Applied Reaction Kinetics - Polymerization Reaction Kinetics

Shell buys stake in solar developer Silicon Ranch. Shell will buy a 43.8% stake in the U.S. solar developer Silicon Ranch from private investment firm...
1 downloads 22 Views 1MB Size



APPLIED REACTION KINETICS Polymerization Reaction Kinetics The most noteworthy work published in 1967 and t o mid-I 968 has been singled out for discussion. Other work on polymerization kinetics is cited in tables

n a book published in 1967, the author of this section of the review classified organic polymerization reactions into two major categories: step-growth polymerization and chain-growth polymerization (9A). These classifications are based on the manner in which polymer growth occurs and the relationship between reaction conversion and molecular weight. Chain-growth polymerization was further divided into homogeneous and heterogeneous reactions to separate the basically different mechanisms involved in the polymerization of monomers in the presence or absence of solid catalyst, where preabsorption of the monomer on the catalyst surface before insertion into the end of the growing polymer chain can greatly affect the kinetics of the reactions. These classifications are followed in this review of publications on polymerization reaction kinetics which appeared in print or became available from the beginning of 1967 to the middle of 1968. Investigations considered to be of general interest or of particular importance are singled out in the following paragraphs, while other kinetic studies are cited in the accompanying tables.


Step-Growth Polymerization

AUTHOR Robert W . Lenz is Professor o f Chemical Engineering and a member o f the Polymer Science and Engineering faculty at the University of Massachusetts, Amherst, Mass.

Polyesterification. A linear trimer of ethylene terephthalate was used as the starting material for obtaining the important rate constants involved in the preparation of poly(ethy1ene terephthalate) from bis(hydroxyethy1 terephthalate) (17A). With antimony trioxide being used as catalyst, these investigations revealed that the rates of ester interchange were surprisingly low at 231 OC, where k, = 0.15 1. mol-' hr-I for the reaction between two hydroxyethyl terephthalate endgroups and the rate constant for ester interchange between a hydroxyethyl endgroup and a n internal ester function was kR = (3.11 1. mol-' hr-l. T h e equilibrium constant for the former reaction was 0.36. T h e low rates were attributed to inactivation of catalyst by the monomers. Essentially the same equilibrium constant as reported in this work was observed in a kinetic study of the polyVOL.


NO. 3 M A R C H 1 9 6 9





merization of bis(hydroxyethy1 terephthalate) itself using either zinc salts or lead oxide as catalyst (44). The polymerization reaction in this study followed a simple third-order law (first order each in hydroxyl group, carboethoxy group, and catalyst concentrations). Activation energies determined for various types of catalysts increased in the order lead, zinc, and calcium salts. A termolecular mechanism was proposed to account for the kinetics observed. Third-order kinetics were also observed in a study of polyester formation by direct esterification, verifying that in the absence of a catalyst, the reaction is second order in the carboxyl group concentration through autocatalysis by the carboxylic acid function ( 6 A ) . Kinetic constants for ester interchange rates were also determined for a large number of aliphatic diesters condensed with diethylene glycol in the presence ofp-toluene sulfonic acid ( I A ) . Polyamidation. Kinetic studies of polyamidation by interfacial polycondensation were carried out in a special reactor which permitted determination of the weight, thickness, reduced viscosity, average density, and actual density of the polyamide film formed at the interface (13A). Diffusion coefficients were calculated from the data, and it was shown that the process consists of two steps; the first is a nonstationary phase during which a low density film is formed, after which the reaction becomes diffusion-controlled and consists of formation of new polymer within the preformed film to increase the density of the layer. I n another study of interfacial polyamide formation, kinetic constants were determined from the rates of disappearance of both the diacid chloride, which followed first-order behavior, and the diamine, for which the order decreased from 0.89 to 0.50 as its concentration increased ( 2 A ) . An activation energy of only 4 kcal mol-' was observed for the polymerization of terephthaloyl chloride with piperazine in this process. Polyurethanes. Rate studies were carried out on the amine- and metal-catalyzed reactions involved in polyurethane formation (IOA, I&), and the latter catalysts were also evaluated with model compounds in an unsuccessful attempt to obtain evidence for a n alcoholcatalyst complex ( 5 A ) . I n the amine-catalyzed reaction, the rate-determining step proposed was the rearrangement of the intermediate alcohol-isocyanate complex to the urethane. At low catalyst concentrations in the metalcatalyzed polymerization, autocatalysis was observed which was attributed to participation by preformed urethane linkages. Catalysis was only effective in this case mol 1.-' at catalyst concentrations above 5 x Homogeneous Chain-Growth Polymerization

