of the p l a n t substance takes p l a c e d u r i n g t h e diagenesis process; there is a n increase
i n c a r b o n content,
a l o w e r i n g of oxygen,
dehydration, a n d
t r a n s f o r m a t i o n o f the p e a t to l i g n i t e . I n t h e last p e r i o d l i g n i t e is c o n v e r t e d i n t o h i g h e r - r a n k c o a l a n d a n t h r a c i t e as t h e r e s u l t of m e t a m o r p h i s m . T h e m i n e r a l s t h a t w e r e p r e s e n t i n t h e p e a t b o g c a n a c t as catalysts, or c a n react c h e m i c a l l y w i t h t h e o r g a n i c m a t e r i a l , a n d t h e i r p r e s e n c e is reflected i n t h e p r o p e r t i e s o f t h e c o a l
(7,8).
C o a l is c o n s e q u e n t l y
a
sedimentary rock consisting of a n organic part w i t h a d d e d minerals, d i a g e n e t i c o r syngenetic i n o r i g i n . T h e c o m p o s i t i o n a n d p r o p e r t i e s of a c o a l a r e c o n t r o l l e d b y t h e o r i g i n a l m a t e r i a l , t h e c o n d i t i o n s of a c c u m u l a tion, a n d the method b y w h i c h t h e material w a s converted into coal.
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
7.
MONTANO
Coal Characterization
and
137
Utilization
T h e c o a l is classified o n the basis of fixed c a r b o n a n d calorific v a l u e s c a l c u l a t e d o n a m i n e r a l m a t t e r - f r e e basis. T h e h i g h e r - r a n k coals, w i t h a h i g h d e g r e e of m e t a m o r p h i s m , are classified a c c o r d i n g to
fixed
carbon
o n the d r y basis; t h e l o w e r - r a n k coals a c c o r d i n g to calorific v a l u e o n t h e m o i s t basis ( 9 ) . between
T h e a g g l o m e r a t i n g c h a r a c t e r is u s e d also to differentiate
groups.
Table I
gives
a g e n e r a l classification of
the
coals
( A S T M D388-66). T h e r e are f o u r major l i t h o l o g i c c o m p o n e n t s
of c o a l — v i t r a i n , f u s a i n ,
Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007
a n d a t t r i t a l c o a l ( c l a r a i n a n d d u r a i n ) ( J O , 11)—and
t h e y are not e q u i v a
lent i n t h e i r genetic a n d p r a c t i c a l r e l a t i o n s h i p s . V i t r a i n a n d f u s a i n a p p e a r i n the c o a l as lenses a n d i n c l u s i o n s of l i m i t e d size; b o t h seem to h o m o g e n e o u s substances.
Fusain
resembles
char
coal
be
a n d retains a
d i s t i n c t i v e p l a n t structure. V i t r a i n appears i n s h i n y b l a c k b a n d s ; i t has a v i t r e o u s a p p e a r a n c e a n d its p l a n t o r i g i n is m o r e c o n c e a l e d .
T h e attrital
coals, c l a r a i n a n d d u r a i n , are c o m p l e x aggregates c o n s i s t i n g of a g r o u n d mass a n d p r e s e r v e d p o r t i o n s of p l a n t s i n a n y p r o p o r t i o n . T h e c o a l m a c e r a l s are the o r g a n i c c o m p o n e n t s distinguishable by microscopic
i n s p e c t i o n (10,11).
i n three groups r e l a t e d to the a f o r e m e n t i o n e d
of
coal that
are
T h e y are classified
lithologic
components,
n a m e l y , v i t r i n i t e , e x i n i t e , a n d i n e r t i n i t e . E a c h of these groups
include
f u r t h e r s u b d i v i s i o n s . T h e necessity for this p e t r o g r a p h i c classification is r e l a t e d to the heterogeneous c h a r a c t e r of c o a l (see F i g u r e s 1 a n d 2 ) . F r o m the p o i n t of v i e w of a solid-state c h e m i s t or p h y s i c i s t , c o a l is a c o m p o s i t e m a t e r i a l w i t h o r g a n i c a n d i n o r g a n i c constituents. T h e c a r b o n structure of coals c a n b e v i e w e d as c o n s i s t i n g of h y d r o a r o m a t i c structures w i t h a r o m a t i c i t y i n c r e a s i n g f r o m l o w - r a n k to h i g h - r a n k coals
(12,13).
