4 Archaeological Ceramic Study Possibilities
Downloaded via UNIV OF MICHIGAN ANN ARBOR on July 28, 2018 at 16:31:32 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
with a Thermal Gradient Furnace F R E D E R I C K R. M A T S O N Department of Anthropology, The Pennsylvania State University, University Park, Pa. 16802
Changes with increasing firing temperatures in some physical properties of clays sampled near archaeological
sites can
bedetermined by firing clay test bars in a thermal gradient furnace and by refiring strips cut from potsherds. A furnace built for this purpose is described, and its possible uses in archaeological
ceramic studies are discussed. An example
is cited of the changes in color, scratch
hardness, and
shrinkage
village
of clays now used by Egyptian
when test bars were fired in the thermal gradient
potters furnace.
The results can be compared with the same physical properties of potsherds. the ancient Egyptian
They aid in a better understanding of potters' problems of working with the
clays and help to establish criteria for classifying
archaeo-
logical ceramic materials.
/
T h e range of colors f o u n d i n a n c i e n t p o t t e r y at o n e site has f r e q u e n t l y i
* ·• l e d archaeologists to classify their m a t e r i a l s i n t o r e d w a r e , y e l l o w ware, gray ware, a n d the like. surfaces
have
also s e r v e d
T h e colors of t h e p a i n t e d o r s l i p p e d
as classificatory aids.
U n f o r t u n a t e l y these
differences i n the fired colors o f the c l a y vessels are t e c h n o l o g i c a l v a r i a b l e s that m a y have been caused b y the time-temperature-atmosphere c o n d i tions u n d e r w h i c h t h e w a r e w a s fired. T h e y d o n o t necessarily h a v e c u l t u r a l significance w h i c h c a n b e u s e d to classify p o t t e r y unless d i s t i n c t l y different r a w m a t e r i a l s w e r e u s e d w h i c h fired to different colors. T h e q u a n t i t y a n d size of C a C 0
3
grains i n clays w e a t h e r e d f r o m limestone
m o u n t a i n s o r h i l l s , s o l u b l e salts present i n t h e clays, a n d t h e rate o f d r y i n g o f t h e p l a s t i c c l a y w a r e c a n a l l influence t h e u l t i m a t e fired c o l o r as m u c h as o r even m o r e t h a n the i r o n content of the c l a y a n d t h e f o r m i n 34
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
MATSON
Ceramic Study with Thermal Gradient
35
Furnace
w h i c h i t is present. S l i g h t v a r i a t i o n s i n the c l a y sources, m a n u f a c t u r i n g p r o c e d u r e s ( w h i c h c a n i n c l u d e the m i x i n g together of t w o or three clays a n d a p l a s t i c ) , k i l n d e s i g n a n d o p e r a t i o n , a n d fuels u s e d b y the potters i n a s i n g l e p o t t e r y m a k i n g v i l l a g e c a n result i n c o n s i d e r a b l e v a r i a t i o n i n the a p p e a r a n c e of the wares p r o d u c e d .
M a n y archaeologists n o w r e c o g
n i z e that i t is necessary to b e f a m i l i a r w i t h t h e d r y i n g a n d firing p r o p erties of the clays a v a i l a b l e at or near t h e i r sites b e f o r e one attempts to differentiate wares i n terms of t h e i r b o d y c o l o r a n d t h e a p p e a r a n c e
(or
a c t u a l p r e s e n c e ) of a s l i p or of t h e p a i n t e d d e c o r a t i o n , let alone i d e n t i f y some pieces as i m p o r t e d . W i t h t h e a i d of color illustrations H a r r e l l a n d R u s s e l l
(J)
have
s h o w n some of the c o l o r changes that c a n o c c u r i n several c l a y b o d i e s w h e n the f u r n a c e a t m o s p h e r e is v a r i e d f r o m o x i d i z i n g to r e d u c i n g a n d w h e n its m o i s t u r e content is c o n t r o l l e d . B r o w n e l l ( 2 )
has s u m m a r i z e d
t h e roles of s e v e r a l factors i n f l u e n c i n g t h e d e v e l o p m e n t
of
scummed
surfaces o n b r i c k a n d other s t r u c t u r a l c l a y p r o d u c t s . M a t s o n ( 3 ) has d i s cussed the r e l a t i o n s h i p of the firing t e m p e r a t u r e s of a n c i e n t N e a r E a s t e r n p o t t e r y a n d the colors d e v e l o p e d together w i t h other p h y s i c a l p r o p e r t i e s of the wares. Thermal
Gradient
Furnaces
T h e r m a l g r a d i e n t furnaces are u s e d i n g e o c h e m i c a l studies of p h a s e relationships a n d i n c e r a m i c test w o r k , b u t t h e y h a v e not b e e n u s e d i n a r c h a e o l o g i c a l studies. T h e r e are t w o b a s i c types of furnaces.