Free-radical polymerization. By applying two readily measurable quantities, the initial rate of polymerization and the number average degree of polymerization, to a 68





Aromatic polyester Polyamide Poly(pheny1ene oxide)s Poly(ary1 ether)s Poly(dipheny1ene ether sulfones) Polybenzyl

Polybenzyls Coordination polymers Melamine-formaldehyde



Polycondensation kinctirs LI substitured bisphenok with tercphtha!o)l chloride Kinetics of polycondensation of diammonium carbox) late salts and copolyconlensarion with w-amino acids Kinetics of oxidative coup!ing of phenols Kinetics oi polycondencation of bi+4-(chloromerhy1)p en)] ether with sodium sa![ of bisphcnol A Structure of polvmeri leeks, A . C., Makromol. Cham., 108, 304-6 (1967). (19B) Cotman, J. D., Jr., Gonzalez, M. F., and Claver, G. C., J. Pobm. Sci., Part A-7, 5 , 1137-64 (1967). (208) De Schryver, F. C., Smets, G., and Van Thielen, J., ibid, Part B , 6, 547-50 (1968). (21B) Dudukin V. V. Medvedeva I M. Gritskova, I. A , , Medvedev, S. S., Ustinova, Z.’M., an)d Fodiman, ‘M., ’VJ‘~okomo1.Suedin., Ser. A , 10, 456-62 (1968). (22B) Dudukin V V. Medvedev, S. S., and Gritskova, I. A,, Dokl. A k n d . .Vat& SSSR, 172, 1i2518 ((967). (23B) Eastmond, G. C., Encyl. Polqm. Sci. Technoi., 7, 361-431 (1967). (24B) Eliseeva V.I. Malofeevskaya V. F. Gerasimova, A. S., Makarov Yu. A , , Izmailova, I ? S., a i d Orlova, K . G:, VJSO&IG~.Soedin., Ser. A , 9, 730-8 (1967). (25B) Eremina, E. N., Usmanova, N. F., Bezborodko, G. L., and Kitner, I. P., Plast. iMassy, 1967, pp 3-6. (26B) Farber, E., and Koral, M., Pobm. EnJ. Sci., 8, 11-18 (1968). (27B) Finkel’shtein, E. I., Gorbatov, E. Ya., Chernyak, I . V., and Abkin, A . D., Vysokomol. Soedm, S o . B , 10, 397 (1968). (28B) Galibei, V. I., Erigova, S. G., Ivanchev, S. S., and Yurzhenko, A. F., Ukr, Khim. Zh., 33, 191-6 (1967). (29B) Gardon, J. L., J . Pol;.nz. Sci.. Part A-7, 6, 623-641, 643-64 (1968).








