Aqueous Organic Chemistry. 8. Reactivity of Biaryls - Energy & Fuels

Energy Fuels , 1995, 9 (2), pp 331–343. DOI: 10.1021/ef00050a019. Publication Date: March 1995. ACS Legacy Archive. Cite this:Energy Fuels 9, 2, 331...
0 downloads 0 Views 1MB Size
Energy & Fuels 1995,9, 331-343

331

Aqueous Organic Chemistry. 8. Reactivity of Biaryls Michael Siskin* and David T. Ferrughelli Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801

Alan R. Katritzky" Department of Chemistry, University of Florida, Gainesville, Florida 3261 1-7200

J6zsef Rabai* Institute of Organic Chemistry, Eotvos University Budapest, H-1518 Budapest 112, P. 0. Box 32, Hungary Received August 29, 1994. Revised Manuscript Received December 5, 1994@

Biphenyl, or more accurately biaryl, linkages represent the most refractory cross-links in fossil fuel resources. They are essentially unreactive thermally and in supercritical water a t 460 "C. Many biaryls do, however, undergo bond cleavage and heteroatom removal under reducing conditions in supercritical water. 2-Arylpyridines7-quinolines, and -indoles are most reactive in 15% aqueous formic acid whereas the corresponding 2-arylthiophene and -benzothiophene derivatives are more reactive in 15% aqueous sodium formate. Major hydrocarbon products are benzene and naphthalene and their c1-c4 alkylated derivatives. In most cases where conversion is not quantitative after 1 h at 460 "C, the product slate consists of hydrogenated and cleaved products which, given more reaction time, are on the pathway toward complete heteroatom removal.

Following the pioneering work of Fischer and Schraeder,l who explored the potential of liquefying coal by direct reaction with mixtures of carbon monoxide or synthesis gas and water, Appell and Wendel.2~~ described the conversion of bituminous coals and lignites in the presence of carbon monoxide and water at 375-425 "C t o high yields of benzene soluble oils. Lignites were more reactive than bituminous coals and a significant reduction in sulfur levels was observed (0.7-0.2%). Reactivity in a 1:l naphthol-phenanthene solvent was faster than using hydrogen. After 10 min at 380 "C conversions were 89% for CO-H20 and 42% for Hz with a lignite. Ross and co-workers4studied the reactivity of higher rank Illinois No. 6 coal in CO/HzO at 400 "C measuring conversion to toluene-solubles. They found that yields in DzO were consistently higher, leveling off at 60% vs 50% in HzO. It was also reported5 that conversion of Illinois coal in a CO/HzO system at 400 "C is promoted under strongly basic conditions (4 M KOH) and formate was postulated as the active reducing agent in the system. Others6 have found higher conversions in coal liquefaction when formate ion was added as a promoter.

More recently, Horvath7 identified the presence of formate ion by NMR in coal-CO-Hz0 systems using 13Clabeled carbon monoxide. Cummins and co-workers8reported the conversion of oil shale kerogens with CO-steam at 300-450 "C. Conversion, mostly to liquids, increased from about 16 to 83% as temperatures increased from 300 to 425 "C and then decreased t o 76% at 450 "C. With increasing temperatures the overall WC atomic ratio increased, the oxygen content of the oil decreased, but the nitrogen content increased. Sulfur levels remained unchanged. Stenberg and co-workersgreported the hydrogenation of anthracene and quinoline in supercritical water in the presence of carbon monoxide at 425 "C over 2 h in the presence and absence of added sodium carbonate. Dihydro- and tetrahydroanthracene, methylbenzohydrindene, and 1,2,3,44etrahydroquinolinewere the major products, respectively. Base had no effect on the anthracene conversion (85 vs 91%) but enhanced the quinoline conversion (31%vs 9%). Baltisberger and co-workers1° studied the reaction of thermally unreactive diphenyl sulfide and dibenzothiophene and of thioanisole at 425 "C in carbon monoxidelwater systems at 3000 psi total pressure. Hydrogen alone was more active for the conversion of

Abstract published in Advance ACS Abstracts, February 1, 1995. (1)Fischer, F; Schraeder, H. Brennst-Chem. 1921,2,161. (2)Appell, H. R.;Wender, I. Prepr.-Pap. Am. Chem. SOC.,Diu. Fuel Chem. 1968,12,220. (3)Appell, H. R.;Wender, I.; Miller, R. D. Prepr. Pap.-Am. Chem. SOC.,Diu. Fuel Chem. 1969,13, 39. (4) Ross, D. S.; Hum, G. P.; Miin, T. C.; Green, T. K.; Mansani, R. Fuel Process. Technol. 1986,12, 277. ( 5 ) Ross, D. S. ; Blessing, J. E.; Nguyen, Q. C. Prepr. Pap.-Am. Chem. SOC.,Diu. Fuel Chem. 1981,26,149.

