4 A Physicochemical Approach to the
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
Characterization of Stratum Corneum RICHARD H. WILDNAUER, DAVID L. MILLER, and WILLIAM T. HUMPHRIES Department of Skin Biology, Johnson & Johnson Research, New Brunswick, N. J. 08903
Stratum corneum is the principal diffusion barrier of the skin to molecules and is also a protective surface against mechanical insults; their function depends on morphological and macromolecular organization of the membrane. Its physical behavior is a two-phase system of oriented, amorphous, and crystalline regions, principally fibrous proteins associated with lipids. Thermally induced viscoelastic, dimensional, enthalpic, spectral, and diffusional changes occurring at 30°-50°C and 190°-220°C suggest transformations in both amorphous and crystalline regions, respectively. The magnitude and temperature of these transitions depend on moisture content, solvent exposure, chemical crosslinking, and degree of orientation. The fundamental and empirical parameters derived from the physical characterization methods discussed here aid in understanding the influence of physical and chemical factors on stratum corneum properties. Skin, ^
the m o s t expansive h u m a n o r g a n , envelops the entire surface of
t h e b o d y s u c h that its e p i t h e l i u m is c o n t i n u o u s w i t h the e p i t h e l i a
of the e x t e r n a l orifices of the d i g e s t i v e , sweat, sebaceous, r e s p i r a t o r y , a n d u r i n o g e n i c systems. A s a r e s u l t of its a n a t o m i c a l l o c a t i o n , the s k i n f u n c tions as the p h y s i c a l interface b e t w e e n the b o d y tissues a n d the e n v i r o n m e n t . T h e p h y s i o l o g i c a l f u n c t i o n s of the s k i n are p r o t e c t i o n , c o n t a i n m e n t , and thermoregulation. T h e s k i n is t w o discrete tissue layers, b o t h p o l y m e r i c b u t d i f f e r i n g i n p r o t e i n c o m p o s i t i o n , m o r p h o l o g y , a n d thickness (1, 2)
(Figure
1).
E p i d e r m i s , the o u t e r l a y e r , is c e l l u l a r a n d is c o m p o s e d p r i m a r i l y of the intracellular
fibrous
p r o t e i n k e r a t i n associated w i t h l i p i d s .
I n contrast,
74 Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
4.
wiLDNAUER E T A L .
Characterization
of Stratum
75
Corneum
"Comparative Anatomy of the Vertebrates"
Figure
1.
Diagramatic
transverse
section of full thickness
human
skin (2)
the d e r m i s , o r i n n e r l a y e r is a n o r d e r o f m a g n i t u d e t h i c k e r , p r i n c i p a l l y a c e l l u l a r , a n d c o m p o s e d o f e x t r a c e l l u l a r proteins s u c h as c o l l a g e n a n d elastin c o m p l e x e d w i t h m u c o p o l y s a c c h a r i d e s .
T h e d e r m i s also contains
the v a s c u l a r system a n d nerve endings as w e l l as p r o t e i n - s y n t h e s i z i n g cells. It is the p r i n c i p a l l o a d - b e a r i n g tissue o f the s k i n .
Physicochemical
c h a r a c t e r i z a t i o n o f the p o l y m e r i c n a t u r e o f d e r m i s has b e e n s t u d i e d extensively a n d w i l l not b e c o n s i d e r e d i n this w o r k (3, 4, 5). F e w syst e m a t i c studies have b e e n m a d e to c h a r a c t e r i z e t h o r o u g h l y the e p i d e r m i s i n terms o f its f u n c t i o n a l l y r e l a t e d p h y s i c a l a n d c h e m i c a l (6-15).
properties
T h i s f o r m o f c h a r a c t e r i z a t i o n is the t o p i c o f this discussion.
S t r a t u m c o r n e u m , the outermost l a y e r o f m a m m a l i a n e p i d e r m i s , f u n c tions p h y s i o l o g i c a l l y as the p r i n c i p a l d i f f u s i o n b a r r i e r t o molecules p e n e t r a t i n g the s k i n a n d as a p r o t e c t i v e p h y s i c a l b a r r i e r to m e c h a n i c a l insults at t h e s k i n surface.
D a t a suggest that these f u n c t i o n s
are critically
d e p e n d e n t o n the specific m o r p h o l o g i c a l a n d m a c r o m o l e c u l a r o r g a n i z a t i o n o f the m e m b r a n e m o s a i c (16, 17, 18, 19, 20). T h u s , alterations o f b i o p h y s i c a l properties arise f r o m e n v i r o n m e n t a l factors a c t i n g d i r e c t l y o n the m e m b r a n e
o r u p o n t h e k e r a t i n i z a t i o n process, a n d t h e y
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
affect
76
A P P L I E D
significantly b i o l o g i c a l p e r f o r m a n c e flexibility
C H E M I S T R Y
(21).
A
T
P R O T E I N
I N T E R F A C E S
S i m i l a r l y , the smoothness a n d
of s t r a t u m c o r n e u m are i m p o r t a n t to c o s m e t i c aspects.
It is
thus r e a s o n a b l e t h a t c e r t a i n r e q u i r e m e n t s of s t r a t u m c o r n e u m s t r e n g t h a n d e l a s t i c i t y are essential properties to m a i n t a i n a contiguous
membrane
a n d to p e r m i t a d e q u a t e p h y s i o l o g i c a l f u n c t i o n . P r a c t i c a l a n d f u n d a m e n t a l i n f o r m a t i o n c o m e f r o m studies of
the
p h y s i c a l a n d c h e m i c a l p r o p e r t i e s of i s o l a t e d samples of s t r a t u m c o r n e u m . F i r s t , the gross manifestations of m a n y s k i n disorders are a l t e r e d p h y s i c a l Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
p r o p e r t i e s of t h e c o r n e u m s u c h as c r a c k i n g , s c a l i n g , roughness, bility, and increased permeability.
inflexi-
Studies c a n separate factors w h i c h
influence k e r a t i n i z a t i o n f r o m those w h i c h affect the m e m b r a n e d i r e c t l y . S e c o n d , the q u a l i t y of s t r a t u m c o r n e u m is a n i n d i c a t o r of e p i d e r m a l f u n c t i o n , since the s t r a t u m c o r n e u m is t h e epidermopoesis.
The
composition
final
differentiated product
a n d s t r u c t u r a l o r g a n i z a t i o n of
of the
k e r a t i n i z e d s t r a t u m c o r n e u m cells c o n t a i n the i n s c r i b e d h i s t o r y of t h e i r b i o l o g i c a l f o r m a t i o n a n d are a p o t e n t i a l source of p r a c t i c a l c l i n i c a l i n f o r m a t i o n . R e c o g n i t i o n of the c l i n i c a l i m p l i c a t i o n s of p h y s i c a l a n d c h e m i c a l studies of s t r a t u m c o r n e u m to d e r m a t o l o g y w a s p i o n e e r e d b y
Kligman
(17). T h e p h y s i c a l p r o p e r t i e s affecting p h y s i o l o g i c a l f u n c t i o n a r e p r i n c i p a l l y d e t e r m i n e d at the m a c r o m o l e c u l a r l e v e l b y the t h r e e - d i m e n s i o n a l n e t w o r k s t r u c t u r e of c o m p o n e n t l o n g - c h a i n p o l y m e r i c m o l e c u l e s p l e x e d w i t h s m a l l m o l e c u l e s s u c h as l i p i d s a n d p o l y s a c c h a r i d e s . n e t w o r k structures are best c h a r a c t e r i z e d b y p h y s i c o c h e m i c a l ments of i s o l a t e d s t r a t u m c o r n e u m to establish a profile of
comThese
measure-
parameters
r e l a t i n g s t r u c t u r e a n d p r o p e r t i e s to functions. C h a r a c t e r i z a t i o n of t h e k e r a t i n i z e d cells b y c l a s s i c a l h i s t o l o g i c a l a n d biochemical
approaches
has b e e n difficult b e c a u s e of the i n t r a c t a b l e
n a t u r e of the tissue. Y e t i t is p r e c i s e l y these p r o p e r t i e s of strength, i n s o l u b i l i t y , m a c r o m o l e c u l a r character, a n d l a c k of
mechanical metabolic
a c t i v i t y a l o n g w i t h its ease of i s o l a t i o n w h i c h makes s t r a t u m c o r n e u m a m e n a b l e to analysis b y p h y s i c a l m e t h o d s .
T h e extreme c o m p l e x i t y
of
c o m p o s i t i o n , m o l e c u l a r s t r u c t u r e , a n d o r g a n i z a t i o n of s t r a t u m c o r n e u m m a k e i n t e r p r e t a t i o n of these m a c r o s c o p i c p r o p e r t i e s i n terms of m o l e c u l a r s t r u c t u r e a n d events d e p e n d e n t
h e a v i l y o n analogous
studies
of
m o d e l s y n t h e t i c p o l y m e r systems a n d the m o r e t h o r o u g h l y c h a r a c t e r i z e d , keratin-containing Sample
wool. 'Preparation
S t r a t u m c o r n e u m u s e d i n these studies w a s i s o l a t e d f r o m h u m a n , n e w b o r n rat, c a l l u s , a n d g u i n e a p i g foot p a d . T h e m e t h o d s of i s o l a t i n g the v a r i o u s tissues h a v e b e e n d i s c u s s e d elsewhere (10,11). E v e n t h o u g h the v a r i o u s c o r n e u m tissues differ s o m e w h a t i n m o r p h o l o g y a n d c h e m -
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
4.
W I L D N A U E R
E
T
A L .