(30B) Gehatia, M., Broehl, J., NASA Accession No. N65.36185, Rept. AD 614077, 28 pp (1965). (31B) Gerrens, H . , Fink, W., and Koehnlein, E., J . Polyn. Sci.,Part C , 16, 2781-93 (1967) (32B) Gershberg, D., Proc. A.I.Ck.E.-I.Ckem. E. Joint .+feet., London, 1965, pp 4-15. (33B) Gibov, K . M., and Gladyshev, G. P., Izv. Aknd. ~VaaukKoz. SSR, Scr. Khim., 17, 57-61 (1967). (34B) Gladyshev, G. P., and Gibov, K . M . , Vysokomol. Soedin., Ser. E , 9, 331-3 (1967). (35B) Gladyshev, G. P., Khasanova, S . F., and Sechkovskaya, V. A,, ibid, Ser. A , 9, 1228-32 (1967). (36B) Goff, A . L., Zhulin, Y. M . , and Gonikber, M G., Dokl. Akad. Nauouk SSSR, 176, 1302-5 (1967). (37B) Goldfinger, G., Yee, W., and Gilbert, R. D., Enqcl. Polym. Sci. TechnoI.,7, 644-64 (1967). (38B) Gulbekian, E . V., J . Polym. Sci.,Part A-7, 6, 2265-80 (1968). (39B) Guyot, .4., and Guillot, J., J . ,Macrarnol. Sci., Part A , 1, 793-804 (1967). (40B) Ham, G . E., “Vinyl Polymerization, Volume I , ” Part I, Marcel Dekker, New York, 1967. (41B) Hardy, G., Nyitrai, K., Cser, F., and Nagy, F., Magy. Kem. Poly., 74, 169-72 (1968). (42B) Hardy, G., Varga, J., Nagy, G., Cser, F.: and Ero,J., J . Polym. Sci., Part C, 16, 2583-96 (1967). (43B) Herz, J. E., and Stannett, V., in ‘*?viacromolecularReviews. Volume 3,” A. Peterlin et al., Eds., pp 1-48, Interscience, New York, 1968. (44B) Hirai, H.: Okuzawa S. Ikegami, T., Makishima, S., 3. Fac. Eng., L’niu. Tukjo, Ser. B, 29, 115-44’(19’67). (45B) Imoto, M., Kobunshi, 15, 789-92 (1966). (46B) Izumi, Z., J , Polym. Scz., Part A-7, 5, 469-80 (1967) (47B) Jenkins, A. D., Advcn. Free-Radicol Chem., 2 , 139-201 (1967). (48B) Kabankin, A. S., L ~ ~ o k o m oSoedin., l. Ser. E , 9, 416-19 (1967). (49B) Kabanov, V. A , , Pure Appl. Chern., 15, 391-419 (1967). (SOB) Kagiya, T., Iru, hl., Kawai, S., and Fukui, K., J . Poijm. Sci., Part A-7, 6, 1719-28 (1968). (51B) Karkozoir, V. G., Gavurina, R. K., Polonskii, V. S., and Smirnova, A. I., Vqsokomol. Soedin., Ser. A, 10, 1343-7 (1968). (52B) Khanukaeva, I . A , and Kolesnikov, G . S., idid, pp 1127-32. (53B) Kinoshita, M., hie, T., and Imoto, M., Makromol. Chem., 110, 47-57 (1967), (54B) Kinoshita, M.; P\-ishigaki, M., and Imoto, M., K O ~ JKagoku G ,?+shi, 68, 1122-5 (1965). (SSB) Klimentova, N. V., Zhulin, V. M,, Suprun, A. P., and Korshak, V. V., V>sokomoi. Soedin., Ser. B , 10, 415-18 (1968). (56B) Kuchner, K . , Makromol. Chem., 114, 70-6 (1968). (57B) Kukacka, L. E., Colombo, P., and Steinberg, hl., j.Polqm. Sci.,Part C, 16, 579-89 (1967). (58B) Lee, W . - M , ibid, Part B, 6, 603-7 (1968). (59B) Lukhoviskii, V. I . , Polikarpov, V. V., Lebedeva, A. M., Lagucheva, R . M . , and Karpov, V. L., Vysokomol.SGedin., Ser. A , 10, 1297-302 (1968). (60B) hlachi, S., Saki, T., Suganuma, F., and Kagiya, T., Bull. Chem. Sot. Jap., 41, 897-903 (1968). (61B) May, J. A , Jr., and Smith, W.B., 7. Phys. Chem., 72, 216-21 (1968). (62B) May, J. A , , Jr., and Smith, T.V. B., ibid, pp 2993-7. (63B) Matsuda, T., Higashimura, T . , and Okamura, S., J.Macromol. Sci., Port .4, 2, 43-52 (1968). (64B) Messerle, P. E., Zenit, h-. M.,and Gladyshev., G. P., V2sGkOmOl. Soedin., Ser. B , 9, 608-10 (1967). (65B) Mironenko,, N . I., Mashnenko, 0. M., Batog, A. E., and Romantsevich, M.K., U k r . Khim. Zh., 34, 698-700 (1968). (66B) Misra, G. S., and Mathur, V. R . B., M a k r o m o l . Chem., 100, 5-10 (1967). (670) Misra, G. S., and .Mathur, V. R. B., zhid, 105, 164-70 (1967). (68B) Misra, G. S., and Sarain, H., ibid, 113, 85-94 (1968). (69B) Miura, Y., Nishigaki, M . , and Kinoshita, M.,Kogyo Kagaku Xasshi, 71, 739-42 (1968). (:OB) Moore, D. E., J . Pobm. Sci., Part A-7, 5, 2665-79 (1967). (71B) Morris, C. E. M., and Parts, A . G., PoQmer, 8, 443-5 (1967). (72B) Muller, J , C., J . Chim. Ph2s. PhJsico-Chim.Bzol., 65, 567-77 (1968). (73B) Nakayama, Y., and Smets, G., 3. Polqm. Sci., Part A-7, 5, 1619-33 (1967). (74B) Nikolaev, A. F., and Tereshchenko, G. P., Vysokomoi. Soedin.,Ser. A , 9, 2651-5 (1967). (75B) Nosov, E. F., Kznet. Kutal., 8, 680-3 (1967). (76B) O‘Donnell, J. H., and Sothman, R. D., J . Polym. Sci., Pari A-7, 6, 1073-86 (1968). (77B) O’Driscoll, K . F., and Knorr, R., Macromolecules, 1, 367-71 (1968). (78B) O’Driscoll, K. F., Konen, T. P., and Connolly, K . M.: J . Pobm. Sci., Part A-7, 5, 1789-95 (1967). (79B) Olaj, 0. F., ;liiakromol. Chem., 114, 1-10 (1968). (ROB) Patat, F.: and Mehnert, P., h‘onatsh. Chem., 98, 538-46 (1967). (81B) Patra, S. K., and Mangaraj, D., A4nXromol. Chem., 111, 168-71 (1968). (82B) Plyusnin, A . N., and Chirkoi,, N. M., V J S O ~ OSoedin., ~ G ~ Ser. . A , 10, 1058-64 (1968). (830) Puchin, V. A,, Pokhmurskaya, M. V.,and Yurzhenko, T. I,, tbid, Ser. B , 9, 828-31 (19671. (84B) Raghuram, P. V. T.: and Nandi, U. S., J . P G ~ JSci., ~ . Part A-7, 5, 2005-12 (1967). (ESB) Razuvaev, G. A , , Terman, L. M., Mikhotova, L. N., and Yanovskii, D. M., Tr. Khim. Khim. Tekhnol., 1966, pp 17-21. (86B) Razuvaev, G. A,, Terman, L. M,, and Yanovskii, D. M., Vysokomol. Saedin., Srr. E , 9, 208-11 (1967). (87B) Riggs, J. P., and Rodriguez, F., J.Polyrn. Sci.,Port A-7, 5, 3151-65 (1967). (88B) Riggs, J. P., and Rodriguez, F., ibid, pp 3167-81. (89B) Ryska, M., Kolinsky, M., and Lim, D., ibid, Pnri C, 16, 621-31 (1967). (90B) Sasaki, H . , and Iiagayama, h?.,J . Appl. Polym. Sci., 11, 2097-108 (1967). (91B) Schneider, C., and Ley, G. J. Xf., . V d . Sci.Abrtr.; 21, 30,438 (1967). (92B) Seha, Z., and Svab, J., Collecf. Czech. Chem. Commun., 32, 4055-62 (1967). (93B) Shirouchi, H., and Yoshimura, K., Kogyo Kagnku ?asshi, 68, 1098-102 (1965). (940) Shrier, A. L., Dodge, B. F., and Bretton, R. H., Proc. A.1.Ch.E.-I: Chem. E . Joint M e e t . , London, 1965, p p 10-18.