(6)Nguyen-Huu, U.;Oelert, H. H.; Schuchardt, U. Erdoel Kohle. 1982,35,527. (7)Horvath, I. T.;Siskin, M. Energy Fuels. 1991,5 , 932. (8)Cummins, J. J.; Sanchez, D. A.; Robinson, W. E. Energy Commun. 1980,6, 117. (9)Stenberg, V. I.; Wang, J.; Baltisberger, R. J.; Van Buren, R.; Woolsey, N. F. J. Org. Chem. 1978,43, 2991. (10)Baltisberger, R.J.;Stenberg, V. I.; Wang, J.; Woolsey, N. F.; Schiller. J. E.: Miller. D. J. Preor. Pap.-Am. Chem. SOC.,Diu. Fuel Chem. 1979,24, 74.

Introduction

@

0887-0624195l2509-0331$09.0010

'

0 1995 American Chemical Society

332 Energy & Fuels, Vol. 9, No. 2, 1995

Siskin et al.

Table 1. Structure and Identification of Starting Materials and Products no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44a 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

min 1.28 1.86 2.08 3.84 4.75 4.82 5.90 5.93 6.84 7.65 8.76 8.98 9.14 9.26 9.48 9.59 9.61 9.74 9.88 9.94 10.07 10.87 11.47 11.48 11.57 11.88 12.01 12.49 12.56 12.61 12.78 12.89 13.06 13.07 13.49 13.64 13.68 13.69 13.71 13.95 14.28 14.48 14.71 14.90 14.92 14.98 15.20 15.31 15.43 15.45 15.68 15.77 15.98 16.14 16.36 16.38 16.62 16.63 16.86 16.99 17.15 17.61 17.70 17.71 17.73 17.77 17.79 17.83 18.43 18.51 18.66 18.94 18.94 19.13 19.68 19.73 19.86 19.93 19.95 20.04 20.11 20.24 20.28

tR,

structure benzene pyridine toluene ethylbenzene styrene o-xylene 2-ethyltoluene benzenethiol propylbenzenes aniline o-methylstyrene indan indene 3-butenylbenzene butylbenzene 2-ethylphenol acetophenone 2-butenylbenzene 2-methylaniline 2-methylbenzenethiol 1-methylindan 4- or 5-methylindan 2-ethylaniline tetralin 1-phenylpropanone naphthalene benzo[blthiophene l-methyl-1,2-dihydronaphthalene cyclopentylbenzene 1-methyltetralin quinoline 2-propylaniline 1-phenyl-1-butanone 2,3-dihydrobenzo[b]thiophene 1-indanone 2-methylnaphthalene 2-methylbenzo[b]thiophene 2-methyl-2,3-dihydronaphthalene indole 1-methylnaphthalene 1,2,3,4-tetrahydroquinoline 1-methyl-2-phenylpiperidine 3-methyl-1-phenylbutanone biphenyl 1-ethyltetralin 2-phenylpiperidine 1-ethylnaphthalene benzo[2.2.2lbicyclooctadiene 2-phenylthiophene FW 189 diphenylmethane 1,2-dimethylnaphthalene 1,3-dimethylnaphthalene 2-phenylpyridine 1-propylnaphthalene acenaphthene 1-naphthalene carboxaldehyde FW 163 dibenzyl 1-naphthalenamine 1,2-diethylnaphthalene methyl 2-naphthyl ketone diphenyl sulfide methyl 1-naphthyl ketone 1-butylnaphthalene 1-isobutylnaphthalene 2-butylnaphthalene 1-(2-propenyl)naphthalene 2-ethvl-l.l’-bi~henvl 1,l-diphenyleihane tolyl phenyl sulfide FW 198 9,lO-dihydrophenanthrene p-aminodiphenylmethane 1,2,3,4-tetrahydrophenathrene 2-butyl 1-naphthyl ketone FW 189 l-methyl-2,3-dihydro-2-phenylindole phenanthrene FW 195 FW 196 1,9-dimethyl-SH-fluorene o-phenethylaniline

mol wt 78 79 92 106 104 106 120 110 120 93 118 118 116 132 134 122 120 132 107 124 132 132 121 132 134 128 134 144 146 146 129 135 148 136 132 142 148 144 117 142 133 175 162 154 160 161 156 154 160 189 168 156 156 155 170 154 156 163 182“ 143 184 170 186 170 184 184 184 168 182 182 200 198 180 183 182 198 189 209 178 195 196 194 197