Characterization
of Stratum
Corneum
77
"Epidermal Wound Healing"
Figure
2. Dilute ΉaOH-swollen transverse section of mouse ear epidermis illustrating the morphological organization of the corneum (22)
istry, p h y s i c a l c h a r a c t e r i z a t i o n d a t a o b t a i n e d o n o n e tissue c a n often be e x t r a p o l a t e d t o t h e others. Significant differences i n p h y s i c a l or c h e m i c a l b e h a v i o r a m o n g the v a r i o u s c o r n e u m tissues s t u d i e d w i l l b e n o t e d w h e r e t h e y occur. S o l v e n t - e x t r a c t e d samples w e r e p r e p a r e d b y i m m e r s i n g d r y c o r n e u m samples i n the specified solvent for 90 m i n unless o t h e r w i s e stated. S a m p l e s w e r e not tested u n t i l at least 48 hrs f o l l o w i n g e x t r a c t i o n to a l l o w f o r e v a p o r a t i o n o f r e s i d u a l solvent. S a m p l e s w e r e p r e s t r e t c h e d b y m o u n t i n g d r y strips o f c o r n e u m i n a s t r e t c h i n g d e v i c e a n d s u b m e r g i n g the e n t i r e a p p a r a t u s i n w a t e r for 1 h r . T h e strips w e r e t h e n s t r e t c h e d b y m a n u a l a d j u s t m e n t o f the d e v i c e t o t h e r e q u i r e d extension a n d a l l o w e d to d r y p r i o r to testing. H y d r a t i o n i n c r e a s e d s a m p l e l e n g t h b y 4 - 8 % , a n d this is t a k e n i n t o c o n s i d e r a t i o n w h e n c a l c u l a t i n g s t r a i n (18). T h e d r y w e i g h t u s e d t o c a l c u l a t e the extent o f s o r b e d w a t e r ( w t % ) is b a s e d o n the s a m p l e w e i g h t at 1 1 0 ° C i n a n a t m o s p h e r e o f d r y a i r (less t h a n 10 p p m H 0 ) . D e s i c c a t e d samples refer t o c o r n e u m stored over calcium sulphate at room temperature and containing approximately 5 wt % HoO. 2
Morphology
and Biology
Stratum corneum is a multicellular membrane of acutely-flattened, m e t a b o l i c a l l y - i n a c t i v e cells s t a c k e d i n v e r t i c a l c o l u m n s (22). T h i s s t r a t i fied m o r p h o l o g i c a l o r g a n i z a t i o n is d e m o n s t r a t e d i n a f r e s h l y f r o z e n t r a n s verse
section o f e p i d e r m i s
visualization.
(Figure 2) where
t h e s w e l l i n g aids t h e
T h e m o r p h o l o g i c a l a r c h i t e c t u r e is s u c h t h a t the cells i n
one c o l u m n i n t e r d i g i t a t e w i t h those i n adjacent c o l u m n s t o f o r m a c o n -
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
78
A P P L I E D
t i g u o u s a n d coherent m e m b r a n e .
C H E M I S T R Y
A
T
P R O T E I N
T h e compactness
I N T E R F A C E S
of this c e l l u l a r a r
r a n g e m e n t is s h o w n i n a d i f f e r e n t i a l i n t e r f e r e n c e m i c r o g r a p h ( F i g u r e 3 ). O n g e n e r a l b o d y areas, the m e m b r a n e is c o m p o s e d o f 1 0 - 1 5 s t a c k e d cells a n d is a b o u t 10/x t h i c k w h e n d r y . C a l l u s areas of t h e h a n d s a n d feet are a t y p i c a l , b e i n g c o n s i d e r a b l y t h i c k e r (~200μ) stacking.
w i t h m u c h less r e g u l a r
I n m a n y of t h e s c a l i n g diseases, a t h i c k e n e d c o r n e u m w i t h a
p o o r c e l l - s t a c k i n g p a t t e r n is o b s e r v e d c l i n i c a l l y
(16).
T h e s t r a t u m c o r n e u m is d y n a m i c . T h e cells at the surface are c o n Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
t i n u a l l y lost t h r o u g h d e s q u a m a t i o n ( i n t e r c e l l u l a r f r a c t u r e of s m a l l c e l l aggregates) a n d r e p l a c e d b y d i f f e r e n t i a t e d e p i d e r m a l cells, m a i n t a i n i n g a r e a s o n a b l y constant n u m b e r of c e l l layers. S t r a t u m c o r n e u m cells are the
final
d i f f e r e n t i a t e d p r o d u c t of the k e r a t i n i z a t i o n process w h i c h is
i n i t i a t e d b y m i t o t i c d i v i s i o n s of cells l o c a t e d i n t h e g e r m i n a t i v e b a s a l layer. F o l l o w i n g d i v i s i o n , one of the d a u g h t e r cells begins to differentiate a n d joins the s t r e a m of v i a b l e cells p r o c e e d i n g to the surface of t h e s k i n . D u r i n g this t r a n s i t to the s k i n surface, a n u m b e r of i m p o r t a n t b i o c h e m i c a l a n d b i o p h y s i c a l events o c c u r w h i c h result i n the dense, a c u t e l y c o r n e u m cells (24, 25).
flattened
I n the e a r l y stages of this transit f r o m b a s a l l a y e r
to t h e s t r a t u m c o r n e u m ( l a s t i n g 14 d a y s ) , the m a j o r m e t a b o l i c a c t i v i t y is the synthesis of fibrous p r o t e i n . I n the u p p e r layers of t h e e p i d e r m i s , t h e cells g r a d u a l l y d e h y d r a t e , lose m e t a b o l i c a c t i v i t y , a n d flatten a l o n g the p l a n e p a r a l l e l to the s k i n surface r e s u l t i n g i n a b i a x i a l o r i e n t a t i o n of
Figure
3.
Interference
micrograph
of human stratum
corneum surface
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
(23)
4.
W I L D N A U E R
E
T
Characterization
A L .
t h e fibrous proteins (26).
of Stratum
79
Corneum
T h e polygonal (principally hexagonal)
shaped
cells v a r y i n size w i t h b o d y l o c a t i o n r a n g i n g f r o m a d i a m e t e r of 34μ o n t h e f o r e h e a d a n d h a n d s to 46> o n the t h i g h a x i l l a (27).
T h e cells are
g e n e r a l l y a b o u t 0.8/x t h i c k w h e n d r y . I n spite of the fact t h a t s t r a t u m c o r n e u m cells are m e t a b o l i c a l l y inert, changes i n k e r a t i n structure a n d o r g a n i z a t i o n o c c u r as e a c h c e l l transits t h r o u g h the s t r a t u m c o r n e u m p r i o r to d e s q u a m a t i o n (28).
This
suggests some a s y m m e t r y i n p h y s i c a l a n d c h e m i c a l p r o p e r t i e s t h r o u g h Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
the thickness of the c o r n e u m .
O n e d e m o n s t r a t i o n of this is the s w e l l i n g
of f r e s h f r o z e n transverse sections of c o r n e u m i n d i l u t e a c i d or base.
The
most m a t u r e surface cells s w e l l c o n s i d e r a b l y m o r e s l o w l y a n d to a lesser extent t h a n the l o w e r layers of the c o r n e u m (18).
S u c h a s y m m e t r y is of
p a r t i c u l a r i m p o r t a n c e i n s t u d y i n g the d i f f u s i o n a n d m e c h a n i c a l p r o p e r t i e s of this m e m b r a n e . Chemistry
and Supramolecular
Structure
T h e d e t a i l e d c h e m i s t r y o f the s t r a t u m c o r n e u m is c o m p l i c a t e d
by
the m e m b r a n e ' s c o m p o s i t i o n , f o r m a t i o n , a n d structure. S o m e gross c h e m i c a l c h a r a c t e r i z a t i o n s h a v e d e t e r m i n e d the p r i m a r y c h e m i c a l c o m p o n e n t s of the tissue w h i c h are s h o w n i n T a b l e I ( 2 9 ) . cellular w i t h approximately 1 0 % l i p i d a n d mucopolysaccharides. intracellular
fibrous
T h e tissue is p r i m a r i l y
extracellular components
p r o t e i n associated w i t h l i p i d s , r e s u l t i n g i n a d r y
g e n e r a l b o d y c o r n e u m d e n s i t y of 1.35-1.40 g m / c m gas d i s p l a c e m e n t t e c h n i q u e Table I .
3
as d e t e r m i n e d b y a
(30).
Composition of Stratum Corneum
(27) %
Tissue
w h i c h are
T h e b u l k of the tissue is d e n s e l y p a c k e d
Component
Cell membrane Intercellular
Chemical
Composition
of Stratum Corneum
lipid, protein lipid, protein, and mucopolysaccharides lipid, 2 0 % fibrous p r o t e i n , 7 0 % non-fibrous p r o t e i n , 1 0 %
Intracellular
Electron microscopic
5 10
85
studies f u r t h e r substantiate the presence
h i g h l y - o r d e r e d m a c r o m o l e c u l a r structures w i t h the c o r n e u m cells 31).
The
filaments,
fibrous
of (24,
k e r a t i n s t r u c t u r e has b e e n d e s c r i b e d as l o w - d e n s i t y
l o w i n s u l f u r b u t e m b e d d e d i n a dense s u l f u r - r i c h a m o r p h o u s
interfilamentous m a t r i x . T h e k e r a t i n
fibrils
organize into lipid-covered
b u n d l e s p r e f e r e n t i a l l y o r i e n t e d i n the l o n g i t u d i n a l p l a n e of the a c u t e l y flattened
c e l l (16).
