Application of Mössbauer Spectroscopy to Coal Characterization and

DOI: 10.1021/ba-1981-0194.ch007 ... Publication Date (Print): July 01, 1981 ... Mössbauer parameters of the major iron-bearing minerals in United Sta...
0 downloads 0 Views 4MB Size
7 Application of Mössbauer Spectroscopy to

Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007

Coal Characterization and Utilization PEDRO A. M O N T A N O Department of Physics, West Virginia University, Morgantown, W V 26506

To characterize a coal completely, a careful identification of its mineral matter is necessary.

D u e to the presence of

iron in a large percentage of the minerals appearing in coal, the

Mössbauer

effect became a very powerful tool to iden­

tify iron-bearing minerals. In this chapter we review the applications of and list the

Mössbauer

Mössbauer

spectroscopy

in coal research,

parameters of the major iron-bearing

minerals in United States coals. The use of the

Mössbauer

effect as a quantitative analytical tool to determine pyritic sulfur is discussed initially, and we find the standard procedures to be as accurate as the also have used the

Mössbauer

Mössbauer

ASTM

results. W e

effect to determine the sto-

ichiometry of the pyrrhotites present i n liquefaction resi­ dues.

There is considerable interest in the study of the

transformation of the iron minerals in coal conversion processes, and several examples

of such applications of the

Mossbauer effect are included.

T 7 x i s t i n g a n d p r o j e c t e d shortages of n a t u r a l gas a n d p e t r o l e u m p r o d u c t s i n t h e U n i t e d States h a v e c r e a t e d a s t i m u l a t i n g e n v i r o n m e n t f o r extensive r e s e a r c h o n the u s e of c o a l as a m a j o r source o f e l e c t r i c i t y a n d s y n t h e t i c fuels.

D u e t o i t s i m p o r t a n c e as a source of e n e r g y a n d t h e

e n v i r o n m e n t a l h a z a r d s i n v o l v e d i n its u s e , c o n s i d e r a b l e

research has

b e c o m e necessary t o u n d e r s t a n d f u l l y the different c o m p o u n d s i n coal a n d h o w they transform d u r i n g processing.

appearing

T h e acceptance of a

c o a l f o r a p a r t i c u l a r process d e p e n d s c r i t i c a l l y o n b o t h t h e o r g a n i c a n d inorganic components.

A careful identification of the mineral matter is

necessary f o r a c o m p l e t e c h a r a c t e r i z a t i o n o f a c o a l . D u e t o t h e p r e s e n c e of i r o n i n a l a r g e p e r c e n t a g e o f t h e m i n e r a l s a p p e a r i n g i n c o a l , t h e M o s s -

©

0065-2393/81/0194-0135$10.25/0 1981 American Chemical Society

In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.

136

MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS

b a u e r effect b e c a m e a u s e f u l , a n d to a c e r t a i n degree, u n i q u e a n a l y t i c a l t o o l i n t h e i d e n t i f i c a t i o n of i r o n - b e a r i n g m i n e r a l s i n c o a l . compounds,

Iron-sulfur

a l t h o u g h m a k i n g u p a r e l a t i v e l y s m a l l p o r t i o n of c o a l o r

c o a l m i n e r a l c o m p o s i t i o n , a r e significant i n t h a t t h e y m a y affect a l l phases of

the coal

industry i n c l u d i n g m i n i n g , processing,

reclamation, a n d

u t i l i z a t i o n . F o r t h e most p a r t , t h e i n f l u e n c e is deleterious a n d results i n intolerable environmental impacts, namely water a n d air pollution. H o w ­ ever, there a r e cases s u c h as c o a l l i q u e f a c t i o n w h e r e s u l f u r c o m p o u n d s Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007

actually m a y be beneficial ( 1 , 2 , 3 ) .

T h e importance of the i r o n - s u l f u r

m i n e r a l s i n c o a l has i n c r e a s e d interest i n t h e use o f t h e M o s s b a u e r effect as a q u a n t i t a t i v e a n a l y t i c a l t o o l to d e t e r m i n e t h e a m o u n t s u l f u r (4,5,6).

of p y r i t i c

W e h a v e c a r r i e d o u t extensive studies i n the classification

of i r o n - b e a r i n g m i n e r a l s i n c o a l a n d h a v e s t u d i e d t h e t r a n s f o r m a t i o n o f the i r o n - b e a r i n g m i n e r a l s d u r i n g p r o c e s s i n g .