identificn basisa Table IA Table IA Table IA Table IA Table IA Table IA Table IB Table IB Table IA Table IA Table IB Table IA Table IA Table IB Table IA Table IB Table IB Table IB Table IA Table IB Table IB Table IB Table IA Table IA Table IB Table IA Table IA Table IB Table IB Table IB Table IA Table IB Table IB Table IB Table IB Table IA Table IB Table IB Table IA Table IA Table IA Table 2 Table IB Table IA Table IA Table 2 Table IA Table IB Table IA Table 2 Table IA Table IB Table IB Table IA Table 2 Table IA Table IB Table 2 Table IA Table IB Table IB Table IB Table IA Table IB Table IB Table IB Table IB Table IB Table IB Table IA Table 2 Table 2 Table IA Table IB Table IB Table IB Table 2 Table 2 Table IA Table 2 Table 2 Table IB Table 2

resDonse factor 1.08 0.84 0.96 0.96 0.96 0.97 0.97 0.72 0.96 0.81 0.96 0.95 0.95 0.96 0.95 0.78 0.78 0.96 0.71 0.72 0.95 0.95 0.70 0.95 0.78 0.98 0.70 0.95 0.96 0.95 0.79 0.70 0.77 0.70 0.78 0.94 0.69 0.94 0.88 0.94 0.70 0.86 0.77 0.94 0.96 0.86 0.94 0.93 0.62 NA 0.93 0.94 0.94 0.81 0.94 0.94 0.56 NA 0.93 0.78 0.94 0.76 0.68 0.76 0.94 0.94 0.94 0.94 0.93 0.93 0.68 NA 0.93 0.68 0.93 0.75 NA 0.68 0.93 NA NA 0.93 0.68

Aqueous Organic Chemistry. 8

Energy & Fuels, Vol. 9, No. 2, 1995 333 Table 1. (Continued)

no.

83 84

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 a

tR,

min

20.31 20.39 20.39 20.54 20.55 20.58 20.99 21.03 21.22 21.35 21.40 21.44 21.52 21.65 21.92 21.97 22.06 22.09 22.22 22.30 22.33 22.40 22.56 22.92 23.13 23.15 23.40 23.62 23.90 23.94 23.96 24.69 25.09 25.27 25.57 25.60 25.73 25.75 25.82 25.84 25.86 25.91 26.00 26.07 26.10 26.19 26.29 26.36 26.43 26.47 26.52 26.58 26.58 26.61 26.63 26.77 27.11 27.27 27.32 27.76 27.83 27.83 28.02 28.18 28.19 28.54 28.63 28.76 28.78 29.08 29.11 29.17 29.63 30.12 30.17 33.81 34.12 35.35 37.80

structure

FW 209 4-benzyl+-xylene thioxanthene FW 195 diphenyl disulfide

2,3-dihydro-2-phenylindole FW 212 l-methyl-2-(l-naphthyl)piperidine 24 1-naphthy1)thiophene

2,3-dihydro-2-phenylbenzo[blthiophene 3-phenylbenzo[blthiophene tolyl phenyl disulfide 4-methylphenanthrene -,--dimethyl-2-( 1-naphthy1)piperidine 24 1-naphthy1)piperidine 2-phenyl-1,2,3,4-tetrahydroquinoline 1-methyl-2-phenylindole ditolyl disulfide FW 209 24 1-naphthy1)pyridine FW 195

2-phenylbenzo[blthiophene 2-phenylquinoline l-methyl-2-phenyl-l,2,3,4-tetrahydroquinoline 2-phenylindole

1-phenyl-2-naphthylethane 3-phenylindole 2-phenyl-3-cyclohexylthiophene 5-methyl-2-phenylindole 2-methyl-3-phenylindole FW 251 2-benzylnaphthalene