T h e s e filaments t e r m i n a t e at the p e r i p h e r y of t h e c e l l
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
80
A P P L I E D
C H E M I S T R Y
A
T
P R O T E I N
I N T E R F A C E S
Biochimica et Biophysica Acta
Figure 4. Wide angle x-ray diffraction patterns of newborn rat stratum corneum with beam normal and parallel (edge) to the corneum plane (13)
NORMAL
EDGE
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
adjacent t o desmosomes, t h e s p e c i a l i z e d i n t e r c e l l u l a r a t t a c h m e n t p l a q u e s I n a d d i t i o n t o t h e desmosomes, m u c o p o l y s a c c h a r i d e s
(32).
form the
g r o u n d substance t h a t fills t h e i n t e r c e l l u l a r spaces a n d aids i n i n t e r c e l l u l a r c o h e s i o n (33). A h y p o t h e t i c a l m o d e l f o r the m o l e c u l a r o r g a n i z a t i o n o f t h e
fibril
u n i t o f k e r a t i n w i t h l i p i d s consists o f p r o t e i n c y l i n d e r s , s u r r o u n d e d b y a l i p i d l a y e r , w i t h the l i p i d c h a i n s a r r a n g e d r a d i a l l y o n the p r o t e i n c y l i n d e r . S u p p o r t f o r this m o d e l comes f r o m w i d e - a n d s m a l l - a n g l e x-ray d i f f r a c t i o n studies ( 1 3 , 19, 34) as w e l l as s m a l l - a n g l e l i g h t - s c a t t e r i n g studies (35). T h e r e l a t i v e c o n t r i b u t i o n o f this c o m p l e x t o s t r a t u m c o r n e u m properties a n d f u n c t i o n s is not w e l l u n d e r s t o o d .
T h e s e l i p i d s are present i n t h e
l o w e r e p i d e r m a l cells associated w i t h 1000g p r e c i p i t a t e o f h o m o g e n i z e d e p i d e r m i s (36). T h e s e
findings
suggest a n e a r l y association o f l i p i d s
w i t h the p r o t e i n filaments w h i c h m a y h a v e a r o l e i n d e t e r m i n i n g t h e i r final o r g a n i z a t i o n . S w a n b e c k has suggested o n t h e basis o f x - r a y diffract i o n studies that one o f the defects i n the d e r m a t o l o g i c a l c o n d i t i o n s o f psoriasis a n d i c h t h y o s i s is r e l a t e d t o the l a c k o f p r o p e r l i p i d - p r o t e i n filament
c o m p l e x f o r m a t i o n (37).
F i g u r e 4 shows the w i d e a n g l e x - r a y d i f f r a c t i o n p a t t e r n f o r n e w b o r n rat s t r a t u m c o r n e u m w i t h the b e a m n o r m a l a n d p a r a l l e l to t h e p l a n e o f the flattened c o r n e u m
cell.
T h e p a t t e r n shows
t w o sharp
reflections
of l i p i d o r i g i n at 4.2 A a n d 3.7 A a n d t w o diffuse halos at 4.6 A a n d 9.8 A a t t r i b u t a b l e to p r o t e i n . T h e i n t e n s i t y o f the a z i m u t h a l reflections suggests t h a t the l i p i d s are associated w i t h the p r o t e i n s w h i c h are o r i e n t e d p a r a l l e l t o t h e l o n g axis o f the
flattened
cell.
T h e reflections are n o t
present i n samples w h i c h h a v e b e e n e x t r a c t e d w i t h c h l o r o f o r m - m e t h a n o l ( 3 / 1 b y v o l u m e ) o r after l o n g exposure to ether. X - r a y d i f f r a c t i o n p a t terns o f c o r n e u m specimens
a t v a r i o u s temperatures demonstrate t h e
t h e r m a l s t a b i l i t y o f these l i p i d c o m p o n e n t s (13). T w o m e l t t e m p e r a t u r e s are o b s e r v e d b y the d i s a p p e a r a n c e o f the 3.7-A s p a c i n g at 40 ° C a n d the 4.2-A one at a b o u t 70 ° C . U p o n c o o l i n g t h e h e a t e d n e w b o r n r a t c o r n e u m samples to r o o m t e m p e r a t u r e , b o t h reflections r e a p p e a r . T h e r e c r y s t a l l i z a t i o n process w a s not m o i s t u r e - d e p e n d e n t . T h e r e also appears t o b e some v a r i a t i o n i n t h e r e v e r s i b i l i t y o f the melts, n u m b e r o f reflections, a n d t h e i r i n t e n s i t y a m o n g the v a r i o u s types
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
4.
W I L D N A U E R
E
T
Characterization
A L .
of Stratum
Corneum
81
of c o r n e u m tissues. F o r e x a m p l e , h u m a n c o r n e u m e x h i b i t e d reflections at 3.7,4.2, a n d 4.6 A , of w h i c h t h a t at 3.7 A d i d not r e t u r n w h e n the s a m p l e was h e a t e d a n d c o o l e d b a c k to r o o m t e m p e r a t u r e . D i f f r a c t i o n patterns f r o m p s o r i a t i c scales a n d h u m a n c a l l u s e x h i b i t w e a k l i p i d reflections w h i l e h u m a n h a i r exhibits no l i p i d reflections
(38).
T h e 4.2-A spacings of other l i p i d - c o n t a i n i n g m e m b r a n e structures are i n t e r p r e t e d as the average i n t e r c h a i n s e p a r a t i o n i n d i r e c t i o n s p e r p e n d i c u l a r to the l o n g axis of the h y d r o c a r b o n p o r t i o n of t h e m o l e c u l e s Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
(39).
T h i s explains t h e i n d e p e n d e n c e
of this s p a c i n g f r o m the l e n g t h
of the c h a i n a n d the n a t u r e of t h e p o l a r g r o u p . Lipid Characterization. T h e l i p i d extracts of r a t s t r a t u m c o r n e u m r e c o v e r e d f r o m solvents of v a r y i n g p o l a r i t i e s h a v e b e e n
characterized
f u r t h e r b y d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y ( D S C ) a n d s h o w n to d i s p l a y two major melting endotherms: 3 7 ° - 4 0 ° C and 5 8 ° - 6 2 ° C
(Figure
5).
T h e f a c t t h a t the melts of the i n t a c t c o r n e u m d e t e r m i n e d b y x - r a y d i f f r a c t i o n are b o t h s o m e w h a t h i g h e r i n t e m p e r a t u r e t h a n the D S C melts of the extract suggests a d d i t i o n a l specific i n t e r a c t i o n of the l i p i d m o l e cules w i t h m e m b r a n e p r o t e i n s . T h e extracts are q u i t e w a x y l o o k i n g a n d are c o m p o s e d of
a complex
m i x t u r e of
esters
i n s o l u b l e alcohols a n d h i g h e r f a t t y acids (40,
of
long-chain, water-
41).
Ο x w (A)
•(B)
LU Ο
20
40 60 80 T E M P E R A T U R E (°C )
100
120
Figure 5. DSC analysis of ether extract from A: newborn rat stratum corneum and B: human hair (N atm). Data from Ref. 18. g
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
82
A P P L I E D
C H E M I S T R Y
A
T
P R O T E I N
I N T E R F A C E S
T h e l i p i d extract f r o m w o o l o r h a i r e x h i b i t s o n l y one m e l t i n g e n d o t h e r m at 3 5 ° - 4 0 ° C ( F i g u r e 5 ) a n d is c o m p o s e d o f a b o u t 9 0 % esters o f l o n g - c h a i n acids a n d alcohols w i t h 1 0 %
free acids a n d alcohols. T h e
a c i d f r a c t i o n o f this h y d r o l y s a t e contains p r i n c i p a l l y b r a n c h e d c h a i n a n d h y d r o x y acids m e l t i n g a t 4 0 ° - 4 5 ° C . melts at 5 5 ° - 6 5 ° C (40).
T h e long-chain alcoholic fraction
I R a n d D S C d a t a o f the extracts f r o m h a i r
a n d corneum indicate that corneum
contains c o n s i d e r a b l y m o r e
free
alcohols t h a n w o o l or h a i r (42). Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
Keratin Structure and Orientation. A c u t e protein-filled
cells i n t h e final stages
flattening
o f the
fibrous
o f k e r a t i n i z a t i o n establishes a
biaxial orientation. A s w o u l d b e expected, n o birefrigence is observed n o r m a l to the p l a n e o f the c o r n e u m surface, b u t significant b i r e f r i g e n c e is o b s e r v e d p a r a l l e l t o t h e p l a n e o f the c o r n e u m surface ( I , 42). T h e x - r a y d i f f r a c t i o n p a t t e r n o f this i s o l a t e d e p i d e r m a l p r o t e i n , w h e n h i g h l y d r a w n , e x h i b i t s the c l a s s i c a l a l p h a p a t t e r n (7, 43). T h e w i d e angle x - r a y d i f f r a c t i o n p a t t e r n o f u n d e f o r m e d
corneum
exhibits diffuse halos at 4.6 A a n d 9.8 A c o m m o n to proteins ( F i g u r e 4 ). T h e l a c k o f the 5.1-A reflection c h a r a c t e r i s t i c o f a l p h a - k e r a t i n structures i n u n d e f o r m e d c o r n e u m suggests t h a t the p r o t e i n is c o n s i d e r a b l y less o r i e n t e d a n d p e r h a p s o f a l o w e r a l p h a content t h a n w o o l .
This is sup-
p o r t e d b y t h e fact t h a t t h e 5.1-A reflection begins to a p p e a r i n samples of c o r n e u m w h i c h w e r e h y d r a t e d a n d s t r e t c h e d to 1 0 0 % or m o r e ( F i g u r e 6 ) a n d a l l o w e d to d r y i n the e x t e n d e d state. T h e i n c r e a s e d o r i e n t a t i o n of t h e l i p i d reflections i n t h e s t r e t c h e d s a m p l e demonstrates f u r t h e r t h e i r association w i t h the o r i e n t i n g p r o t e i n
fibrils.