(95B) Simonyi, M., Tudos, F., Holly, S., and Pospisil, J., Magy. Rem. F o b . , 73, 408-13 (1967). (96B) Siver in, Yu. M., Likhtenshtein, G. I., and Berlin, A. A,, Kinef. Katal., 8, 32-7 (1965). (97B) Smith, D. G., 3. Appl. Chem. (London), 17, 339-43.(1967). (98B) Steinberg M . Kukacka L. E. Colombo, P., and Manowitz, B., Chm. Eng. Progr., Symp. ier., 64, 99-lld(1968j. (99B) Sud’bin, A. I., Kleimenov, N. A,, and Markevich, A. M., Vysokomol. Soedin., Sei. A , 9, 2736-41 (1967). (100B) Suh K. W. Meyer V. E., Rubens, L. C., and Skochdopole, R . E., 3. Appl. Polym. Sci:, 12, 1603-5 (i968). (101B) Tate, B. E., Advan. Polymer Sci., 5, 214-232 (1967). (102B) Tazuke, S., Okada, T., and Okamura, S., Makromol. Chem., 115, 213-22 (1968). (103B) Tobolsky, A. V., ACS, Div. Polym. Chem., Preprints, 8, 1-3 (1967). (104B) Trossarelli, L., and Guaita, M., Polymer, 9, 2 3 3 4 2 (1968). (105B) Tsuda, K., Kobayashi, S., and Otsu, T., 3. Macromol. Sci.,Pnrt A , 1, 1025-37 (1967). (106B) Tudos F., Berezsnich-Foldes, T., and Simonyi, M., Magy. Kem. Poly., 73, 392-8 (196ij. (107B) Tudos, F., Berezsnich-Foldes, T., and Simonyi, M., Vysokomol. Soedin., Ser. A , 9, 2284-93 (1967). (108B) Tudos F. and Boros-G evi, E., Proc. lihuny Symp. Radial. Chem., Znd, Tihanu, H