1 Application of Molecular Orbital Calculations to Mössbauer and NMR Spectroscopy of Halogen-Containing Compounds
Downloaded by 80.82.77.83 on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch001
MICHAEL GRODZICKI, SIEGFRIED LAUER, and ALFRED X. TRAUTWEIN Angewandte Physik, Universität der Saarlandes, 66 Saarbrücken 11, West Germany ANNABELLA VERA Universita degli Studi di Parma, 43100 Parma, Italy
Self-consistent field and charge molecular orbital (MO) calculations are applied to a series of fluorine-, chlorine-, bromine-, and iodine-containing molecules. Calculated orbi tal energies and dipole moments are used for testing and comparing the MO theories. The calculation procedures for deriving (1) electron charge densities (O), (2) electric field gradient tensors, and (3) internal magnetic fields are de scribed in detail. In connection with calculated (O) values and measured isomer shifts δ, the relative change of nuclear charge radius, δR/R, is derived for iodine. Together with the various contributions to the electric field gradient, the quadrupole polarization of electronic cores γ(r) and the nuclear quadrupole moments Q for chlorine, bromine, and iodine are discussed. For one specific compound, N(C H ) FeI , the internal magnetic fields at the iron and iodine nuclei are evaluated simultaneously from the magnetic M O structure of this compound. All calculated data are com pared with experimental results. p
p
2
5
4
4
M
o l e c u l a r o r b i t a l ( M O ) c a l c u l a t i o n s p r o v i d e us w i t h e l e c t r o n i c a n d magnetic structure properties of a molecule, f r o m w h i c h suitable
spectroscopic data c a n be derived for comparison
with
experimental
Môssbauer a n d N M R w o r k . C o m p a r i n g e x p e r i m e n t a l h y p e r f i n e d a t a w i t h 0065-2393/81/0194-0003$08.75/0 © 1981 American Chemical Society
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
4
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
c o m p u t e d e l e c t r o n i c d a t a y i e l d s n u c l e a r p r o p e r t i e s s u c h as 8R/R c h a n g e of n u c l e a r c h a r g e r a d i u s ) a n d Q ( n u c l e a r q u a d r u p o l e
(relative moments).
B e y o n d this, t h e m u t u a l f e e d b a c k of t h e o r y a n d e x p e r i m e n t h e l p s the q u a n t u m c h e m i s t test t h e r e l i a b i l i t y of t h e v a r i o u s a p p r o x i m a t i o n s i n v o l v e d i n his c a l c u l a t i o n s a n d h e l p s t h e spectroscopist
i n t e r p r e t his
measured data. I n the p r e s e n t w o r k , self-consistent
field
( S C F ) a n d self-consistent
c h a r g e ( S C C ) M O c a l c u l a t i o n s are a p p l i e d to a series of h a l o g e n - c o n t a i n i n g compounds.
I n the s e c o n d s e c t i o n , some of
the
approximations
i n h e r e n t to these c a l c u l a t i o n s are d e s c r i b e d , a n d e x p e r i m e n t a l o r b i t a l energies
and
dipole
moments
are
compared
with
calculated
values
derived from S C C - X a - M O , S C C - I E H - M O (iterative extended H u c k e l ) , Downloaded by 80.82.77.83 on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch001
S C F - M O ( c l o s e to the H a r t r e e - F o c k l i m i t ) , a n d G a u s s i a n 7 6 - M O v e r sions. T h e f o l l o w i n g sections d e a l w i t h i s o m e r shift a n d e l e c t r o n c h a r g e d e n s i t y at t h e M o s s b a u e r n u c l e u s , w i t h e l e c t r i c field g r a d i e n t s , a n d w i t h t h e i n t e r p r e t a t i o n of m e a s u r e d m a g n e t i c h y p e r f i n e fields at the i r o n a n d iodine nuclei. Molecular
Orbital
Calculations
T h e one-electron e q u a t i o n t h a t m a y d e s c r i b e t h e e l e c t r o n i c s t r u c t u r e of a m a n y - p a r t i c l e system is ( i n a.u.)
(-A +V(r)) w h e r e V(r) (MO)
(1)
frft
is a l o c a l p s e u d o p o t e n t i a l , a n d ^fc("r) are m o l e c u l a r o r b i t a l s
*fcW =
Z vj
Rt)
c
(2)
v
jk
Rv) is a n a t o m i c w a v e f u n c t i o n c h a r a c t e r i z i n g t h e (n
J9
l
j9
m )-th ;
a t o m i c o r b i t a l of t h e v-th a t o m ; f o r t h e p r e s e n t w o r k , S l a t e r - t y p e o r b i t a l s (STO)
are
used.