A d d i t i o n a l e v i d e n c e for the presence o f a l p h a - h e l i c a l fibrous p r o t e i n i n s t r a t u m c o r n e u m is p r o v i d e d b y I R d i c h r o i s m studies
(42). T h e
transmission I R o f n e w b o r n r a t c o r n e u m ( F i g u r e 7 ) is diffuse b e c a u s e of a large v a r i e t y o f s i d e - c h a i n b a n d s , b u t i t is c h a r a c t e r i s t i c a l l y p r o t e i n .
Critical Reviews in Bioengineering
Figure 6. Wide angle x-ray diffraction pattern of newborn rat stratum corneum stretched to various elongations while hydrated and allowed to dry in extended state (normal to plane of membrane) (6)
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
4.
wiLDNAUER E T A L .
'—
1
4000
3500
Characterization
I
I
of Stratum
>
I
)
Figure 10. Water vapor adsorption isotherms as a function of % RH for A, collagen; B, RSC; C, silk; D, nylon. Data from Refs. 18, 5 1 , and 62.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
4.
W I L D N A U E R
E
Table I I .
T
Characterization
A L .
of Stratum
Comparison of Water Content of Polyamides and Proteins with Polar Side Chain Content
Substrate
Polar Group X 10 moles
Ref.
S t r a t u m corneum
4.4
50
0.15
26
Collagen Silk
4.0
51
0.179
48
3.6
51
0.074
48
Nylon
0
0.031
48
g H 0/g Dry Tissue at 50% RH
s
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
87
Corneum
2
Ref.
regains f o r q u i t e s i m i l a r p o l a r a m i n o a c i d contents i n d i c a t e s that t h e other factors
mentioned
a b o v e m a y be
involved i n determining the
e q u i l i b r i u m w a t e r u p t a k e . T h e s e factors relate to the p h y s i c a l aspects of t h e system s u c h as b a c k b o n e c h a i n
flexibility
a n d crosslink d e n s i t y
(55).
I n spite of the c o m p o s i t e n a t u r e of the s t r a t u m c o r n e u m , its w a t e r s o r p t i o n i s o t h e r m is q u a l i t a t i v e l y i d e n t i c a l to those of t h e m o r e s i m p l e p r o t e i n systems s h o w n , suggesting that w a t e r interacts p r e d o m i n a t e l y w i t h the p r o t e i n c o m p o n e n t s
of the c o r n e u m .
T h i s c o n c l u s i o n is s u p
p o r t e d f u r t h e r b y the results of c h l o r o f o r m - m e t h a n o l ( 3 / 1 b y e x t r a c t i o n w h i c h r e m o v e d as m u c h as 2 5 %
volume)
of the o r i g i n a l d r y w e i g h t
( lipids a n d low molecular weight water-soluble components ) but d i d not q u a n t i t a t i v e l y alter the i s o t h e r m i n the l o w r e l a t i v e h u m i d i t i e s
(18).
T h e a p p l i c a t i o n o f the Z i m m - L u n d b e r g cluster t h e o r y (56, 5 7 )
to the
i s o t h e r m y i e l d s a d d i t i o n a l i n f o r m a t i o n as to the state of
sorbed
water i n the corneum.
the
T h e t e n d e n c y of w a t e r to cluster is expressed i n
this t h e o r y b y the cluster f u n c t i o n C i G n : CiG
u
=
(1—Φι) (d In 0 i / d In m) -
1
w h e r e φι is the v o l u m e f r a c t i o n of w a t e r i n the p o l y m e r a n d a\ is the a c t i v i t y of the w a t e r .
V a l u e s of C i G n
greater t h a n —1 i n d i c a t e the
t e n d e n c y of the w a t e r to p r e f e r self association. dependency
F i g u r e 11 shows
of t h e cluster f u n c t i o n o n r e l a t i v e h u m i d i t y for
the
newborn
rat s t r a t u m c o r n e u m at 2 5 ° C . A d r a m a t i c increase i n c l u s t e r i n g t e n d e n c y of w a t e r occurs over the r a n g e 4 0 - 6 0 %
R H . A s a c o n s e q u e n c e of this
t r a n s i t i o n , w a t e r s o r b e d at l o w r e l a t i v e h u m i d i t i e s is p r o b a b l y associated at i s o l a t e d sites i n the c o r n e u m w h e r e a s at h i g h r e l a t i v e h u m i d i t i e s a cooperative
effect i n t h e s o r p t i o n is o b s e r v e d .
T h e presence of
more
h i g h l y c l u s t e r e d w a t e r correlates h i g h l y w i t h a r a p i d decrease i n t h e t e n sile m o d u l u s of the c o r n e u m w i t h i n c r e a s i n g r e l a t i v e h u m i d i t y ( see F i g u r e 18).
F r o m this c o r r e l a t i o n , w a t e r clusters are s h o w n to b e m o r e efficient
p l a ^ t i c i z i n g agents t h a n the i n d i v i d u a l m o l e c u l a r species.
O n t h e other
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
88
A P P L I E D
C H E M I S T R Y
A
T
P R O T E I N
I N T E R F A C E S
-1
0
20
40
RELATIVE
60
80
100
HUMIDITY %>
Figure 11. Dependence of the water cluster function, C G , on relative humidity (newborn rat stratum corneum, 25°C). Data from Ref. 5 7 . 1
11
h a n d , b o t h the c l u s t e r i n g a n d the m o d u l u s effects m a y result f r o m w a t e r i n d u c e d a l t e r a t i o n i n the c o n f o r m a t i o n o f t h e p r o t e i n itself. Diffusion of Water Vapor i n Newborn
R a t Stratum Corneum.
M e a s u r e m e n t a n d i n t e r p r e t a t i o n o f d i f f u s i o n i n heterogenous b i o l o g i c a l systems s u c h as the s t r a t u m c o r n e u m are difficult c o m p a r e d w i t h s i m i l a r m e a s u r e m e n t s f o r w e l l - d e f i n e d s y n t h e t i c p o l y m e r systems, b u t studies of w a t e r d i f f u s i o n i n s t r a t u m c o r n e u m are essential to a better u n d e r s t a n d i n g o f those factors w h i c h c o n t r i b u t e t o t h e b a r r i e r f u n c t i o n of t h e corneum.
W a t e r d i f f u s i o n measurements u n d e r b o t h e q u i l i b r i u m a n d
n o n - e q u i l i b r i u m c o n d i t i o n s are u s e f u l to p r o b e the i n f l u e n c e o f t e m p e r a t u r e a n d o t h e r factors o n s t r a t u m c o r n e u m m a c r o m o l e c u l a r s t r u c t u r e . T h e r m a l d e s o r p t i o n is a d y n a m i c ( n o n - e q u i l i b r i u m ) t e c h n i q u e i n w h i c h a s a m p l e o f h y d r a t e d c o r n e u m is h e a t e d a t a constant rate i n a d r y atmosphere.
T h e w a t e r d e s o r p t i o n rate is p l o t t e d as a f u n c t i o n o f t e m -
p e r a t u r e . T h e g e n e r a l shape a n d t e m p e r a t u r e m a x i m a o f the d e s o r p t i o n rate vs. t e m p e r a t u r e curves ( F i g u r e 1 2 ) are c h a r a c t e r i s t i c o f t h e material's d i f f u s i o n a n d e q u i l i b r i u m s o r p t i o n b e h a v i o r as w e l l as e x p e r i m e n t a l c o n d i t i o n s s u c h as h e a t i n g rate. I n a s i m p l e d e s o r p t i o n process w h e r e
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
4.
W I L D N A U E R
E
T A
L
.
Characterization
of Stratum
there a r e n o significant t h e r m a l l y i n d u c e d changes
Corneum
89
i n the membrane
m a t r i x , there is a g r a d u a l increase i n t h e d e s o r p t i o n rate w i t h t e m p e r a ture.
T h e d e s o r p t i o n rate reaches a m a x i m u m a n d b e g i n s to decrease
w h e n t h e g r a d i e n t o f s o r b e d w a t e r i n t h e m e m b r a n e is r e d u c e d to t h e extent t h a t i t o v e r s h a d o w s
t h e influence o f t h e increase i n diffusion
coefficient w i t h t e m p e r a t u r e . I n m o r e c o m p l e x systems s u c h as s t r a t u m c o r n e u m , h e a t i n g p r o d u c e s s t r u c t u r a l changes i n t h e m a t r i x w h i c h a r e reflected i n the shape o f the r e s u l t a n t t h e r m a l d e s o r p t i o n curves. Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
E x a m p l e s o f t h e r e s u l t i n g plots o f t h e d e s o r p t i o n rate vs. t e m p e r a ture a r e s h o w n i n F i g u r e 12. U n t r e a t e d c o r n e u m samples e x h i b i t o n e m a x i m u m at a b o u t 8 0 ° C w h e r e a s ether e x t r a c t i o n ( 9 0 m i n ) p r o d u c e s a second l o w e r t e m p e r a t u r e m a x i m u m i n a d d i t i o n to the h i g h e r t e m p e r a t u r e peak.
T h e l o w t e m p e r a t u r e p e a k p e r h a p s i n d i c a t e s t h e presence
of
loosely b o u n d w a t e r w h i c h c a n diffuse o u t o f t h e c o r n e u m m o r e e a s i l y than t h e p r i m a r y sorbed water.