I n the
first, r e f r a c t o r y c e r a m i c h o l l o w cores are s p i r a l l y w o u n d e x t e r n a l l y w i t h p l a t i n u m or a l l o y w i r e s , the s p a c i n g of the w i r e b e i n g c o n t r o l l e d to produce
the t e m p e r a t u r e g r a d i e n t d e s i r e d .
This
core, p a c k e d
i n an
i n s u l a t e d c o n t a i n e r , is e l e c t r i c a l l y h e a t e d w i t h a v a r i a b l e i n p u t t r a n s f o r m e r . C o m b u s t i o n boats c o n t a i n i n g the samples c a n b e i n t r o d u c e d i n t o the f u r n a c e .
I f a t m o s p h e r i c c o n t r o l is d e s i r e d , a q u a r t z t u b e c a n
be
i n s e r t e d i n t o the core, the test pieces are i n s e r t e d , a n d the gas for t h e c o n t r o l l e d a t m o s p h e r e is i n t r o d u c e d at t h e c o l d e n d . W i t h a r e m o v a b l e t h e r m o c o u p l e p r o b e the g r a d i e n t t h r o u g h the l e n g t h of the f u r n a c e c a n b e easily m e a s u r e d . T h e s e c o n d f u r n a c e is a v a r i a n t of t h e
first.
It is
u s e f u l for l a r g e r test pieces a n d is a w e l l i n s u l a t e d k i l n w i t h a l l of t h e heat a p p l i e d b e h i n d the c l o s e d e n d of a h o r i z o n t a l muffle. S u c h furnaces h a v e b e e n u s e d to s u r v e y p o s s i b l e c l a y sources i n the b r i c k i n d u s t r y i n terms of color d e v e l o p m e n t a n d degree of v i t r i f i c a t i o n . p r o v i d e d a t a u s e f u l i n e s t a b l i s h i n g firing schedules.
T h e y c a n also
B o t h types of f u r
naces c a n be u s e d to s t u d y the m a t u r a t i o n of glazes a n d o v e r g l a z e colors. The
c o r e - w o u n d f u r n a c e is often u s e d i n the glass i n d u s t r y for d e v i t r i f i
c a t i o n studies.
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
36
ARCHAEOLOGICAL CHEMISTRY
Figure
1.
Test bars of clay from Jarmo in northeastern Iraq tempered phin and with salted (15 wt % NaCl) water
with
F i r i n g tests of clays c o l l e c t e d i n the M e d i t e r r a n e a n a n d N e a r E a s t e r n countries h a v e b e e n d o n e b y the a u t h o r for some years. B r i q u e t t e s m a d e f r o m these clays w e r e
fired
to successively
h i g h e r temperatures
e s t a b l i s h e d s o a k i n g p e r i o d s a n d at times w i t h r e d u c i n g atmospheres These
experiments
have provided
data concerning
with (3).
changes
in
color,
s h r i n k a g e , p o r o s i t y , a n d hardness of the clays w i t h respect
to
firing
t e m p e r a t u r e a n d t i m e . H o w e v e r , t h e y represent t h e r m a l step s a m p l i n g s , a n d several firings are u s u a l l y n e e d e d to c o m p l e t e a s t u d y . W i t h a t h e r m a l g r a d i e n t f u r n a c e , u s i n g l o n g test bars m a d e f r o m the clays or slices c u t f r o m potsherds, v a r i a t i o n s i n k i l n t e m p e r a t u r e c o n d i t i o n s closer to those e n c o u n t e r e d b y the a n c i e n t potters c a n b e r e p l i c a t e d . T h r o u g h the c o o p e r a t i o n
of J o h n W o s i n s k i of the C o r n i n g G l a s s
W o r k s , bars m a d e f r o m t w o N e a r E a s t e r n clays c o l l e c t e d i n n o r t h e r n I r a q w e r e , after a p r e l i m i n a r y firing to 5 5 0 ° C f o r 3 h o u r s to r e m o v e t h e c h e m i c a l l y c o m b i n e d w a t e r i n t h e c l a y a n d the i n i t i a l fired
firing
shrinkage,
i n the C o r n i n g laboratories i n furnaces n o r m a l l y u s e d for d e v i t r i f i -
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Ceramic
MATSON
c a t i o n studies.
