Aptamer-Based Potentiometric Measurements of ... - Semantic Scholar

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, The Biodesign Institute and Fulton School of. Engineering, Arizona ... Nano...
0 downloads 11 Views 123KB Size
Anal. Chem. 2008, 80, 707-712

Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes Apon Numnuam,†,‡,§ Karin Y. Chumbimuni-Torres,† Yun Xiang,‡ Ralph Bash,‡ Panote Thavarungkul,§ Proespichaya Kanatharana,§ Erno 1 Pretsch,*,⊥ Joseph Wang,*,‡ and Eric Bakker*,†,#

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, The Biodesign Institute and Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand, Laboratorium fu¨r Organische Chemie, ETH Zu¨rich, CH-8093 Zu¨rich, Switzerland, and Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, Perth, WA 6845, Australia

We here report on the first example of an aptamer-based potentiometric sandwich assay of proteins. The measurements are based on CdS quantum dot labels of the secondary aptamer, which were determined with a novel solid-contact Cd2+-selective polymer membrane electrode after dissolution with hydrogen peroxide. The electrode exhibited cadmium ion detection limits of 100 pM in 100 mL samples and of 1 nM in 200 µL microwells, using a calcium-selective electrode as a pseudoreference electrode. As a prototype example, thrombin was measured in 200 µL samples with a lower detection limit of 0.14 nM corresponding to 28 fmol of analyte. The results show great promise for the potentiometric determination of proteins at very low concentrations in microliter samples. Aptamers are nucleic acid ligands that have been designed through an in vitro selection process called SELEX (systematic evolution of ligands by exponential enrichment).1 Such aptamers hold great promise as affinity ligands for the biosensing of diseaserelated proteins and for developing protein-sensing arrays.2-7 Owing to their relative ease of isolation and modification, good stability, and wide applicability, they appear to be excellent alternatives to antibodies.8,9 The attractive biosensing properties of aptamer recognition elements have been illustrated in connec* To whom correspondence should be addressed. E-mail: bakkere@ purdue.edu (E.B.); [email protected] (J.W.); [email protected] (E.P.). † Purdue University. ‡ Arizona State University. § Prince of Songkla University. ⊥ ETH Zu ¨ rich. # Curtin University of Technology. (1) Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818-822. (2) Hesselbert, J.; Robertson, M. P.; Jhaveri, S.; Ellington, A. D. Rev. Mol. Biotechnol. 2000, 74, 15-25. (3) Osbourne, S. E.; Matsumura, E.; Ellington, A. D. Curr. Opin. Chem. Biol. 1997, 1, 5-9. (4) O’Suvillan, C. K. Anal. Bioanal. Chem. 2002, 372, 44-48. (5) Xu, D.; Xu, D.; Yu, X.; Liu, Z.; He, W.; Ma, Z. Anal. Chem. 2005, 77, 51075113. (6) Stadtherr, K.; Wolf, H.; Lindner, P. Anal. Chem. 2005, 77, 3437-3443. (7) McCauley, T. G.; Hamaguchi, N.; Stanton, M. Anal. Biochem. 2003, 319, 244-250. (8) Jayasena, S. D. Clin. Chem. 1999, 45, 1628-1650. (9) Luzi, E.; Minunni, M.; Tombelli, S.; Mascini, M. Trends. Anal. Chem. 2003, 22, 810-818. 10.1021/ac701910r CCC: $40.75 Published on Web 01/10/2008