T h e thermogram for the c h l o r o f o r m -
m e t h a n o l - e x t r a c t e d c o r n e u m reveals a single, b r o a d p e a k i n d i c a t i v e of a m o r e g e n e r a l solvent d a m a g e to t h e c o r n e u m m a t r i x . T h e t h e r m a l d e -
A;
\
1 f I
\ \
ι t
/ /
LU Ύ ζ / Ο ί α. ο: Ο CO
''n. / / \/ \
Ί
\
1
1
/ \ 1
\
\
/'
\
D\
y
LU Ω
ι
40
ι
1
60
I
\ \ \\ \ \\\
1
80
TEMPERATURE °C Figure 12. Thermal desorption of water from newborn rat stratum corneum. A: control new born rat, B: extracted 90 min with ether, C: formaldehyde crosslinked, D: extracted 90 min with chloroform-methanol (3:1); heating rate 5° C J min.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
90
A P P L I E D
C H E M I S T R Y
A
T
P R O T E I N
I N T E R F A C E S
s o r p t i o n c u r v e for f o r m a l d e h y d e c r o s s l i n k e d c o r n e u m also peaks at a l o w e r t e m p e r a t u r e t h a n the c o n t r o l . T h i s effect is a s c r i b e d to the sample's reduced water-holding capacity coupled w i t h a higher initial desorption rate. A t this e a r l y stage of t e c h n i q u e d e v e l o p m e n t , c h a r a c t e r i z a t i o n of s t r a t u m c o r n e u m b y t h e r m a l d e s o r p t i o n is u s e f u l o n l y to s u r v e y q u a l i t a t i v e l y the effect agents h a v e o n the t h e r m a l b e h a v i o r of c o r n e u m . T h e m o r e c o n v e n t i o n a l m e t h o d for s t u d y i n g t h e energetics of d i f f u s i o n i n m e m b r a n e s is to p e r f o r m p e r m e a t i o n e x p e r i m e n t s as a f u n c t i o n Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
of e q u i l i b r i u m t e m p e r a t u r e . F i g u r e 13 illustrates the effect of t e m p e r a t u r e o n the a p p a r e n t d i f f u s i o n coefficient c a l c u l a t e d f r o m the w a t e r v a p o r permeation
time
lag established b y
steady-state
permeation
with
a
75 to 0 % R H g r a d i e n t across the m e m b r a n e . T h e p r i n c i p l e s of the t i m e l a g p e r m e a t i o n m e t h o d are a d e q u a t e l y d i s c u s s e d e l s e w h e r e ( 5 8 ) .
The
l o w e r c u r v e corresponds to a s a m p l e w h i c h w a s n o t m e c h a n i c a l l y s u p p o r t e d a n d w a s o b s e r v e d to d e f o r m i n t o a h e m i s p h e r i c a l shape. d e f o r m a t i o n is t h e c o m b i n e d result of a s m a l l pressure difference
This across
the m e m b r a n e a n d a decrease i n m o d u l u s of s t r a t u m c o r n e u m as t h e t e m p e r a t u r e is i n c r e a s e d . T h e u p p e r c u r v e corresponds to a s u p p o r t e d s a m p l e . P r e v i o u s to t h e e x p e r i m e n t , b o t h samples h a d i d e n t i c a l t h e r m a l histories.
Stresses a c c o m p a n y i n g d e f o r m a t i o n of the u n s u p p o r t e d
1 0 0 0 / Τ , °K"
1
Figure 13. Temperature dependence of apparent diffusion coefficient of water vapor in newborn rat stratum corneum, Oto 75% RH vapor gradient. Open circles, supported membrane; closed circles, unsup ported membrane. Thickness assumed constant for the purposes of calculation.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
cor-
4.
W I L D N A U E R
E
T
A L .
Characterization
of Stratum
91
Corneum
Table III. Diffusion Coefficients for Water in Newborn Rat Stratum Corneum
Method
Conditions
Nominal Water Content, g H 0/g Dry Tissue
T h e r m a l desorption
bulk water vapor bulk water vapor
4.80 0.35 1.5 0.35
1.9 9.5 1.4 1
1.5 0.35
1.2 X 2.1 X
2
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
Permeation lag time S t e a d y state flux and sorption values a
3
bulk water vapor
a
a
D , cm 1 sec 2
Χ ΙΟ" Χ ΙΟ" Χ ΙΟ" Χ ΙΟ"
11
12
1010-
10 11
1 0 1 1
H - H 0 radio tracer method. 2
n e u m g r e a t l y alter the d i f f u s i o n b e h a v i o r .
T h e d e f o r m e d s a m p l e has a
d i f f u s i o n coefficient a n o r d e r of m a g n i t u d e l o w e r t h a n t h a t of the u n d e f o r m e d s a m p l e at 5 0 ° C . U p o n c o o l i n g the samples i n t h e d i f f u s i o n c e l l to r o o m t e m p e r a t u r e , the d i f f u s i o n coefficients of n e i t h e r the s u p p o r t e d n o r the u n s u p p o r t e d samples r e t u r n to the i n i t i a l l y o b s e r v e d m a g n i t u d e . T h e r m a l s o r p t i o n hysteresis f r o m a c c u m u l a t e d stresses c r e a t e d as the s a m p l e cools i n the m e c h a n i c a l constraints of the d i f f u s i o n c e l l c o u l d a c c o u n t for the a l t e r e d diffusion coefficients.
T h e i r r e v e r s i b l e c h a n g e i n the a p p a r e n t
d i f f u s i o n coefficient for the u n s u p p o r t e d m e m b r a n e is c a u s e d b y a l t e r a tions i n the c o r n e u m m a t r i x r e s u l t i n g f r o m the d e f o r m a t i o n .
T h e mean
energy
membrane
of a c t i v a t i o n f o r w a t e r d i f f u s i o n i n the s u p p o r t e d
o v e r t h e range s t u d i e d is 18 k c a l / m o l e .
T h i s agrees w e l l w i t h
that
r e p o r t e d for b u l k diffusion of w a t e r i n h i g h l y s w o l l e n h u m a n c o r n e u m (59).
T a b l e I I I lists d i f f u s i o n coefficients
methods:
c a l c u l a t e d via t h r e e different
i n i t i a l d e s o r p t i o n rate, p e r m e a t i o n t i m e l a g , a n d
steady-state
flux c o m b i n e d w i t h e q u i l i b r i u m d i s t r i b u t i o n values c a l c u l a t e d f r o m w e l l k n o w n formulas (58).
F o r e a c h m e t h o d , a c o m p a r i s o n is m a d e
between
the d i f f u s i o n coefficient for w a t e r f r o m v a p o r a n d t h a t f r o m b u l k l i q u i d . As observed
b y others
(15),
the d i f f u s i o n coefficient
of w e t
corneum
is s o m e w h a t h i g h e r t h a n t h a t of d r y corneum—i.e., t h e presence of l a r g e a m o u n t s of i m b i b e d w a t e r appears to p l a s t i c i z e the m a t r i x . E x c e p t for the d e s o r p t i o n v a l u e , t h e results represent g o o d agreement a m o n g t h e v a r i o u s methods e x p l o r e d a n d g o o d agreement w i t h a p r e v i o u s l y r e p o r t e d v a l u e of 5 χ
10"
11
c m / s e c for n e w b o r n rat c o r n e u m 2
(60).
The low
value
o b t a i n e d f r o m the d e s o r p t i o n of the w e t c o r n e u m most l i k e l y results f r o m its h i g h l y s w o l l e n c o n d i t i o n .
A s has a l r e a d y b e e n s h o w n , w a t e r tends
to cluster i n this system at v a p o r pressures w e l l b e l o w s a t u r a t i o n . B e cause the c l u s t e r e d w a t e r is n o t d i s s o l v e d i n the m a t r i x , i t c a n n o t t r i b u t e to the d r i v i n g force of the diffusion.
con
C o r r e c t i n g for the cluster
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
92
A P P L I E D
C H E M I S T R Y
A
T
P R O T E I N
I N T E R F A C E S
effect w i l l effectively increase the m a g n i t u d e o f the d i f f u s i o n coefficient. T h e a p p a r e n t d e p r e s s i o n o f the d i f f u s i o n coefficient o f v a p o r s i n s y n t h e t i c p o l y m e r systems has b e e n a t t r i b u t e d to a s i m i l a r c l u s t e r i n g effect (61). Physical
and Chemical
Properties
T h e r m a l B e h a v i o r . T h e most c h a r a c t e r i s t i c p a r a m e t e r o f a n a m o r p h o u s p o l y m e r is the glass t r a n s i t i o n t e m p e r a t u r e (T ).
I n the glass
g
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
t r a n s i t i o n r e g i o n , a viscoelastic t r a n s i t i o n occurs as a result o f t h e onset of m o t i o n s o f c h a i n segments i n the a m o r p h o u s r e g i o n of the p o l y m e r w h i c h transforms the m a t e r i a l f r o m a r i g i d state t o a r u b b e r y one. T h e m e c h a n i s m o f d e f o r m a t i o n response b y t h e m a t e r i a l is d e p e n d e n t o n T , g
a n d i t d e t e r m i n e s the d u c t i l i t y a n d brittleness o f the p o l y m e r . T h e u s u a l m e t h o d for d e t e r m i n i n g T is t o m e a s u r e the t e m p e r a t u r e a t w h i c h the g
specific v o l u m e - t e m p e r a t u r e p l o t shows a n i n f l e c t i o n i n d i c a t i n g a n i n creased t h e r m a l e x p a n s i o n coefficient.
I n general, a l l p h y s i c a l properties
of a m o r p h o u s p o l y m e r s w h i c h are d e p e n d e n t rate s u c h as viscous
flow,
o n segmental relaxation
m e c h a n i c a l a n d d i e l e c t r i c r e l a x a t i o n , creep,
a n d d i f f u s i o n s h o w a m a j o r c h a n g e o n h e a t i n g t h r o u g h the glass t r a n s i t i o n region.