3,3’,4,4’-tetrahydro-l,l’-binaphthyl FW 233 FW 239 1-methyl-2-(l-naphthyl)-2,3-dihydroindole FW 244 FW 239 FW 259 FW 259 FW 279 FW 264 1,l’-binaphthyl FW 260 FW 247 FW 241

l-methyl-2-(l-naphthyl)indole FW 255

2-(l-naphthyl)-2,3-dihydroindole FW 257 FW 264 FW 245 2-phenyl-3-cyclohexylindole FW 262 FW 307 FW 259 FW 247 FW 259 24 1-naphthyl)benzo[blthiophene FW 305 2-(1-naphthy1)quinoline 24 1-naphthy1)indole 2-(l-naphthyl)-l,2,3,4-tetrahydroquinoline 2-(2-naphthyl)indole FW 259 FW 257 24 l-naphthyl)-3-cyclohexylthiophene FW 259 2-phenylnaphtho[2,lblthiophene FW 268 1-methyl-2-(l-naphthy1)-1,2,3,4-tetrahydroquinoline FW 255 FW 243 FW 258 FW 252 FW 257 FW 286 2-(l-naphthyl)-3-cyclohexylindole dinaphtho-l,2,1’,2’-thiophene

Equivalent weight is half the molecular weight.

mol wt

identificn basis0

response factor

209 196 198 195 218 195 212 225 210 212 210 232 192 239 211 209 207 246 209 205 195 210 205 223 193 232 193 242 207 207 25 1 218 258 233 239 259 244 239 259 259 279 264 254a 260 247 241 257 255 245 257 264 245 275 262 307 259 247 259 260 305 255 243 259 243 259 257 292 259 260 268 273 255 243 258 252 257 286 325 284

Table 2 Table IB Table IB Table 2 Table IB Table 2 Table 2 Table 2 Table IA Table 2 Table IB Table 2 Table IB Table 2 Table 2 Table 2 Table IB Table 2 Table 2 Table LA Table 2 Table IA Table IA Table 2 Table IA Table 2 Table IB Table 2 Table IB Table IB Table 2 Table IB Table IB Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table IA Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table IA Table 2 Table IA Table LA Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table IB Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2 Table IB

NA 0.92 0.68 NA 0.42 0.68 NA 0.84 0.67 0.67 0.67 0.42 0.93 0.84 0.84 0.85 0.84 0.42 NA 0.84 NA 0.67 0.79 0.80 0.68 0.91 0.68 0.67 0.84 0.84 NA 0.91 0.90 NA 0.82 NA NA NA NA NA NA NA 0.90 NA NA NA 0.82 NA 0.82 NA NA NA 0.84 NA NA NA NA NA 0.67 NA 0.77 0.82 0.82 0.82 NA NA 0.64 NA 0.65 NA 0.82 NA NA NA NA NA NA 0.80 0.64

Siskin et al.

334 Energy & Fuels, Vol. 9, No. 2, 1995 Table 2. Identification of Products from Mass Spectral Fragmentation Patterns

no. 42 45 49 54 57

70 71 76 77 79 80 82 83 86 88 89 90 92 94 96 97 98 100 101 103 106 108 110 113 116 117 118 119 120 121 122 123 124 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 142 145 146 147 148 149 150 152 153 154 155 156 157 158 159 160 a

mlz

compound 1-methyl-2-phenylpiperidine 2-phenylpiperidine RT 15.45 1-propylnaphthalene RT 16.63 tolyl phenyl sulfide RT 18.94 RT 19.86 l-methyl-2,3-dihydro-2-phenylindole RT 20.04 RT 20.11 o - phenethylaniline RT 20.31 RT 20.54 2,3-dihydro-2-phenylindole RT 20.99 1-methyl-2-( 1-naphthy1)piperidine 2,3-dihydro-2-phenylbenzo[blthiophene tolyl phenyl disulfide -,--dimethyl-2-( 1-naphthy1)piperidine 2-(1-naphthyl)piperidine 2-phenyl-1,2,3,4-tetrahydroquinoline ditolyl disulfide RT 22.22 RT 23.33 l-methyl-2-phenyl-l,2,3,4-tetrahydroquinoline 1-phenyl-2-naphthylethane

mol wt 175 161 189 170 163 200 198 189 209 195 196 197 209 195 195 212 225 212 232 239 211 209 246 209 195 223 232 242 2-phenyl-3-cyclohexylthiophene RT 23.96 251 RT 25.27 233 RT 25.57 239 259 1-methyl-24 l-naphthyl)-2,3-dihydroindole RT 25.73 244 RT 25.75 239 RT 25.82 259 RT 25.84 259 RT 25.86 279 RT 25.91 264 RT 26.07 260 RT 26.10 247 RT 26.19 241 1-methyl-2-( 1-naphthy1)indole 257 - RT 26.36 255 245 24l-naphthyl)-2,3-dihydroindole RT 26.47 257 264 RT 26.52 RT 26.58 245 2-phenyl-3-cyclohexylindole 275 RT 26.61 262 RT 26.63 307 RT 26.77 259 RT 27.11 247 RT 27.27 259 RT 27.76 305 2-(1-naphthyl)-1,2,3,4-tetrahydroquinoline 259 2-(2-naphthyl)indole 243 RT 28.19 259 RT 28.54 257 24l-naphthyl)-3-cyclohexylthiophene 292 RT 28.76 259 268 RT 29.08 l-methyl-2-~l-naphthyl~-1,2,3,4-tetrahydroquinoline 273 RT 29.17 255 243 RT 29.63 RT 30.12 258 252 RT 30.17 RT 33.81 257 286 RT 34.12 325 24l-naphthyl)-3-cyclohexylindole (% relative intensity,structure of fragment ion).