Multiplication
of
Equation 1
from
the
left
by
4>i *{r — Rv>) a n d i n t e g r a t i o n o v e r t h e e l e c t r o n i c coordinates y i e l d s t h e iv,)
secular equation
E ^ - * ^ ) ^ -
(3)
0
vj w i t h t h e H a m i l t o n i a n m a t r i x elements H^
v
ments
a n d t h e o v e r l a p m a t r i x ele
s%
v
Htf
= j
(
t
-
i t ) [ — A + V (?) ]
(?-
R ) d*r v
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
(4)
1.
Halogen-Containing
GRODZICKI E T A L .
S$> = J
(r-
5
Compounds
IV)
(t-t )d'r
(5)
y j ^ f - B , )
(6)
v
W i t h t h e short notations A +
H£(t)
V (P) NB
=
V(?)
-
\ [V™
(?-
it) +
f„ (?-
(7)
Downloaded by 80.82.77.83 on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch001
t h e H a m i l t o n i a n m a t r i x elements c a n b e w r i t t e n as
= |
(«f + « / )
+ \ (V$> + y y )
sp
y ^ = J * ^ ( T - E o ^ W
(8)
- y £ M ^ - « » ) W
F
)
( r (9)
w h e r e c",- is t h e v a l e n c e o r b i t a l i o n i z a t i o n p o t e n t i a l of t h e v - t h a t o m o r i o n . F r o m E q u a t i o n 8 the e x t e n d e d H i i c k e l t y p e e q u a t i o n s are o b t a i n e d b y the approximations
Vy
=
+
l(VX'
;
V™)Sy
tr +
V f - k H F
(10)
yielding
T = |
W
+ h-)s^.
I n the I E H calculations, the Cusachs approximation ( I )
(ii) is a d a p t e d f o r
t h e p r o p o r t i o n a l i t y constant ft ft-2-
(12)
\Stf\
a n d the d i a g o n a l H a m i l t o n i a n m a t r i x elements are d e s c r i b e d i n terms of v a l e n c e o r b i t a l i o n i z a t i o n p o t e n t i a l s w h i c h d e p e n d o n t h e effective c h a r g e Q
v
of t h e v - t h a t o m
(2): %
H
=
~
(*jo + v
*n Q») v
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
(13)
6
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L
APPLICATIONS
So f a r w e h a v e s u c c e s s f u l l y a p p l i e d t h i s m e t h o d t o t h e i n t e r p r e t a t i o n o f electric a n d magnetic hyperfine parameters of F e - c o n t a i n i n g compounds 5 7
(3). I n a d d i t i o n t o the I E H m e t h o d , a m e t h o d w a s u s e d t h a t e x p l i c i t l y i n c l u d e s n e i g h b o r c o n t r i b u t i o n s t o the H a m i l t o n i a n .
Recently w e have
d e s c r i b e d t h i s m e t h o d i n d e t a i l ( 4 ) , a n d h a v e a p p l i e d i t t o a series o f small molecules i n c l u d i n g second-row
elements ( 5 ) . T h e m a i n f e a t u r e
of t h i s m e t h o d i s t h a t V(r) i s d e s c r i b e d i n terms o f a n X«-like m o d e l potential w h i c h depends
o n effective a t o m i c charges, t h u s m a k i n g t h e
application of an S C C iteration procedure possible.
Downloaded by 80.82.77.83 on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch001
F o r one a t o m this p o t e n t i a l is g i v e n b y
( r ) — r
+
&
r
[ 7 J
x 2 p a t
to
d
+ J
x
p
x
&t
to
dx
J
*[!^ ]
1/3
65« | ^ - P a t a ( tr(r )) I
A s s u m i n g t h a t t h e a t o m i c c h a r g e d e n s i t y p (r) &t
depends
(14)
exponentially
on r P . t ( r ) - ^ e - " , 07T
, - , ( Q )
(15)
w h e r e N is the n u m b e r o f electrons, o u r a t o m i c m o d e l p o t e n t i a l has t h e form
y
a t
(r)
^
- N
+
v
e ^
- a'rjN^e^*;
J = 1.5 «
3 y ^
/
3
(16)
V
a t
( r ) is a f u n c t i o n o f t h e effective a t o m i c c h a r g e ^ i a Q, N, a n d rj. W e r e p r e s e n t the m o l e c u l a r p o t e n t i a l V
m o
i ( r ) b y the superposition
of a t o m i c p o t e n t i a l s ( E q u a t i o n 16) FmoiW - E v . t ( | ^ - B « | )
(17)
GB
E q u a t i o n 17 i m p l i e s
GB
w h i c h overestimates t h e e x c h a n g e c o n t r i b u t i o n b e c a u s e V , m o i ( 0 s h o u l d e x
be replaced b y
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
1.