I n t h e f o l l o w i n g sections,

w e r e v i e w t h e subject s t a r t i n g w i t h a b r i e f d e s c r i p t i o n of c o a l a n d a fisting

of t h e m a j o r i r o n - b e a r i n g m i n e r a l s i t contains.

T h e t r a n s f o r m a t i o n of t h e i r o n - b e a r i n g m i n e r a l s , e s p e c i a l l y p y r i t e , is d i s c u s s e d i n t h e last sections of this c h a p t e r . A c r i t i c a l e v a l u a t i o n of t h e M o s s b a u e r effect as a p o s s i b l e q u a n t i t a t i v e a n a l y t i c a l t o o l is d i s c u s s e d , a n d f a v o r a b l e a n d u n f a v o r a b l e aspects of this t e c h n i q u e a r e c o n s i d e r e d .

Coal: Organic and Inorganic Components C o a l has a v e g e t a b l e o r i g i n (7,8).

T h e m a t e r i a l f r o m w h i c h i t is

c r e a t e d a c c u m u l a t e d i n marshes f r o m t h e r e m a i n s of p l a n t s , i n lakes f r o m algae a n d t h e r e m a i n s of a n i m a l p l a n k t o n , o r i n lagoons f r o m s h a l l o w water organic muds.

Three major periods c a n be distinguished i n the

f o r m a t i o n of c o a l : T h e first is t h e peat p e r i o d , t h a t is, w h e n p l a n t r e m a i n s are d e c o m p o s e d a n d a l t e r e d , m a i n l y b y b i o c h e m i c a l processes t a k i n g p l a c e i n t h e v e g e t a b l e mass w i t h t h e h e l p o f a n a e r o b i c b a c t e r i a . I n t h e s e c o n d p e r i o d , after t h e b e d is c o v e r e d , a p h y s i c o c h e m i c a l a l t e r a t i o n of the p l a n t substance takes p l a c e d u r i n g t h e diagenesis process; there is a n increase

i n c a r b o n content,

a l o w e r i n g of oxygen,

dehydration, a n d

t r a n s f o r m a t i o n o f the p e a t to l i g n i t e . I n t h e last p e r i o d l i g n i t e is c o n v e r t e d i n t o h i g h e r - r a n k c o a l a n d a n t h r a c i t e as t h e r e s u l t of m e t a m o r p h i s m . T h e m i n e r a l s t h a t w e r e p r e s e n t i n t h e p e a t b o g c a n a c t as catalysts, or c a n react c h e m i c a l l y w i t h t h e o r g a n i c m a t e r i a l , a n d t h e i r p r e s e n c e is reflected i n t h e p r o p e r t i e s o f t h e c o a l

(7,8).

C o a l is c o n s e q u e n t l y

a

sedimentary rock consisting of a n organic part w i t h a d d e d minerals, d i a g e n e t i c o r syngenetic i n o r i g i n . T h e c o m p o s i t i o n a n d p r o p e r t i e s of a c o a l a r e c o n t r o l l e d b y t h e o r i g i n a l m a t e r i a l , t h e c o n d i t i o n s of a c c u m u l a ­ tion, a n d the method b y w h i c h t h e material w a s converted into coal.

In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.

7.

MONTANO

Coal Characterization

and

137

Utilization

T h e c o a l is classified o n the basis of fixed c a r b o n a n d calorific v a l u e s c a l c u l a t e d o n a m i n e r a l m a t t e r - f r e e basis. T h e h i g h e r - r a n k coals, w i t h a h i g h d e g r e e of m e t a m o r p h i s m , are classified a c c o r d i n g to

fixed

carbon

o n the d r y basis; t h e l o w e r - r a n k coals a c c o r d i n g to calorific v a l u e o n t h e m o i s t basis ( 9 ) . between

T h e a g g l o m e r a t i n g c h a r a c t e r is u s e d also to differentiate

groups.

Table I

gives

a g e n e r a l classification of

the

coals

( A S T M D388-66). T h e r e are f o u r major l i t h o l o g i c c o m p o n e n t s

of c o a l — v i t r a i n , f u s a i n ,

Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007

a n d a t t r i t a l c o a l ( c l a r a i n a n d d u r a i n ) ( J O , 11)—and

t h e y are not e q u i v a ­

lent i n t h e i r genetic a n d p r a c t i c a l r e l a t i o n s h i p s . V i t r a i n a n d f u s a i n a p p e a r i n the c o a l as lenses a n d i n c l u s i o n s of l i m i t e d size; b o t h seem to h o m o g e n e o u s substances.