T h e hetero atoms o x y g e n , n i t r o g e n , a n d s u l f u r are associated w i t h the c o a l i n v a r y i n g amounts. T h e o r g a n i c s u l f u r is d i s t r i b u t e d t h r o u g h o u t the entire c o a l mass a n d c a n n o t be s e p a r a t e d b y c o n c e n t r a t i o n ; s u l f u r i n r i n g s is the most difficult to r e m o v e .
N i t r o g e n i n t h e c o a l is f o u n d to be m a i n l y
i n r i n g positions, a n d c o n s e q u e n t l y , i t is difficult to r e m o v e for c l e a n i n g processes. O x y g e n is present i n c o a l i n p h e n o l i c h y d r o x y l , o p e n ethers, a n d r i n g ethers.
I n g e n e r a l , l o w e r - r a n k coals are r i c h i n o x y g e n .
The
trace element content i n c o a l is c o m p l i c a t e d , a n d m a n y coals c a n h a v e m o r e t h a n 60 trace elements i n v a r y i n g a m o u n t s . F r o m the p o i n t of v i e w of t h e M o s s b a u e r spectroscopist, the i n o r g a n i c constituents of c o a l are of c e n t r a l i m p o r t a n c e .
N o e v i d e n c e has
been
f o u n d of a n y detectable a m o u n t of i r o n associated w i t h t h e o r g a n i c p a r t of c o a l . C o n s e q u e n t l y , i n a n y M o s s b a u e r s t u d y of c o a l o n l y t h e m i n e r a l m a t t e r is a n a l y z e d . A c e r t a i n a m o u n t of m i n e r a l grains a n d c l a y m a t e r i a l is a l w a y s present i n c o a l (7,8,14,15).
T h e m i n e r a l s are u s u a l l y c l a y s
( k a o l i n i t e , i l l i t e , m i x e d l a y e r c l a y s , e t c . ) , sulfides
(pyrite, marcasite,
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
138
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
Table I.
Classification
Fixed Carbon Limits (% DMf)
Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007
Equal or Greater Than Anthracitic Meta-Anthracite Anthracite Semianthracite Bituminous Low-volatile bituminous coal M e d i u m - v o l a t i l e bituminous coal H i g h - v o l a t i l e A bituminous coal H i g h - v o l a t i l e B bituminous coal H i g h - v o l a t i l e C bituminous coal
98 92 86 78 69
Less
Than
98 92 86 78 69
Subbituminous Subbituminous A coal Subbituminous B coal Subbituminous C coal Lignite Lignite A Lignite B
Figure I . Thin section of a coal The majority of the sample is vitrinite; light spots are sphoronite and dark spots are attrital (courtesy of W. C. Grady Coal Research Bureau, West Virginia University).
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
7.
Coal Characterization
MONTANO
of Coals b y
Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007
Matter (%)
Than
2 8 14 22 31
Figure 2. collapsed.
139
Utilization
Rank
Volatile
Greater
and
Limits Equal or Less Than
Caloric Value Limits BTU Per Pound (Moist Mineral-MatterFree Basis) Equal or Greater Than
Less
Than
2 8 14 22 31 14 13 11 10
000 000 500 500
14 000 13 000 11 500
10 500 9 500 8 300
11 500 10 500 9 500
6 300
8 300 6 300
Photomicrograph of fusinite. Most cell walls are broken and (Courtesy of W. C. Grady Coal Hesearch Bureau, West Virginia University.)