Study with Thermal Gradient
37
Furnace
T h e clays w e r e p r e p a r e d i n t w o w a y s to c o n f i r m the
color changes a l r e a d y e s t a b l i s h e d i n the step firings of b r i q u e t t e s .
One
s a m p l e of e a c h c l a y was t e m p e r e d w i t h tap w a t e r ; the other w a s t e m p e r e d w i t h w a t e r c o n t a i n i n g 15 w t % s h o w n i n F i g u r e 1.
NaCl.
T h e color changes of the
( S o m e of the earliest p o t t e r y yet k n o w n w a s b e i n g
m a d e at J a r m o before 6000 B . C . T h e site is w e s t of S u l i m a n i y a h i n n o r t h eastern I r a q . )
T h e c l a y w a s l i g h t b r o w n at the l o w e r
it o x i d i z e d to a l i g h t r e d , a n d t h e n t u r n e d p a l e y e l l o w .
temperatures, A t the h i g h
temperatures w i t h i n c i p i e n t v i t r i f i c a t i o n a green color d e v e l o p e d the f o r m a t i o n of c a l c i u m ferrosilicates i n the c l a y b o d y . expected, friable.
the s a l t - e n r i c h e d c l a y t e n d e d
to
flocculate
with
As would
and was
be
quite
P a l e y e l l o w colors a p p e a r e d at l o w e r t e m p e r a t u r e s t h a n w i t h
the n o r m a l c l a y , a n d v i t r i f i c a t i o n o c c u r r e d at the h i g h e r t e m p e r a t u r e s , m a k i n g i t difficult to r e m o v e the vitreous samples f r o m t h e p l a t i n u m c o m b u s t i o n boats.
Furnace
for
Archaeological
Studies
R e c e n t l y it was p o s s i b l e to construct for a r c h a e o l o g i c a l studies a t h e r m a l g r a d i e n t f u r n a c e s i m i l a r to one u s e d i n the c e r a m i c laboratories of the C o l l e g e of the E a r t h a n d M i n e r a l Sciences of T h e P e n n s y l v a n i a State U n i v e r s i t y . R o b e r t F r a n t z m o d i f i e d the d e s i g n of the e a r l i e r f u r n a c e so that i t w o u l d b e s u i t a b l e for testing a r c h a e o l o g i c a l clays a n d sherds that are a v a i l a b l e o n l y i n s m a l l quantities. T h e t h e r m a l g r a d i e n t f u r n a c e n o w b e i n g u s e d for a r c h a e o l o g i c a l c e r a m i c studies contains a 2 0 - i n c h l o n g S i C muffle that is D - s h a p e d i n cross section a n d is closed at one e n d . T h e flat b a s e of t h e mufflle is 3 % inches w i d e , a n d the m a x i m u m h e i g h t of the a r c h is 2 % inches. F o u r S i C h e a t i n g elements 20 inches i n l e n g t h w i t h a n 8 - i n c h hot z o n e are p l a c e d h o r i z o n t a l l y , one a b o v e the other, i n a C - s h a p e d g r o u p i n g b e h i n d the closed e n d of the muffle. A v a r i a b l e e l e c t r i c p o w e r i n p u t 2 4 0 - V t r a n s f o r m e r w i t h a n o u t p u t of 0 - 2 8 0 V , 56 a m p s a n d 15.7 K V A is u s e d to heat t h e elements. T h e i r t e m p e r a t u r e is m e a s u r e d w i t h a P t - P t / R h t h e r m o c o u p l e p l a c e d b e t w e e n the elements at the closed e n d of the muffle. T h i s t h e r m o c o u p l e is c o n n e c t e d to a p y r o m e t r i c c o n t r o l l e r so that the rate of t e m p e r a t u r e rise, i f d e s i r e d , a n d the h o l d i n g t e m p e r a ture at t h e h o t e n d c a n b e r e a d i l y m a i n t a i n e d . T h e t e m p e r a t u r e g r a d i e n t w i t h i n the muffle is m e a s u r e d b y 12 c h r o m e l - a l u m e l t h e r m o c o u p l e s s p a c e d 1 % inches a p a r t a l o n g the l e n g t h of the side w a l l , % i n c h a b o v e t h e floor level. A m u l t i p l e - p o i n t r e c o r d e r is u s e d to p r i n t out the r e c o r d for these 12 couples. T h e i n s u l a t e d f u r n a c e , 19 inches w i d e , 32 inches l o n g , a n d 23 inches h i g h , is s u p p o r t e d o n a w h e e l e d m e t a l cart. T h e c o n t r o l a n d indicating instruments, i n c l u d i n g an ammeter and a voltmeter, are i n s t a l l e d o n the cart p a n e l b e n e a t h the k i l n . F i g u r e s 2 a n d 3 s h o w the a p p e a r a n c e of the f u r n a c e , a n d F i g u r e 4 shows the i n t e r i o r of the muffle after i t has b e e n l o a d e d w i t h test bars.