Fusain

resembles

char

coal

be

a n d retains a

d i s t i n c t i v e p l a n t structure. V i t r a i n appears i n s h i n y b l a c k b a n d s ; i t has a v i t r e o u s a p p e a r a n c e a n d its p l a n t o r i g i n is m o r e c o n c e a l e d .

T h e attrital

coals, c l a r a i n a n d d u r a i n , are c o m p l e x aggregates c o n s i s t i n g of a g r o u n d mass a n d p r e s e r v e d p o r t i o n s of p l a n t s i n a n y p r o p o r t i o n . T h e c o a l m a c e r a l s are the o r g a n i c c o m p o n e n t s distinguishable by microscopic

i n s p e c t i o n (10,11).

i n three groups r e l a t e d to the a f o r e m e n t i o n e d

of

coal that

are

T h e y are classified

lithologic

components,

n a m e l y , v i t r i n i t e , e x i n i t e , a n d i n e r t i n i t e . E a c h of these groups

include

f u r t h e r s u b d i v i s i o n s . T h e necessity for this p e t r o g r a p h i c classification is r e l a t e d to the heterogeneous c h a r a c t e r of c o a l (see F i g u r e s 1 a n d 2 ) . F r o m the p o i n t of v i e w of a solid-state c h e m i s t or p h y s i c i s t , c o a l is a c o m p o s i t e m a t e r i a l w i t h o r g a n i c a n d i n o r g a n i c constituents. T h e c a r b o n structure of coals c a n b e v i e w e d as c o n s i s t i n g of h y d r o a r o m a t i c structures w i t h a r o m a t i c i t y i n c r e a s i n g f r o m l o w - r a n k to h i g h - r a n k coals

(12,13).

T h e hetero atoms o x y g e n , n i t r o g e n , a n d s u l f u r are associated w i t h the c o a l i n v a r y i n g amounts. T h e o r g a n i c s u l f u r is d i s t r i b u t e d t h r o u g h o u t the entire c o a l mass a n d c a n n o t be s e p a r a t e d b y c o n c e n t r a t i o n ; s u l f u r i n r i n g s is the most difficult to r e m o v e .

N i t r o g e n i n t h e c o a l is f o u n d to be m a i n l y

i n r i n g positions, a n d c o n s e q u e n t l y , i t is difficult to r e m o v e for c l e a n i n g processes. O x y g e n is present i n c o a l i n p h e n o l i c h y d r o x y l , o p e n ethers, a n d r i n g ethers.

I n g e n e r a l , l o w e r - r a n k coals are r i c h i n o x y g e n .

The

trace element content i n c o a l is c o m p l i c a t e d , a n d m a n y coals c a n h a v e m o r e t h a n 60 trace elements i n v a r y i n g a m o u n t s . F r o m the p o i n t of v i e w of t h e M o s s b a u e r spectroscopist, the i n o r g a n i c constituents of c o a l are of c e n t r a l i m p o r t a n c e .

N o e v i d e n c e has

been

f o u n d of a n y detectable a m o u n t of i r o n associated w i t h t h e o r g a n i c p a r t of c o a l . C o n s e q u e n t l y , i n a n y M o s s b a u e r s t u d y of c o a l o n l y t h e m i n e r a l m a t t e r is a n a l y z e d . A c e r t a i n a m o u n t of m i n e r a l grains a n d c l a y m a t e r i a l is a l w a y s present i n c o a l (7,8,14,15).

T h e m i n e r a l s are u s u a l l y c l a y s

( k a o l i n i t e , i l l i t e , m i x e d l a y e r c l a y s , e t c . ) , sulfides

(pyrite, marcasite,

In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.

138

MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS

Table I.

Classification

Fixed Carbon Limits (% DMf)

Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007

Equal or Greater Than Anthracitic Meta-Anthracite Anthracite Semianthracite Bituminous Low-volatile bituminous coal M e d i u m - v o l a t i l e bituminous coal H i g h - v o l a t i l e A bituminous coal H i g h - v o l a t i l e B bituminous coal H i g h - v o l a t i l e C bituminous coal

98 92 86 78 69

Less

Than

98 92 86 78 69

Subbituminous Subbituminous A coal Subbituminous B coal Subbituminous C coal Lignite Lignite A Lignite B

Figure I . Thin section of a coal The majority of the sample is vitrinite; light spots are sphoronite and dark spots are attrital (courtesy of W. C. Grady Coal Research Bureau, West Virginia University).