Similarly, T can b e determined b y differential scanning calo g
r i m e t r y ( D S C ) f r o m t h e t e m p e r a t u r e at w h i c h t h e r e is a s u d d e n c h a n g e i n the specific heat o f the s a m p l e .
T depends g
also o n the m o l e c u l a r
w e i g h t o f the p o l y m e r , o n i n t e r n a l s t r a i n , a n d t o a lesser extent o n h e a t i n g rate. Q u e n c h e d , h i g h l y a m h o r p h o u s p o l y m e r s g e n e r a l l y d i s p l a y a m o r e p r o n o u n c e d i n f l e c t i o n w h e n h e a t e d t h r o u g h the T r e g i o n (63). g
Ο
u
L i
Ο
ι
ι
l l i
40 80 120 TEMPERATURE ( ° C )
ι
160
ι
200
—
ΐ -
240
Figure 14. DSC scan of guinea pig footpad: A , desiccated control; B, hydrated in water 45 min; and C , high sensitivity of dry control (hermetically sealed Ν atm, 20°C/min heating rate). Data from Ref. 42. 2
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
4.
W I L D N A U E R
E
T
A L .
1
Characterization
of Stratum
!
-40
0
Corneum
93
u_ 40
80
TEMPE RATURE(°C) Figure 15. DSC scan of guinea pig footpad: A, control; B, rerun of rapidly cooled; C , rerun of slowly cooled; and D, rerun of C after 48 hrs N atm (samples of comparable weight, 20°C/min heating rate). Data from Ref. 42. 2
A
D S C scan of
stratum corneum
( F i g u r e 14)
indicates several
t h e r m a l l y i n d u c e d transformations f r o m 0 ° to 2 5 0 ° C .
As standard con-
d i t i o n s , a l l samples w e r e c o o l e d to — 4 0 ° C a n d h e a t e d at 2 0 ° C / m i n i n a stream of d r y n i t r o g e n . T o a v o i d the e n d o t h e r m i c c o n t r i b u t i o n of w a t e r e v a p o r a t i o n , a l l samples w e r e h e r m e t i c a l l y sealed a n d w e i g h e d a n d after the scan. T h e t h e r m o g r a m for d e s i c c a t e d c o r n e u m ( ^ H 0) 2
before 5 wt %
exhibits a n a b r u p t c h a n g e i n specific heat at 48 ° C suggesting a
glass t r a n s i t i o n .
T h i s t e m p e r a t u r e r e g i o n is g e n e r a l l y a c c e p t e d f o r the
T y of v a r i o u s n y l o n s a n d other p o l y a m i d e s (63,
64).
T h i s 48 ° C t r a n s i t i o n i n d r y c o r n e u m is a n o m o l o u s i n t h a t i t does n o t fit a l l the c r i t e r i a u s u a l l y associated w i t h c l a s s i c a l glass transitions. F o r e x a m p l e , once t h e s a m p l e has b e e n h e a t e d t h r o u g h the T
0
is n o c o r r e s p o n d i n g specific heat c h a n g e o n c o o l i n g .
region, there
Immediate reheat-
i n g after a s l o w c o o l i n g c y c l e d i s p l a y s little or n o glass t r a n s i t i o n ( F i g u r e 1 5 ) . T h e t r a n s i t i o n appears at s l i g h t l y l o w e r t e m p e r a t u r e s o n the second c y c l e w h e n the s a m p l e is r a p i d l y q u e n c h e d b e l o w T
tJ
before reheating.
I n this case, the specific heat c h a n g e is c o n s i d e r a b l y r e d u c e d f r o m t h a t o b s e r v e d i n the first c y c l e , a n d a second glass appears at 9 2 ° C . T h e 4 8 ° C
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
94
A P P L I E D
C H E M I S T R Y
A
T
P R O T E I N
I N T E R F A C E S
t r a n s i t i o n does b e g i n to r e a p p e a r for t h e s l o w - c o o l e d samples after a f e w h o u r s b u t at s l i g h t l y l o w e r t e m p e r a t u r e s . F i g u r e 16 demonstrates the effect o n the glass t r a n s i t i o n of a n n e a l i n g stratum corneum
at 7 5 ° C for
18 hrs.
W h e n the s a m p l e is
immediately following slow cooling from o n l y t h e 9 2 ° C glass t r a n s i t i o n appears.
scanned
the a n n e a l i n g t e m p e r a t u r e ,
A n n e a l e d samples a l l o w e d to
rest i n a d e s i c c a t o r for 72 hrs e x h i b i t e d glass transitions at b o t h a n d 92 ° C .
The lowered T
g
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
arise f r o m i n d u c e d i n t e r n a l stress o n c o o l i n g t h r o u g h O n e possible
42°
g e n e r a l l y o b s e r v e d o n the second c y c l e m a y
i n t e r p r e t a t i o n of
this a n o m o l o u s
T. g
glass t r a n s i t i o n i n
terms of m o l e c u l a r s t r u c t u r e a n d r e a c t i v i t y is b a s e d o n the suggestions f r o m s i m p l e r p o l y a m i d e systems s u c h as n y l o n . It is g e n e r a l l y h e l d t h a t this t r a n s i t i o n originates w i t h the r u p t u r e of i n t e r c h a i n h y d r o g e n b y t h e m o t i o n of l o n g - c h a i n segments i n the a m o r p h o u s regions.
bonds The
u n u s u a l aspects of the glass t r a n s i t i o n is b e l i e v e d i n p a r t to b e r e l a t e d to the u n i q u e s t r u c t u r e of p o l y a m i d e s w i t h a l t e r n a t i n g n o n p o l a r c h a i n seg ments a n d s t r o n g l y h y d r o g e n - b o n d i n g sites a l o n g the p o l y m e r c h a i n ( 6 5 ) . S i n c e the h y d r o g e n - b o n d i n g sites o c c u r o n l y at i n t e r v a l s a l o n g t h e c h a i n , steric factors h i n d e r the f o r m a t i o n of the n e t w o r k a n d m a y e x p l a i n the time dependence
of its r e t u r n . T h i s e x p l a n a t i o n is f u r t h e r s u b s t a n t i a t e d
b y t h e f a c t that this t r a n s i t i o n has b e e n o b s e r v e d i n the 4 0 ° to 50 ° C r e g i o n for p o l y a m i d e s i n w h i c h the n u m b e r of m e t h y l e n e groups b e t w e e n
Figure 16. DSC scan of guinea pig footpad: A , control; B, annealed at 75°C 18 hrs; and C, rerun of Β after 72 hrs N atm (samples of com parable weight). Data from Ref. 42. 2
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
4.
W I L D N A U E R
E
T
A L .
0
Characterization
of Stratum
95
Corneum
40 80 120 160 ELONGATION (%>) Journal of Investigative Dermatology
Figure
17. Force-extension curves at various for human stratum corneum (9)
RH levels
p o t e n t i a l h y d r o g e n - b o n d i n g sites o n t h e p o l y m e r b a c k b o n e w a s v a r i e d f r o m 4 t o 11 (63). H e n c e , the t r a n s i t i o n o b s e r v e d at 4 0 ° - 5 0 ° C i n the p o l y a m i d e structures appears t o d e p e n d
not o n the
flexibility
of the
n e t w o r k b u t o n the existence a n d d i s r u p t i o n o f h y d r o g e n b o n d s at p o i n t s t h r o u g h o u t the a m o r p h o u s regions o f the p o l y m e r . S i n c e the p r i m a r y s t a b i l i z i n g forces i n the glass a p p e a r t o b e h y d r o g e n b o n d s , this t r a n s i t i o n is h i g h l y sensitive to t h e presence o f w a t e r a n d other h y d r o g e n - b o n d i n g
molecules
i n t h e amorphous
regions.
Water
t h e n acts as a p l a s t i c i z e r o f the a m o r p h o u s p r o t e i n regions o f c o r n e u m as n o t e d b y the r e l a t i o n s h i p b e t w e e n the extent o f w a t e r f o u n d a n d the degree to w h i c h T is r e d u c e d . A l s o , there a p p e a r to b e t w o a m o r p h o u s g
regions w h i c h differ i n t h e i r a c c e s s i b i l i t y b y w a t e r at a m b i e n t t e m p e r a ture. T h e T g for the m o s t accessible r e g i o n shifts t o —18° C at 4 0 %
H 0
w h i l e t h e less accessible is o n l y l o w e r e d t o a p p r o x i m a t e l y 35 ° C
(82).
2
T h e T g of c o r n e u m at w a t e r contents less t h a n 5 w t % is difficult to determ i n e since t h e r e m a i n i n g w a t e r is t i g h t l y h e l d b y p r i m a r y s o r p t i o n sites a n d t e c h n i c a l l y difficult to r e m o v e w i t h o u t i n t r o d u c i n g s t r u c t u r a l a l t e r a tions. H e a t i n g the c o r n e u m a b o v e 1 0 0 ° C to r e m o v e this f r a c t i o n o f w a t e r results i n a T at 9 2 ° C . g
It is n o t c l e a r w h e t h e r this shift i n T
g
a t t r i b u t a b l e to the l o w e r w a t e r content
t o h i g h e r t e m p e r a t u r e is
o r to the a n n e a l i n g process.
T h e r e is a n a b r u p t decrease i n the m a g n i t u d e o f the associated specific heat c h a n g e at a s a m p l e w a t e r content o f a b o u t 15 w t % . I n this w a t e r content r a n g e ( 1 5 - 2 0 w t % ) force-extension curves f o r s t r a t u m c o r n e u m first b e g i n to d i s p l a y a y i e l d phase ( F i g u r e 17) as w e l l as t h e i n i t i a t i o n
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
96
A P P L I E D
C H E M I S T R Y
of a d r a m a t i c d r o p i n tensile m o d u l u s as cluster c a l c u l a t i o n s ( 5 7 ) water
A T
( F i g u r e 18).