Halogen-Containing
GRODZICKI E T A L .
Fex.
m o l
(r) ~
(?) = ( £
Compounds
P
7
RJ ) * "
x
(19)
se
H o w e v e r , E q u a t i o n 17 has c o n s i d e r a b l e c o m p u t a t i o n a l advantages
over
E q u a t i o n 19. I t is w e l l u n d e r s t o o d that t h e X
a
e x c h a n g e p o t e n t i a l takes too l a r g e
values f o r l a r g e distances r f r o m the o r i g i n ( 6 , 7 ) ; therefore, w e m a y a c c o u n t for this effect a n d for the a p p r o x i m a t i o n i n h e r e n t i n E q u a t i o n 18 b y r e p l a c i n g ??/3 i n the exchange p a r t of E q u a t i o n 16 b y 77, w h i c h also has o b v i o u s c o m p u t a t i o n a l advantages. E v a l u a t i n g the p o t e n t i a l m a t r i x elements V* , w e e x p a n d the a t o m i c v
potentials V t(|r*—
I ) , c e n t e r e d at Jt^, i n t o s p h e r i c a l h a r m o n i c s , c e n
a
Downloaded by 80.82.77.83 on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch001
t e r e d at the o r i g i n o f the m o l e c u l a r f r a m e , V^(\t^Rj)-^r^V (r,B ) haLt
Y* (RJ
m
lm
(20)
Y {r) lm
lm
I n this p r o c e d u r e , t h e first t e r m i n E q u a t i o n 16, w h i c h is p r o p o r t i o n a l to 1 / r , takes t h e f o r m (—
l + 1
)
9
w h i l e the r e m a i n i n g
r a d i a l terms are e v a l u a t e d u s i n g t h e B a r n e t t - C o u l s o n f - e x p a n s i o n nique (8).
A n analogous e x p a n s i o n is a p p l i e d f o r t h e one-center
s i o n o f the a t o m i c w a v e f u n c t i o n s (4).
T h e n , the t w o - c e n t e r
can b e evaluated analytically i n closed form.
tech expan
integrals
T h e three-center i n t e g r a l s
are d e r i v e d f r o m
-
?Z
E se^W
t
U%"(r,RJ
(21)
W%»&J
1= 1
w h e r e the Z-summation m a y b e t e r m i n a t e d f o r n o n l i n e a r m o l e c u l e s a t I = 1 or 2, as has b e e n s h o w n p r e v i o u s l y ( 5 ) . T h e p a r a m e t e r s o f the S C C - X x]> = x
v
j0
a
m e t h o d are d e t e r m i n e d b y
+ x
n
Q% + x
v
j2
Q
(22)
2
v
w h e r e x m a y b e r e p l a c e d b y t h e i o n i z a t i o n p o t e n t i a l c, t h e Slater e x p o n e n t f, a n d t h e p o t e n t i a l p a r a m e t e r 77, r e s p e c t i v e l y . free p a r a m e t e r s , e
jtl
Vi,z> f;\o> fi,i>
a
n
and c
; > 2
are taken from
T o reduce the number of atomic data
( 9 ) , while
d £,,2 are d e t e r m i n e d f r o m r e x p e c t a t i o n v a l u e s ( 5 ) o f
atomic H a r t r e e - F o c k w a v e functions (10).
T h u s , the o n l y free p a r a m e t e r s
are 770 a n d c w h i c h h a v e b e e n d e t e r m i n e d b y fitting e x p e r i m e n t a l i o n i z a 0
t i o n p o t e n t i a l s a n d d i p o l e m o m e n t s of t h e h a l o g e n h y d r i d e s ( H F , H C 1 , H B r , and H I ) . T h e parameters for the I E H calculations have been determined i n a s i m i l a r f a s h i o n . T h e r e s u l t i n g p a r a m e t e r sets are l i s t e d i n T a b l e I .
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
8
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
Table I.