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
38
ARCHAEOLOGICAL CHEMISTRY
M a n y e x p e r i m e n t a l firing schedules c a n be d e s i g n e d for t h e f u r n a c e . I d e a l l y , the f u r n a c e s h o u l d b e m a i n t a i n e d at the d e s i r e d t e m p e r a t u r e s , b u t this presents p r o b l e m s of t h e r m a l shock w h e n c l a y test specimens are i n t r o d u c e d a n d r e m o v e d . A s a m p l e firing s c h e d u l e is s h o w n i n F i g u r e 5. T h e m a x i m u m desired temperature ( 1 0 8 0 ° - 1 1 0 0 ° C ) was attained i n 3 h o u r s at the h o t e n d of the muffle ( t h e r m o c o u p l e 12, w h i c h is ΐ4 i n c h f r o m the e n d w a l l ) . C o u p l e 1 w h i c h is 4 % inches w i t h i n the o p e n e n d , a p l u g f o r m e d f r o m i n s u l a t i n g b r i c k o c c u p y i n g the first 2 % inches, h a d not yet r e a c h e d 4 0 0 ° C at the e n d of the first 3 hours. A f t e r a n a d d i t i o n a l 3 h o u r s , the t e m p e r a t u r e s at t h e r m o c o u p l e s 8 - 1 2 h a d s t a b i l i z e d . T h e s e five couples c o v e r a d i s t a n c e of a b o u t 5 ΐ 4 inches. T h e temperatures at couples 1-7 c o n t i n u e d to rise, b u t at s l o w e r rates after the first 4 h o u r s . T h e g r a d i e n t across the 12 couples at the e n d of t h e 6-hour
Figure 2.
firing
Thermal gradient furnace with control panel
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
was
MATSON
Ceramic Study with Thermal Gradient
Figure
Figure 4.
3.
Thermal gradient furnace couple distribution
Furnace
showing
Muffle of thermal gradient furnace bars
thermo-
loaded with test
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
40
ARCHAEOLOGICAL CHEMISTRY
TIME - HOURS
Figure 5. A time-temperature firing schedule of the thermal gradient furnace at the 12 thermocouple points of measurement 4 7 5 ° C over a d i s t a n c e of 15 inches. T h i s p r o v i d e s a n a m p l e t e m p e r a t u r e r a n g e to evaluate a c l a y . I f o n e wishes to h a v e t h e c l a y b a r at its h o t e n d a p p r o a c h c o m p l e t e v i t r i f i c a t i o n , a n d there is a d e q u a t e p r o t e c t i o n f o r t h e muffle, t h e h o l d i n g t e m p e r a t u r e at c o u p l e 12 c a n safely b e i n c r e a s e d to 1150°C.
T h i s firing s c h e d u l e has b e e n c i t e d to i n d i c a t e the shortest t i m e
i n w h i c h satisfactory results c a n b e a c h i e v e d w h e n t h e k i l n is at r o o m temperature
at t h e start of t h e
firing.
A
slower
heating
schedule
is often m o r e d e s i r a b l e a n d of course extends t h e l i f e of t h e h e a t i n g elements. T h e rate of c o o l i n g c a n , i f necessary, b e c o n t r o l l e d as w e l l . I f the p o w e r is t u r n e d off at t h e e n d of t h e 6-hour
firing,
the temperature
i n t h e muffle d r o p s r a p i d l y , a n d t h e samples c a n b e r e m o v e d after 3 - 4 hours of c o o l i n g .
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Ceramic
M A T S O N
Study with Thermal Gradient
41
Furnace
T h e test pieces f o r the firing c a n b e p r e p a r e d i n m a n y f o r m s , d e p e n d i n g u p o n t h e i n f o r m a t i o n sought.
W h e n s t u d y i n g clays i t has b e e n c o n
v e n i e n t to f o r m bars w h o s e p l a s t i c l e n g t h is 7 inches a n d w h o s e cross section is no m o r e t h a n % i n c h . T w o s u c h b a r s , p l a c e d one b e h i n d the other, p r o v i d e a s u i t a b l e test s t r i p of c l a y .