P R O T E I N
I N T E R F A C E S
T h e s e d a t a as w e l l
s t r o n g l y suggest that w a t e r s o r b e d at these
contents p l a s t i c i z e t h e a m o r p h o u s
regions
associated
with
the
observed T . g
A n a d d i t i o n a l major t r a n s i t i o n w h i c h is o b s e r v e d i n D S C scans of stratum corneum
is a d o u b l e t
endotherm
w h i c h peaks
2 1 0 ° C i n d r y samples a n d at 1 2 0 ° - 1 3 0 ° C i n w e t samples
at 194 ° C
and
(Figure
14).
T h e s e transitions are also c h a r a c t e r i s t i c of t h e m o r e extensively i n v e s t i -
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
g a t e d k e r a t i n - c o n t a i n i n g w o o l (49, 6 5 ) .
P o l y a m i d e s s u c h as t h e v a r i o u s
n y l o n s also s h o w m e l t i n g endotherms a b o v e 200 ° C
(63).
B e l o w 200° C , t h e h e a t - i n d u c e d changes i n d r y w o o l s t r u c t u r e are c o n f i n e d to t h e a m o r p h o u s parts of t h e p r o t e i n . A b o v e 2 0 0 ° C t w o m e l t i n g e n d o t h e r m s are present, a s m a l l one at 215 ° C f r o m the m e l t i n g of a l o w c r o s s l i n k e d f r a c t i o n of the h e l i x a n d a major one at 2 3 5 ° C as a result of t h e m e l t i n g of t h e h i g h e r c r o s s l i n k e d f r a c t i o n of t h e h e l i x ( 4 9 ) .
In
w o o l , the m o s t d i r e c t e v i d e n c e for this i n t e r p r e t a t i o n of h e l i x m e l t i n g is p r o v i d e d
b y x-ray d i f f r a c t i o n patterns at the v a r i o u s
20 RELATIVE
60 HUMIDITY
temperatures.
100 (%»)
Figure 18. Tensile modulus as a function of RH for newborn rat stratum corneum. Data from Ref. 82.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
4.
W I L D N A U E R
E
T
A L .
Characterization
of Stratum
Corneum
97
60
LU υ Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
:40
/Λ
/
Σ If)
< 20 ο:
ι
ι
1700 1600 1500 F R E Q U E N C Y (CM"' ) Figure 19. IR transmission spectra for newborn rat stratum corneum at various temperatures: A, 25°C; B, 125°C; C, 250°C. Data from Ref. 18. B o t h t h e 5.1-A s p a c i n g c h a r a c t e r i s t i c of the s p a c i n g of h e l i x turns a n d the 9.8 A of the l a t e r a l h e l i c a l s p a c i n g decrease i n i n t e n s i t y at 210° a n d 230°C (49).
T h e fiber also loses its b i r e f r i n g e n c e i n this t e m p e r a t u r e
range. T h e s e reflections are not present i n fibers w h i c h h a v e b e e n s u p e r contracted or otherwise rendered amorphous.
S i m i l a r l y , the x - r a y d i f
f r a c t i o n p a t t e r n of w o o l h e a t e d to 130 ° C w h i l e i m m e r s e d i n w a t e r shows the t o t a l d i s a p p e a r a n c e of the a l p h a - k e r a t i n reflections a n d the a p p e a r ance of a d i s o r d e r e d b e t a p a t t e r n (66). fiber
W h e n either the d r y or the w e t
is h e a t e d a b o v e these m e l t i n g t e m p e r a t u r e s , the t r a n s f o r m a t i o n
is i r r e v e r s i b l e . I n f l u e n c e of W a t e r . E v e n i n d e s i c c a t e d c o r n e u m there is a w e a k , b r o a d e n d o t h e r m c e n t e r i n g at a b o u t 1 2 0 ° - 1 3 0 ° C as w e l l as the h i g h e r t e m p e r a t u r e d o u b l e t melts at 1 9 4 ° C a n d 2 1 0 ° C .
B o t h melts a p p e a r to
b e s o m e w h a t l o w e r i n t e m p e r a t u r e for c o r n e u m t h a n for w o o l , w h i c h is consistent w i t h the a c c e p t e d h i g h e r degree of o r i e n t a t i o n a n d h e l i c a l content of w o o l .
T h e 130 ° C t r a n s i t i o n has b e e n r e p o r t e d i n other
p o l y p e p t i d e systems b y D S C , I R , a n d x - r a y d i f f r a c t i o n w h e r e i t w a s f o u n d to b e h i g h l y m o i s t u r e sensitive (67).
It has b e e n suggested t h a t
this e n d o t h e r m i c process w h i c h occurs b e t w e e n
110°
a n d 150 ° C i n a
n u m b e r of p o l y p e p t i d e systems is a p a r t i a l c o n v e r s i o n f r o m the a l p h a -
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
98
A P P L I E D
C H E M I S T R Y
A
T
P R O T E I N
I N T E R F A C E S
h e l i c a l f o r m to a b e t a c o n f i g u r a t i o n . T h i s is s u p p o r t e d b y t h e a p p e a r a n c e of a 4.7-A s p a c i n g a n d a shift i n t h e a m i d e I a n d I I b a n d s i n the I R spectra (68, 69). B o t h these changes are c h a r a c t e r i s t i c o f the c o n v e r s i o n f r o m the i n t r a c h a i n h y d r o g e n - b o n d e d a l p h a to t h e i n t e r c h a i n h y d r o g e n bonded beta configuration. Transmission I R of d r y corneum at various temperatures from 2 5 ° to 2 5 0 ° C are s h o w n i n F i g u r e 19. F r o m a b o u t 1 2 0 ° C to 2 5 0 ° C t h e r e is a shift i n a m i d e I a n d I I b a n d s f r o m 1660 to 1640 c m "
1
a n d f r o m 1550
to 1520 c m " , r e s p e c t i v e l y , w h i c h is consistent w i t h a n a l p h a - t o - b e t a t r a n s Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
1
formation (44).
T h i s t r a n s i t i o n coincides w i t h the b r o a d b u t w e a k e n d o -
t h e r m at 1 2 0 ° C i n t h e D S C scans o f d r y c o r n e u m ( F i g u r e 1 4 ) . T h e i n t e n s i t y o f t h e 1 2 0 ° - 1 3 0 ° C e n d o t h e r m increases as s t r a t u m c o r n e u m m o i s t u r e content increases; there is a c o r r e s p o n d i n g i n t h e h i g h t e m p e r a t u r e m e l t i n g s at 194° a n d 2 1 0 ° C ( F i g u r e 2 0 ) .
decrease Highly
h y d r a t e d c o r n e u m d i s p l a y s t h e 1 2 0 ° - 1 3 0 ° C e n d o t h e r m w h i l e b e l o w 15 to 2 0 % w a t e r content, the t r a n s i t i o n is q u i t e s m a l l . T h e s e D S C m e a s u r e ments w e r e p e r f o r m e d i n h e r m e t i c a l l y sealed pans to a v o i d t h e e n d o t h e r m i c loss o f w a t e r .
T h e t r a n s i t i o n i n t h e presence
of w a t e r is a
c o o p e r a t i v e o n e i n that w a t e r facilitates the m a g n i t u d e o f t h e o b s e r v e d transition.
Ο
T h e heat c h a n g e associated w i t h t h e 1 2 0 ° - 1 3 0 ° C t r a n s i t i o n
20 RELATIVE
40 HUMIDITY
60
80
100
(%>)
Figure 20. Rehtive energy associated with DSC 120°C endotherm in newborn rat stratum corneum at various RH levels (hermetically sealed system). Data from Ref. 42.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
4.
W I L D N A U E R
E
T
A L .
Characterization
of Stratum
99
Corneum
is a m a x i m u m at 9 8 % R H a n d is n o t i n c r e a s e d f u r t h e r b y i m m e r s i o n i n water. T h e influence of v a r i o u s solvents
Influence of Nonpolar Solvent.
o n the p h y s i c a l a n d c h e m i c a l p r o p e r t i e s of c o r n e u m has b e e n s t u d i e d w i d e l y ( 70, 71 ) w i t h p a r t i c u l a r interest i n t h e i r influence o n w a t e r b i n d ing.
I n a d d i t i o n to t h e e x t r a c t i o n of l i p i d s b y the n o n p o l a r solvents, the
samples are s u b s e q u e n t l y m o r e s u s c e p t i b l e to f u r t h e r d a m a g e b y w a t e r . Extracted
samples
have
lowered
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
mechanical behavior (9, 70).
w a t e r - b i n d i n g affinity a n d
altered
L i p i d - s o l u b l e materials removed b y n o n -
p o l a r solvents p e r f o r m a p r o t e c t i v e r o l e i n p r e v e n t i n g the loss of w a t e r s o l u b l e c o m p o n e n t s r e s p o n s i b l e for the w a t e r b i n d i n g at h i g h r e l a t i v e humidities. DSC
scans of ether a n d c h l o r o f o r m - m e t h a n o l
(3/1
by
volume)
e x t r a c t e d samples e x h i b i t b r o a d e r a n d less d e t a i l e d m e l t i n g e n d o t h e r m s at 194° a n d 2 1 0 ° C t h a n u n t r e a t e d samples.
A n a d d i t i o n a l difference is
s h o w n b y c h l o r o f o r m - m e t h a n o l - e x t r a c t e d samples w h e n q u e n c h c o o l e d and rerun.
I n reruns of c o n t r o l a n d ether-extracted samples, T
is still
g
rather s h a r p a l t h o u g h r e d u c e d i n a m o u n t a n d t e m p e r a t u r e w h i l e the c h l o r o f o r m - m e t h a n o l - e x t r a c t e d s a m p l e is q u i t e b r o a d w i t h a s e c o n d a p p a r ent glass at a b o u t
90°-100°C
(42).