© 2008 American Chemical Society

tion with a colorimetric method, but the lower detection limit was only in the micromolar range.10,11 Another detection scheme has been based on changes in fluorescence properties upon binding the fluorophore-labeled aptamer to the target.12-16 However, this fluorescence response is usually weak, and owing to the difficult design of signaling aptamers, the method is not easy to generalize. Lower detection limits in the 10 nM range have been obtained with piezoelectric analyzers.17 In recent years, different electrochemical strategies have been developed for monitoring the interaction between aptamer and target analytes. The electrochemical methods are, in general, superior to the optical ones because of rapid response, simple handling, and low cost.18-20 Electrochemical aptamer biosensors are based, among others, on a binding-induced label-free detection,21-25 on enzymes,26,27 or on nanoparticle labels.28 Excellent values in the femtomolar range have been achieved with impedance spectroscopy and amplification by chemical means to denature the protein captured by an aptamer on the electrode (10) Stojanovic, M. N.; Landry, D. W. J. Am. Chem. Soc. 2002, 124, 9678-9679. (11) Liu, J.; Lu, Y. Anal. Chem. 2004, 76, 1627-1632. (12) Stojanovic, M. N.; de Prada, P.; Landry, D. W. J. Am. Chem. Soc. 2001, 123, 4928-4931. (13) Heyduk, E.; Heyduk, T. Anal. Chem. 2005, 77, 1147-1156. (14) Fang, X.; Cao, Z.; Beck, T.; Tan, W. Anal. Chem. 2001, 73, 5752-5757. (15) Jhaveri, S.; Kirby, R.; Conrad, R.; Maglott, E.; Bowser, M.; Kennedy, R. T.; Glick, G.; Ellington, A. D. J. Am. Chem. Soc. 2000, 122, 1566-1571. (16) Jhaveri, S.; Rajendra, M.; Ellington, A. D. Nat. Biotechnol. 2000, 18, 12931297. (17) Bini, A.; Minunni, M.; Tombelli, S.; Centi, S.; Mascini, A. Anal. Chem. 2007, 79, 3016-3019. (18) Palecek, E.; Fojta, M. Anal. Chem. 1994, 66, 1566-1571. (19) Wang, J. Anal. Chem. 1999, 71, 328-332. (20) Wang, J. Nucleic Acids Res. 2000, 28, 3011-3016. (21) Xiao, Y.; Lubin, A. A.; Heeger, A. J.; Plaxco, K. W. Angew. Chem., Int. Ed. 2005, 44, 5456-5459. (22) Rodriguez, M. C.; Kawde, A.-N.; Wang, J. Chem. Commun. 2005, 42674269. (23) Cai, H.; Lee, T. M.-H.; Hsing, I.-M. Sens. Actuators, B 2006, 114, 433-437. (24) Cheng, A. K. H.; Ge, B.; Yu, H. Z. Anal. Chem. 2007, 79, 5158-5164. (25) Xu, Y.; Yang, L.; Ye, X.; He, P.; Fang, Y. Electroanalysis 2006, 18, 14491456. (26) Ikebukuro, K.; Kiyohara, C.; Sode, K. Biosens. Bioelectron. 2005, 20, 21682172. (27) Baldrich, E.; Acero, J. L.; Reekmans, G.; Laureyn, W.; O’Sullivan, C. K. Anal. Chem. 2004, 77, 4774-4784. (28) Hansen, J. A.; Wang, J.; Kawde, A.-N.; Xiang, Y.; Gothelf, K. V.; Collins, G. J. Am. Chem. Soc. 2006, 128, 2228-2229.

Analytical Chemistry, Vol. 80, No. 3, February 1, 2008 707

Scheme 1. Representation of the Analytical Protocola

a (A) Formation of a mixed monolayer of thiolated aptamer on gold substrate; (B) thrombin addition and binding with aptamer; (C) secondary binding with CdS-labeled aptamer; (D) dissolution of CdS label followed by detection using a solid-contact Cd2+-selective microelectrode.

surface (10 fM)25 and, very recently, by electrogenerated chemiluminescence via target protein-induced strand displacement (1 fM).29 Recently, the nanomaterial-based electrochemical detection of proteins has received considerable attention. The methods include the use of gold nanoparticles30,31 or semiconductor nanocrystal tracers.32,33 Usually, detection is made by anodic stripping voltammetry (ASV), which due to its intrinsic preconcentration step allows one to achieve ultralow detection limits.34 Potentiometry with ion-selective electrodes (ISEs) represents an attractive tool for trace metal analysis in confined samples. Since, with this method, the direct relationship between analyte activity and observed potential is independent of the sample volume, no deterioration of the signal or lower detection limit is expected upon reducing the volume. This is rather unique and establishes potentiometry as a preferred method when dealing with miniaturized analytical microsystems.35,36 Recent improvements in the detection limits of ISEs based on polymeric membranes containing selective receptors (ionophores) have yielded sensors for the direct measurement in the subnanomolar concentration range.37 It is now possible to use miniaturized ISEs for detecting subfemtomole amounts of ions in microvolume samples.35,36 Recently, we have demonstrated that such potentiometric microsensors are very attractive for ultrasensitive immunoassays in connection with nanoparticle amplification labels.38 By reducing the sample volume and using quantum dot tags, the lower (29) Wang, X.; Zhou, J.; Yun, W.; Xiao, S.; Chang, Z.; He, P.; Fang, Y. Anal. Chim. Acta 2007, 598, 242-248. (30) Deqaire, M.; Degrand, C.; Limoges, B. Anal. Chem. 2000, 72, 5521-5528. (31) Das, J.; Aziz, M. A.; Yang, H. J. Am. Chem. Soc. 2006, 128, 16022-16023. (32) Liu, G.; Wang, J.; Kim, J.; Jan, M. R. Anal. Chem. 2004, 76, 7126-7130. (33) Choi, J. H.; Chen, K. H.; Strano, M. S. J. Am. Chem. Soc. 2006, 128, 1558415585. (34) Wang, J. Stripping Analysis.; VCH: New York, 1985. (35) Rubinova, N.; Chumbimuni-Torres, K.; Bakker, E. Sens. Actuators, B 2007, 121, 135-141. (36) Malon, A.; Vigassy, T.; Bakker, E.; Pretsch, E. J. Am. Chem. Soc. 2006, 128, 8154-8155. (37) Ceresa, A.; Radu, A.; Bakker, A.; Pretsch, E. Anal. Chem. 2002, 74, 40274036. (38) Chumbimuni-Torres, K. Y.; Dai, Z.; Rubinova, N.; Xiang, Y.; Pretsch, E.; Wang, J.; Bakker, E. J. Am. Chem. Soc. 2006, 128, 13675-13677.

708

Analytical Chemistry, Vol. 80, No. 3, February 1, 2008

detection limit has been improved to