In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.

7.

Coal Characterization

MONTANO

of Coals b y

Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007

Matter (%)

Than

2 8 14 22 31

Figure 2. collapsed.

139

Utilization

Rank

Volatile

Greater

and

Limits Equal or Less Than

Caloric Value Limits BTU Per Pound (Moist Mineral-MatterFree Basis) Equal or Greater Than

Less

Than

2 8 14 22 31 14 13 11 10

000 000 500 500

14 000 13 000 11 500

10 500 9 500 8 300

11 500 10 500 9 500

6 300

8 300 6 300

Photomicrograph of fusinite. Most cell walls are broken and (Courtesy of W. C. Grady Coal Hesearch Bureau, West Virginia University.)

In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.

140

MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS

sphalerite, g a l e n a , e t c . ) , carbonates ( l i k e c a l c i t e , a n k e r i t e , siderite, d o l o ­ m i t e ) , q u a r t z , a n d other m i n e r a l s i n lesser a m o u n t s l i k e r u t i l e , h e m a t i t e f e l d s p a r , etc.

T h e a m o u n t , character, a n d d i s t r i b u t i o n of the m i n e r a l

m a t t e r i n the c o a l g r e a t l y i n f l u e n c e the p h y s i c a l p r o p e r t i e s .

T h e clay

m i n e r a l s , p y r i t e , a n d c a l c i t e are the m a i n m i n e r a l substances (15).

They

c a m e i n t o t h e c o a l seam b y i n f i l t r a t i o n i n t h e course of a c c u m u l a t i o n of the peat.

T h e c l a y w a s b r o u g h t to the s w a m p b y r u n n i n g w a t e r , a n d

the sulfides a n d c a l c i t e w e r e f o r m e d i n the c o a l joints a n d c a v i t i e s . Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007

o r i g i n of

finely

The

d i s s e m i n a t e d p y r i t e p r o b a b l y c a n b e a t t r i b u t e d to t h e

a c t i v i t y of s u l f u r - f o r m i n g b a c t e r i a . L a r g e p y r i t e lenses i n t h e c o a l are d u e to the d e p o s i t i o n of i r o n sulfides w h e n t h e h y d r o g e n sulfide o b t a i n e d f r o m the d e c o m p o s i t i o n of p l a n t m a t e r i a l interacts w i t h i r o n dissolved i n the swamp water.

compounds

C o a l l y i n g n e a r t h e surface c a n c o n t a i n

c l a y , h y d r a t e d f e r r i c o x i d e , a n d ferrous carbonates

or sulfates b r o u g h t

b y p e r c o l a t i n g surface w a t e r s a n d d e p o s i t e d i n cracks of t h e c o a l seam. T h e presence of sulfates i n t h e c o a l is almost a definite i n d i c a t i o n of weathering.

Iron-Bearing Minerals in Coal I r o n Sulfides.

T h e m a j o r g r o u p of i r o n - s u l f u r c o m p o u n d s

is the d i s u l f i d e g r o u p c o n s i s t i n g of p y r i t e a n d m a r c a s i t e . p y r i t e is the most a b u n d a n t .

i n coal

O f the t w o ,

P y r i t e a n d marcasite can be

identified

r e a d i l y b y x - r a y d i f f r a c t i o n ( X R D ) , b u t b e c a u s e p y r i t e is u s u a l l y d o m i ­ n a n t i n a n y p a r t i c u l a r c o a l , the t w o

d i m o r p h s u s u a l l y are

considered

c o l l e c t i v e l y as p y r i t e . A significant c h a r a c t e r i s t i c of p y r i t e i n c o a l is the f a c t t h a t i t occurs i n v a r i o u s m o r p h o l o g i c a l forms

(16).

G e n e r a l l y p y r i t e falls i n t o

two

m a j o r classes. T h e first class consists of f r a m b o i d s , i n d e p e n d e n t e u h e d r a l crystals a n d aggregates

of e u h e d r a l crystals ( s y n g e n e t i c

pyrite).

The

s e c o n d class consists of the m a s s i v e occurrences, d e n d r i t i c , i r r e g u l a r , a n d cleat fillings, u s u a l l y greater t h a n 100

i n mean diameter.

O f a l l the m i n e r a l s i n c o a l , p y r i t e is p r o b a b l y t h e most

deleterious

i n the c o a l i n d u s t r y . I t is the source of a c i d m i n e d r a i n a g e ( 1 7 ) , a n d t h e m a j o r source of S 0

2

p o l l u t i o n i n the c o m b u s t i o n process.