E i t h e r the w a t e r - s o l u b l e
mate
rials act as p l a s t i c i z e r s or t h e i r loss t h r o u g h solvent e x t r a c t i o n causes s t r u c t u r a l changes i n the proteins w h i c h i n h i b i t r e f o r m i n g of the o r i g i n a l glass. It w i l l be s h o w n later that d y n a m i c s p e c t r o s c o p y demonstrates a h i g h e r tensile m o d u l u s for c h l o r o f o r m - m e t h a n o l - e x t r a c t e d samples t h a n the c o n t r o l suggesting a s t r u c t u r a l r e o r g a n i z a t i o n has o c c u r r e d
(14).
Influence of Orientation. I n d u c e d o r i e n t a t i o n i n s t r a t u m c o r n e u m was a c h i e v e d b y s t r e t c h i n g h y d r a t e d samples to v a r y i n g degrees a n d a l l o w i n g t h e m to d r y i n that e l o n g a t e d state. D S C scans of these o r i e n t e d samples d i s p l a y a n u m b e r of alterations i n the m e l t e n d o t h e r m s a n d glass t r a n s i t i o n w h i c h v a r y w i t h the extent of p r e s t r e t c h i n g a n d m a y p r o v i d e some i n s i g h t i n t o t h e m o l e c u l a r m e c h a n i s m s r e s p o n s i b l e for elasticity. T h e r e is a g r a d u a l r e d u c t i o n i n T w i t h some b r o a d e n i n g a n d loss of g
d e f i n i t i o n of t h e h i g h t e m p e r a t u r e e n d o t h e r m s n e a r 2 0 0 ° C as the a m o u n t of p r e s t r e t c h increases ( F i g u r e 2 1 ) .
T h e orientation produced b y
d e f o r m a t i o n s appears to p r o d u c e a n i n t e r n a l stress i n the
low
amorphous
regions w h i c h acts as a n external l o a d to l o w e r the softening t e m p e r a t u r e (72). Secondary Transitions. I n a d d i t i o n to the a n o m a l o u s glass t r a n s i t i o n i n the 4 0 ° - 5 0 ° C r e g i o n because of t h e m o t i o n of large segments of the polymer
chain, stratum corneum
like many
other
s m a l l e r s e c o n d a r y transitions at l o w e r temperatures.
polymers
displays
T h e s e arise g e n
e r a l l y f r o m the m o t i o n of side chains or the s m a l l segments of t h e b a c k bone.
T h e t a n δ b e h a v i o r f r o m d y n a m i c m e c h a n i c a l studies of
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
dry
100
A P P L I E D
C H E M I S T R Y
s t r a t u m c o r n e u m i n d i c a t e s m a l l peaks (14)
A
T
P R O T E I N
I N T E R F A C E S
at — 1 0 ° a n d — 6 0 ° C s u g
g e s t i n g s e c o n d a r y transitions. T h e t a n δ f o r the d i e l e c t r i c p r o p e r t i e s of n e w b o r n r a t s t r a t u m c o r n e u m also demonstrates a t r a n s i t i o n at —10° C w i t h a n a p p a r e n t a c t i v a t i o n e n e r g y of 7 k c a l / m o l e
(6).
S i m i l a r r e l a x a t i o n p h e n o m e n a are o b s e r v e d i n other p o l y a m i d e sys 50/50
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
tems s u c h as the p r o t e i n c o l l a g e n a n d the s y n t h e t i c p o l y p e p t i d e
E L O N G A T I O N
(%>)
Figure 21. Glass transition temperature of prestretched guinea pig footpads (N
2
(from DSC) vs. elongation aim). Data from Ref. 42.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
4.
wiLDNAUER E T
AL.
Characterization
of Stratum
101
Corneum
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
Amorphous oriented
Journal of Polymer Science
Figure 22.
Diagramatic
representation of the longitudinal of oriented fibers (77)
L-glutamic
acid-L-leucine.
The
shrinkage
behavior
d y n a m i c m e c h a n i c a l s p e c t r a o f these
m a t e r i a l s d i s p l a y h i g h l y m o i s t u r e - s e n s i t i v e relaxations a t —13° tween - 6 0 °
and be-
a n d - 9 0 ° C (73, 74).
Spontaneous Dimensional Changes.
O n e technique used to approxi-
m a t e the degree o f o r i e n t a t i o n i n o p a q u e a m o r p h o u s m a t e r i a l s is t o m e a s u r e t h e a m o u n t o f s h r i n k a g e o r m a g n i t u d e o f r e t r a c t i v e force w h e n t h e y are h e a t e d .
W h e n a n oriented amorphous
developed
p l a s t i c sheet is
h e a t e d a b o v e T , i t s h r i n k s b a c k to t h e a p p r o x i m a t e shape i t h a d b e f o r e g
orientation.
T h e r m o d y n a m i c a l l y this represents a n a t t e m p t b y t h e o r i -
e n t e d p o l y m e r s to a t t a i n a state o f m a x i m u m d i s o r d e r ( e n t r o p y ) .
I f the
film is h e l d at constant l e n g t h , i t generates a r e t r a c t i v e f o r c e w h e n h e a t e d a b o v e T s u c h that a n i n c r e a s e d r e t r a c t i v e f o r c e means a greater degree o f g
o r i e n t a t i o n i n the s a m p l e . I n the latter case, the r e t r a c t i v e f o r c e g e n e r a t e d is also d e p e n d e n t o n the m o d u l u s o f the m a t e r i a l (4, 72, 75, 76). T h e s h r i n k a g e b e h a v i o r o f a h y p o t h e t i c a l , o r i e n t e d fiber c o m p o s e d o f varying proportions F i g u r e 22.
of amorphous
S h r i n k a g e first occurs
a n d c r y s t a l l i n e phases is s h o w n i n i n the r e g i o n o f T . A m o d e l g
fiber
c o n s i s t i n g o f o r i e n t e d a m o r p h o u s regions a n d o r i e n t e d c r y s t a l l i n e regions
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
102
A P P L I E D
C H E M I S T R Y
A
T
P R O T E I N
I N T E R F A C E S
w o u l d undergo partial shrinkage around T but w o u l d show n o further g
s h r i n k a g e u n t i l the c r y s t a l l i n e m e l t .
A completely amorphous
oriented
system w o u l d o n l y d i s p l a y s h r i n k a g e at T (77). g
I t is a p p a r e n t f r o m F i g u r e 23 that the t h e r m a l l y i n d u c e d spontane ous contractions o f s t r a t u m c o r n e u m are q u i t e s i m i l a r to the h y p o t h e t i c a l m o d e l fiber c o m p o s e d o f a t w o - p h a s e system o f o r i e n t e d a m o r p h o u s a n d c r y s t a l l i n e phases.
T h e i n i t i a l c o n t r a c t i o n begins a t 5 0 ° C as p r e d i c t e d
f r o m the D S C d e t e r m i n a t i o n o f T . g
A s w o u l d be e x p e c t e d for a c r y s t a l l i n e
Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
m e l t , there is a r a p i d loss o f m o d u l u s ( F i g u r e 2 4 ) , a l a r g e increase i n transverse thickness
(Figure
25),
and
a n endothermic
heat
process
a c c o m p a n y i n g the 196 ° C c o n t r a c t i o n . S i m i l a r b e h a v i o r is o b s e r v e d i n the α-keratin-containing h a i r (78).
A n e n e r g y o f a c t i v a t i o n o f 110 k c a l / m o l e
was c a l c u l a t e d f r o m the f r e q u e n c y d e p e n d e n c e o f d y n a m i c m e c h a n i c a l spectra o f c o r n e u m i n the 207 ° C r e g i o n . T h i s h i g h a c t i v a t i o n e n e r g y is i n d i c a t i v e o f t h e m o t i o n o f r a t h e r l a r g e segments o f the p o l y m e r c h a i n a n d is consistent w i t h a n a l p h a - t o - b e t a t r a n s f o r m a t i o n (14). A d d i t i o n a l e v i d e n c e for this t w o - p h a s e m o d e l for s t r a t u m c o r n e u m c a n b e d e m o n s t r a t e d b y m e a s u r i n g s h r i n k a g e as a f u n c t i o n o f tension. T h e degree o f s h r i n k a g e corresponds to d i s o r i e n t a t i o n o f the a m o r p h o u s phase a n d t h e successive
decrease i n s h r i n k a g e w i t h i n c r e a s e d
corresponds t o a n extension f r o m that d i s o r i e n t e d state ( 7 7 ) .
loads
As would
b e p r e d i c t e d f o r a s i m p l e t w o - p h a s e a m o r p h o u s - c r y s t a l l i n e system a b o v e
UJ S LJ Ο < -I Û. CO Q
Ο CO
X Ιϋ I Ο
UJ O CD
1 0 0 % ) .
T h e s e d a t a suggest that
e l o n g a t i o n is a c c o m p l i s h e d b y d e c r e a s i n g the d e g r e e o f o r i e n t a t i o n i n Downloaded by IMPERIAL COLLEGE LONDON on September 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch004
t h e a m o r p h o u s regions a n d p r o d u c i n g i n c r e a s e d o r i e n t a t i o n i n t h e c r y s t a l l i n e regions (72). T h e p r o p o s e d m e c h a n i s m agrees w i t h the i n c r e a s e d d i c h r o i s m o f the I R a m i d e I a n d I I b a n d s o f p r e s t r e t c h e d ( ~ 100%
samples
extension ) d i s c u s s e d e a r l i e r .
t
Ζ
ο
Iz UJ UJ
ο