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
140
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
sphalerite, g a l e n a , e t c . ) , carbonates ( l i k e c a l c i t e , a n k e r i t e , siderite, d o l o m i t e ) , q u a r t z , a n d other m i n e r a l s i n lesser a m o u n t s l i k e r u t i l e , h e m a t i t e f e l d s p a r , etc.
T h e a m o u n t , character, a n d d i s t r i b u t i o n of the m i n e r a l
m a t t e r i n the c o a l g r e a t l y i n f l u e n c e the p h y s i c a l p r o p e r t i e s .
T h e clay
m i n e r a l s , p y r i t e , a n d c a l c i t e are the m a i n m i n e r a l substances (15).
They
c a m e i n t o t h e c o a l seam b y i n f i l t r a t i o n i n t h e course of a c c u m u l a t i o n of the peat.
T h e c l a y w a s b r o u g h t to the s w a m p b y r u n n i n g w a t e r , a n d
the sulfides a n d c a l c i t e w e r e f o r m e d i n the c o a l joints a n d c a v i t i e s . Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007
o r i g i n of
finely
The
d i s s e m i n a t e d p y r i t e p r o b a b l y c a n b e a t t r i b u t e d to t h e
a c t i v i t y of s u l f u r - f o r m i n g b a c t e r i a . L a r g e p y r i t e lenses i n t h e c o a l are d u e to the d e p o s i t i o n of i r o n sulfides w h e n t h e h y d r o g e n sulfide o b t a i n e d f r o m the d e c o m p o s i t i o n of p l a n t m a t e r i a l interacts w i t h i r o n dissolved i n the swamp water.
compounds
C o a l l y i n g n e a r t h e surface c a n c o n t a i n
c l a y , h y d r a t e d f e r r i c o x i d e , a n d ferrous carbonates
or sulfates b r o u g h t
b y p e r c o l a t i n g surface w a t e r s a n d d e p o s i t e d i n cracks of t h e c o a l seam. T h e presence of sulfates i n t h e c o a l is almost a definite i n d i c a t i o n of weathering.
Iron-Bearing Minerals in Coal I r o n Sulfides.
T h e m a j o r g r o u p of i r o n - s u l f u r c o m p o u n d s
is the d i s u l f i d e g r o u p c o n s i s t i n g of p y r i t e a n d m a r c a s i t e . p y r i t e is the most a b u n d a n t .
i n coal
O f the t w o ,
P y r i t e a n d marcasite can be
identified
r e a d i l y b y x - r a y d i f f r a c t i o n ( X R D ) , b u t b e c a u s e p y r i t e is u s u a l l y d o m i n a n t i n a n y p a r t i c u l a r c o a l , the t w o
d i m o r p h s u s u a l l y are
considered
c o l l e c t i v e l y as p y r i t e . A significant c h a r a c t e r i s t i c of p y r i t e i n c o a l is the f a c t t h a t i t occurs i n v a r i o u s m o r p h o l o g i c a l forms
(16).
G e n e r a l l y p y r i t e falls i n t o
two
m a j o r classes. T h e first class consists of f r a m b o i d s , i n d e p e n d e n t e u h e d r a l crystals a n d aggregates
of e u h e d r a l crystals ( s y n g e n e t i c
pyrite).
The
s e c o n d class consists of the m a s s i v e occurrences, d e n d r i t i c , i r r e g u l a r , a n d cleat fillings, u s u a l l y greater t h a n 100
i n mean diameter.
O f a l l the m i n e r a l s i n c o a l , p y r i t e is p r o b a b l y t h e most
deleterious
i n the c o a l i n d u s t r y . I t is the source of a c i d m i n e d r a i n a g e ( 1 7 ) , a n d t h e m a j o r source of S 0
2
p o l l u t i o n i n the c o m b u s t i o n process.