However, pyrite

m a y h a v e a b e n e f i c i a l effect as a p o t e n t i a l c a t a l y s t i n c o a l l i q u e f a c t i o n processes ( 1 , 2 , 3 , 1 8 , 1 9 ) . P y r i t e , F e S , is a c u b i c c r y s t a l t h a t c a n b e c o n s i d e r e d as a n N a C l - l i k e 2

g r o u p i n g of i r o n atoms a n d S p a i r s . I t has f o u r m o l e c u l e s i n a c e l l 2

(20),

w i t h a l a t t i c e constant e q u a l to 5.40667 A a n d space g r o u p s y m m e t r y T . h

The iron i n F e S

2

experiences a s l i g h t l y d i s t o r t e d o c t a h e d r a l s y m m e t r y .

I n p y r i t e the i r o n i o n is i n t h e l o w - s p i n c o n f i g u r a t i o n i r o n ( I I ) . d-electrons are o c c u p y i n g the T

2g

T h e six

g r o u n d state a n d n o m a g n e t i c m o m e n t

In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.

7.

MONTANO

Coal Characterization

and

141

Utilization

Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007

DETECTOR

36t—i

Figure

3.

i -1

i

i i 0 VELOCITY ( m m / s )

L

i 1

Scattering Mossbauer spectrum of a single crystal of (Courtesy of Guettinger and Williamson.)

is p r e s e n t at the i r o n site (21).

pyrite.

I n F i g u r e 3, the M o s s b a u e r s p e c t r u m of

a single c r y s t a l of p y r i t e is s h o w n . G u e t t i n g e r a n d W i l l i a m s o n (28)

have

f o u n d t h a t the r e l a t i v e intensities of the t w o M o s s b a u e r transitions i n p y r i t e a r e e q u a l a n d i n d e p e n d e n t of t h e s i n g l e - c r y s t a l o r i e n t a t i o n ( F i g u r e 3 ) . T h e v a l u e s of t h e M o s s b a u e r p a r a m e t e r s f o r F e S are g i v e n i n T a b l e 2

II.

T h e t e m p e r a t u r e d e p e n d e n c e of t h e c e n t e r shift is p r o b a b l y

due

c o m p l e t e l y to the second-order D o p p l e r shift. T h e m a g n e t i c a n d e l e c t r i c p r o p e r t i e s of p y r i t e d e p e n d s t r o n g l y o n t h e presence of i m p u r i t i e s i n the crystals. M a g n e t i c s u s c e p t i b i l i t y m e a s ­ u r e m e n t s are sensitive to t h e presence

of m a g n e t i c i m p u r i t i e s o n t h e

s a m p l e ; v e r y s m a l l a m o u n t s , f o r e x a m p l e , of C o S a p p r e c i a b l y t h e v a l u e of the s u s c e p t i b i l i t y (23). d u c t o r w i t h a z e r o - t e m p e r a t u r e b a n d gap (24)

2

or N i S

2

will

P y r i t e is a

of a b o u t 0.84 e V .

In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.

change semicon­

142

MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS

Table II.

Iron Sulfides IS

Pyrite (FeS ) Marcasite (FeS ) Greigite (Fe S ) t

t

s

Downloaded by NORTH CAROLINA STATE UNIV on October 17, 2012 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch007

Amorphous

t

Fe S 4

4

Sphalerite (ZnFe)S (FeS) synthetic Troilite (FeS) natural Fe S (pyrrhotite monoclinic) 7

8

0.31 0.25 0.70 0.40 0.45 0.35 0.51 0.66

(Isomer Shifts with Respect to a-Iron)

(mm/s) ± ±

QS

0.01 0.01

0.61 0.56 0.3 ( r = 4.2K) 0 0.4 ± 0.06 0.82 ± 0.12 0.88 0.80

0.81 0.86

(mm/s) ± ±

0.01 0.01

± ±

0.06 0.12

0 —

322 486 465 253 (4.2 K )

(28)

(102)

315 ( R T ) 310 ( R T )

-0.32 -0.28

0.69 ±

0.08

0.18 ±

0.64 ± 0.64 ±

0.10 0.10

0.31 0.30 0.31 0.43 0.31 0.23 0.00 0.30 0

0.15

307

0.15 0.15 0.03 0.04 0.04 0.0 0.1 0.1

255 225 305 224 253 302 274 256 0

(32)

± 8 (32)

Fe .88iS 0

F e».»