Final Parameter Set Used for S C C - X and I E H Calculations
a
0
Downloaded by 80.82.77.83 on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch001
Orbital
to
it
2.5 (2.6) 2.3 (2.2)
0.1
2.15 (2.5) 1.89 (2.1)
0.1
2.45 (3.3) 1.95 (2.5)
0.1
2.50 (3.0) 1.98 (2.4)
0.1
1.57 (1.61) 1.46 (1.61)
0.1
1.2 (1.2)
0.4
to
F
2s
F
2p
CI
3s
40.80 (34.0) 16.84 (18.0)
25.57 (18.0) 20.54 (15.0)
3.54
27.20 (29.0) 13.19 (13.0)
15.78 (15.5) 13.19 (10.0)
1.63
24.75 (26.0) 11.83 (11.5)
14.14 (14.0) 11.69 (9.0)
1.36
19.72 (25.0) 10.74 (10.5)
12.24 (14.0) 10.06 (8.0)
1.09
14.96 (25.0) 9.52 (10.0)
17.54 (11.0) 14.69 (11.0)
3.54
10.34
3.54
1.63
Br
4s
Br
4p
I
5s
I
5p
C
2s
C
2p
H
Is
10.34 (13.6)
20.67 (12.8)
N N
2s 2p
(30.0) (11.5)
(12.0) (12.0)
(1.95) (1.95)
0 0
2s 2p
(33.0) (15.2)
(15.0) (15.0)
(2.27) (2.0)
s s
3s Zp
(22.0) (11.5)
(9.6) (9.6)
(1.82) (1.82)
Fe Fe Fe
3d 4s 4p
(7.0) (7.5) (6.5)
(8.0) (8.0) (8.0)
(2.87) (1.4) (1.4)
3.54
0.5
2.5
0.4
2.4
0.4
2.3
0.4
2.4
0.5
2.4
0.8
0.3
3p
1.09
2.7 0.3
CI
1.36
•no
0.3
0.3
0.3
"Energies in e V ; values in brackets correspond to I E H calculations, values with out brackets to S C C - X calculations. a
B e s i d e s t h e M u l l i k e n p o p u l a t i o n analysis, w e u s e t h e p o p u l a t i o n analysis w h i c h y i e l d s " d i p o l e - c o r r e c t e d p o p u l a t i o n n u m b e r s " n
v
= Y , H V'
p
^ ^ %
v
-
Z
%
v
)
ij
w i t h the b o n d order matrix
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
(
2
3
)
1.
Halogen-Containing
GRODZICKI E T A L .
£ " = Z >
P
k
9
Compounds
( (r) Q (r) ^
GVo(W)
( * > , « , ) dr
(44)
Downloaded by 80.82.77.83 on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch001
0
Z*
W
«/ o ^
(47)
{l';r,R )dr v
48
T h e three-
center i n t e g r a l s , E q u a t i o n 4 1 , c o u l d b e h a n d l e d i n a n analogous
manner.
H o w e v e r , i n v i e w o f the e x p e c t e d smallness of these c o n t r i b u t i o n s ( s e e T a b l e V I I I ) , w e use t h e f o l l o w i n g a p p r o x i m a t i o n :
Q iLM
=
Q 8i8 M V
Ov'v
Jt
w h e r e SjJ" i s t h e o v e r l a p m a t r i x a n d Q '? v
8
SJtM
t w e e n t h e t w o s f u n c t i o n s o f t h e ( / , v)-block
QZ.M
- -Z 4
( ^ 49
is the matrix element b e o f Q {? w h i c h i s V
M
E 7 ("') % (»'> u
w
v
d 2s -> d 3s - » d 4s - » d 5s - > d 2p^f 3p^f 4 p ^ / 5p->/ 3d-*g 3d-»s 4d->gr 4d - » s 2p-»p 3p - » p 4p -> p 5p - » p 3d-» d 4d-*d Total
HPRD
10*R
1.133 0.211 0.116 0.082 0.099 0.485 0.256 0.218 0.049 0.297 -0.049 0.270 0.151 -0.246 -1.761 -5.211 2.289 -0.460 -1.751
-0.616 -0.017 -0.005 -0.009 -0.111 -0.147 -0.049 -0.028 -0.024 -0.034 0.022 -0.026 -0.055 -2.441 -2.947 -6.539 1.716 0.012 0.893
B
0.517 0.194 0.111 0.073 -0.012 0.338 0.207 0.190 0.025 0.264 -0.027 0.244 0.096 -2.687 -4.708 -11.750 4.005 -0.448 -0.858 -14.2
-10.4
-3.8
• T h e various contributions to R due to different angular and radial excitations are included. Physical Review
w i t h p a r a m e t e r s a, b, c
l9
d
ly
r
u
c , d , r ( T a b l e VII) y i e l d i n g a n excellent 2
2
2
agreement w i t h the numerically computed y ( r ) . Comparison of Calculated V
zz
and Measured e qQ. 2
A l o n g t h e lines