However, pyrite
m a y h a v e a b e n e f i c i a l effect as a p o t e n t i a l c a t a l y s t i n c o a l l i q u e f a c t i o n processes ( 1 , 2 , 3 , 1 8 , 1 9 ) . P y r i t e , F e S , is a c u b i c c r y s t a l t h a t c a n b e c o n s i d e r e d as a n N a C l - l i k e 2
g r o u p i n g of i r o n atoms a n d S p a i r s . I t has f o u r m o l e c u l e s i n a c e l l 2
(20),
w i t h a l a t t i c e constant e q u a l to 5.40667 A a n d space g r o u p s y m m e t r y T . h
The iron i n F e S
2
experiences a s l i g h t l y d i s t o r t e d o c t a h e d r a l s y m m e t r y .
I n p y r i t e the i r o n i o n is i n t h e l o w - s p i n c o n f i g u r a t i o n i r o n ( I I ) . d-electrons are o c c u p y i n g the T
2g
T h e six
g r o u n d state a n d n o m a g n e t i c m o m e n t
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
7.
MONTANO
Coal Characterization
and
141
Utilization
Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007
DETECTOR
36t—i
Figure
3.
i -1
i
i i 0 VELOCITY ( m m / s )
L
i 1
Scattering Mossbauer spectrum of a single crystal of (Courtesy of Guettinger and Williamson.)
is p r e s e n t at the i r o n site (21).
pyrite.
I n F i g u r e 3, the M o s s b a u e r s p e c t r u m of
a single c r y s t a l of p y r i t e is s h o w n . G u e t t i n g e r a n d W i l l i a m s o n (28)
have
f o u n d t h a t the r e l a t i v e intensities of the t w o M o s s b a u e r transitions i n p y r i t e a r e e q u a l a n d i n d e p e n d e n t of t h e s i n g l e - c r y s t a l o r i e n t a t i o n ( F i g u r e 3 ) . T h e v a l u e s of t h e M o s s b a u e r p a r a m e t e r s f o r F e S are g i v e n i n T a b l e 2
II.
T h e t e m p e r a t u r e d e p e n d e n c e of t h e c e n t e r shift is p r o b a b l y
due
c o m p l e t e l y to the second-order D o p p l e r shift. T h e m a g n e t i c a n d e l e c t r i c p r o p e r t i e s of p y r i t e d e p e n d s t r o n g l y o n t h e presence of i m p u r i t i e s i n the crystals. M a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s are sensitive to t h e presence
of m a g n e t i c i m p u r i t i e s o n t h e
s a m p l e ; v e r y s m a l l a m o u n t s , f o r e x a m p l e , of C o S a p p r e c i a b l y t h e v a l u e of the s u s c e p t i b i l i t y (23). d u c t o r w i t h a z e r o - t e m p e r a t u r e b a n d gap (24)
2
or N i S
2
will
P y r i t e is a
of a b o u t 0.84 e V .
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
change semicon
142
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
Table II.
Iron Sulfides IS
Pyrite (FeS ) Marcasite (FeS ) Greigite (Fe S ) t
t
s
Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007
Amorphous
t
Fe S 4
4
Sphalerite (ZnFe)S (FeS) synthetic Troilite (FeS) natural Fe S (pyrrhotite monoclinic) 7
8
0.31 0.25 0.70 0.40 0.45 0.35 0.51 0.66
(Isomer Shifts with Respect to a-Iron)
(mm/s) ± ±
QS
0.01 0.01
0.61 0.56 0.3 ( r = 4.2K) 0 0.4 ± 0.06 0.82 ± 0.12 0.88 0.80
0.81 0.86
(mm/s) ± ±
0.01 0.01
± ±
0.06 0.12
0 —
322 486 465 253 (4.2 K )
(28)
(102)
315 ( R T ) 310 ( R T )
-0.32 -0.28
0.69 ±
0.08
0.18 ±
0.64 ± 0.64 ±
0.10 0.10
0.31 0.30 0.31 0.43 0.31 0.23 0.00 0.30 0
0.15
307
0.15 0.15 0.03 0.04 0.04 0.0 0.1 0.1
255 225 305 224 253 302 274 256 0
(32)
± 8 (32)
Fe .88iS 0
F e».»