diphenyl sulfide (100 vs 64%) mainly to benzene, and of thioanisole (86 vs 41%) to a mixture of products including benzoic acid (27 vs 13%). The conversions were inhibited in the presence of added sodium carbon-

fragmentationpatterna 175(20): 1606):98UOO):84(5):77(10) 161(40)1 132(60);104(100);84(40);77(20) 189(15);174(50);160(15); 112(100); 91(40) 170(25);141(100);128(5);115(25);102(5) 163(15); 132(15);93(100);77(30) 200(100);185(25);122(40); 1096);91(30) 198(25); 165(5);153(5);141(100);115(30) 189(48); 188(100); 160(15);104(25);91(30) 209(100);208(40); 132(80); 117(20); 89(10) 195(100);194(85);165(20); 118(90);9WO) 196(100); 167(80); 153(70); 141(80);128(40) 197(20);118(5);106(100);91(10);77(20) 209(80);194(50); 180(100); 152(10);93(90) 195(90); 194(80);165(15);118(100);91(25) 195(100); 194(80);165(20);118(90); 117(40) 212(100);197(20);179(15); 135(40);77(10) 225(30);210(5);168(35); 127(10);98(100); 212(100);197(15);179(25);135(40);77(20) 232(100);123(90);122(40); 109(25);77(30) 239(30);224(30); 204(20); 112(1OO) 211(60); 182(25);154(100); 127(30);84(25) 209(95);208(50);180(10);132(100);77(40) 246(85);123(100); 122(30);91(10);77(30) 209(65);208(30);180(5);132(100); 77(40) 195(100);194(90);165(25); 118(90);91(20) 223(100); 208(25);146(95);132(20);91(40) 232(20);141(100);115(20);91(10) 242(60);199(100);165(10);160(7) 251(20);194(10);174(70);XO(20); 91(100) 233(100); 232(60);215(25);141(10); 106(20) 239(10);179(5); 141(20);98(100);70(50) 259(75);242(10); 132(100); 117(20);91(10) 244(30); 143(100);130(40); 128(20);77(20) 239(50);238(100);223(40);154(30);141(20) 259(10);247(25); 141(15);106(100);77(15) 259(55);244(30); 230(30); 143(100); 130(40) 279(5); 202(10); 174(70);91(30) 264(55);235(40);136(5);130(100); 129(20) 260(95);259(100);258(65);213(15); 129(25) 247(70);218(40);217(30);130(100); 118(30) 241(30); 196(10);155(20);141(100); 115(40) 257(100);256(80);241(20);127(15) 255(35);241(5);196(20); 141(100) 245(100);244(90);215(10); 118(50);91(15) 257(100);256(80);255(20);241(25); 127(10) 264(100); 263(40);236(40);235(50) 245(100);244(90); 118(50); 117(40);9WO) 275(100);232(90);218(40);193(15) 262(100);228(40); 128(40) 307(5);230(5);174(50);91(30) 259(50);258(100); 243(10);230(20);128(10) 247(100);246(45);232(25);219(45);108(15) 259(50); 258(100); 230(25);202(5);108(5) 305(20);228(5);200(20); 174(50) 259(100); 258(50);230(5);132(60);77(20) 243(100);242(70);241(40);215(10);120(20) 259(75);258(20); 165(40); 118(100);117(80) 257(100);256(80); 130(40);77(10) 292(100);249(70);210(15);165(15);81(15) 259(100); 258(20); 141(40);118(40);91(20) 268(100); 254(20);146(25);132(20) 273(100);272(40);258(10); 146(60); 127(10) 255(100);254(75);226(5);127(20); 113(5) 243(100); 242(30);241(20); 121(20) 258(100); 257(20);239(20);229(20);215(20) 252(100); 250(30); 224(5);126(10);125(10) 257(100); 256(70); 127(20) 286(100); 285(50);252(10);208(5);142(10) 325(100);282(80)

ate. Dibenzothiophene was unreactive under all conditions (