d e s c r i b e d i n t h e t w o p r e v i o u s sections, t h e e l e c t r i c field g r a d i e n t V
zz
the
1 2 7
I,
7 9
at
B r , a n d C 1 n u c l e i for several molecules w a s calculated. T h e 3 5
v a r i o u s c o n t r i b u t i o n s to this g r a d i e n t at t h e
1 2 7
I n u c l e u s are g i v e n
t o g e t h e r w i t h t h e o c c u p a t i o n n u m b e r s of t h e 5s, 5p v a l e n c e o r b i t a l s Table V I . Sternheimer Shielding Factors for N e u t r a l and Negative Halides W i t h and Without the ns, np Valence Orbitals (41) Neutral Element F CI Br I
With Valence Orbitals -7.1 -25.4 -66.0 -136.0
Atom Without Valence Orbitals +0.08 —1.2 -6.2 -16.9
Negative With Valence Orbitals -22.3 -55.4 -133.0 -254.0
Ion Without Valence Orbitals +0.08 — 1.2 -6.1 -16.2
S. Lauer (Diplomarbeit)
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by 80.82.77.83 on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch001
1.
Halogeti-Containing
GRODZICKI E T A L .
n«, np , n , z
and n
Px
in Table VIII.
Py
21
Compounds
T h e g e n e r a l t r e n d reflected i n this
t a b l e is t h a t t h e v a l e n c e c o n t r i b u t i o n V ° ° ( E q u a t i o n 3 8 ) is t h e c o n t r i b u t i o n to the t o t a l e l e c t r i c t r i b u t i o n Vf
(Equation
z
contribution
39)
v
41)
is
completely
i m p o r t a n t feature is t h a t the l i g a n d c o n t r i b u t i o n V™ the core contribution V ™
r e
con
three-center
negligible.
Another
( E q u a t i o n 40)
and
( E q u a t i o n 33) nearly cancel each other i n a l l
cases. T h i s finally results i n a t o t a l V
zz
contribution
dominant
g r a d i e n t , w h i l e the o v e r l a p
is r e l a t i v e l y s m a l l a n d t h e
(Equation
V£
field
t h a t is n e a r l y e q u a l to the v a l e n c e
V™. zz
T h e calculated V
zz
values f o r
r u p o l e c o u p l i n g constants
1 2 7
I vs. the e x p e r i m e n t a l n u c l e a r q u a d
are p l o t t e d i n F i g u r e 5.
(e qQ) 2
the s o l i d l i n e c o r r e s p o n d s to t h e n u c l e a r q u a d r u p o l e
T h e s l o p e of
moment
Q(
1 2 7
I)
w h i c h takes t h e v a l u e —0.62 b a r n . T h i s v a l u e does not c o n t a i n r e l a t i v i s t i c corrections
of
< r " > w i t h i n the v a l e n c e c o n t r i b u t i o n V™. 3
priate correction factor i n < r " > 3
c o m p a r i n g H a r t r e e - F o c k (10)
r e
i =
The
R r e i < r ~ > has b e e n d e r i v e d 3
appro from
a n d r e l a t i v i s t i c H a r t r e e - F o c k - S l a t e r results
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
22
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L
Table V I I .
-8.7 0.08 -1.2 -6.1 -16.2
0.075 0.023 -0.12 -0.16 -0.18
(41)
a
b
4.25 17.0 7.1 6.0 5.0
1.30 0.2 0.7 0.9 1.2
R
Fe * F" cr Br" r
and R
Self-Consistent Sternheimer Factors
Element 2
APPLICATIONS
A l l values correspond to the situation that valence orbitals (Table I) are omitted from the self-consistent Sternheimer procedure. a
for
. )
The
Downloaded by 80.82.77.83 on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch001
3
d a s h e d l i n e i n F i g u r e 5 takes care of t h e r e l a t i v i s t i c c o r r e c t i o n , r e s u l t i n g in