T h e y c a n be p l a c e d o n a
r e f r a c t o r y slab or i n l o n g c o m b u s t i o n boats.
B e c a u s e of the s m a l l w i d t h
of the b a r s , f o u r clays c a n b e test fired at one t i m e w i t h o u t s t a c k i n g . S t a c k i n g c o u l d cause t r o u b l e i n the hot z o n e i f some of the clays b e g i n to v i t r i f y . O n e d i f f i c u l t y w i t h l o n g n a r r o w bars is that s o m e t e n d to w a r p badly during firing
firing
i f t h e y are f o r m e d f r o m clays that d e v e l o p
high
s h r i n k a g e . F o r s u c h clays a series of m u c h shorter bars p l a c e d i n a
l i n e one b e h i n d the other, or l a r g e r bars w i t h a s q u a r e cross a b o u t 1 i n c h w i d e c o u l d be u s e d .
section
S t r i p s c u t f r o m one l a r g e p o t s h e r d
w i t h a d i a m o n d i m p r e g n a t e d s a w a n d p l a c e d i n a g r a d i e n t l i n e c a n also be tested i n the f u r n a c e . Archaeological
Test Problems
W h e n t r y i n g to e s t a b l i s h t h e m a x i m u m a n d m i n i m u m
firing
tem
peratures r e a c h e d b y a n c i e n t potters a n d to estimate the d u r a t i o n of t h e firings,
d a t a o b t a i n e d f r o m test bars m a d e of the l o c a l clays a n d f r o m
strips c u t f r o m potsherds, a l l fired i n the t h e r m a l g r a d i e n t f u r n a c e , are essential.
Careful
evaluation must be
shrinkage, a n d porosity
measurements,
made
of
together
the with
color, a
hardness,
pétrographie
analysis of m i n e r a l o g i c a l changes t h a t h a v e o c c u r r e d i f a t h o r o u g h s t u d y is to b e c o n d u c t e d .
I d e a l l y , a l a r g e series of sherds s h o u l d b e s t u d i e d
before the test pieces are selected for r e f i r i n g , a n d one s h o u l d h a v e some k n o w l e d g e of the v a r i a b i l i t y i n the l o c a l c l a y . S i n c e potters w o r k i n g i n M e d i t e r r a n e a n a n d N e a r E a s t e r n v i l l a g e s t o d a y d o not fire t h e i r w a r e s u n d e r c o m p l e t e l y u n i f o r m c o n d i t i o n s , there is n o reason to expect that a n c i e n t practices w e r e a n y different.
T h e r e f o r e i t is essential that one
h a v e some k n o w l e d g e of the r a n g e i n p h y s i c a l v a r i a b i l i t y of the potsherds f r o m e a c h t i m e l e v e l i n a w e l l - e x c a v a t e d site. S o m e of the factors that influence the q u a l i t y a n d a p p e a r a n c e of the v i l l a g e wares p r o d u c e d t o d a y are the state of r e p a i r of the k i l n , the size a n d p o s i t i o n i n g of t h e pieces i n the k i l n l o a d , the k i n d a n d a m o u n t of f u e l u s e d ( seasonal a v a i l a b i l i t y a n d c o s t ) , the w e a t h e r c o n d i t i o n s at different times of the y e a r ( w i n d s , r a i n , frost, or h e a t ) , the k n o w l e d g e a n d s k i l l of the m a n firing the k i l n ( u s u a l l y the p o t t e r ) , a n d the q u a l i t y d e m a n d s of the m a r k e t for w h i c h the w a r e is p r o d u c e d .
T h e m a x i m u m firing t e m p e r a t u r e i n v i l l a g e k i l n s
s u c h as those just d i s c u s s e d varies f r o m a b o u t 800° to 1000 ° C .
Occa
s i o n a l l y 1050 ° C is r e a c h e d b u t is not m a i n t a i n e d . S l a g g i n g a n d s l u m p i n g result f o r most e a r t h e n w a r e p r o d u c t s i f yet h i g h e r temperatures attained.
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
are
42
ARCHAEOLOGICAL CHEMISTRY
W h e n one is c o n c e r n e d w i t h p o t t e r y fired o n a h e a r t h i n a p i l e of b r u s h or p a c k e d i n other o r g a n i c m a t e r i a l s u c h as d u n g cakes, the m a x i m u m t e m p e r a t u r e s a t t a i n e d for a n y significant t i m e w i l l b e m u c h l o w e r — u s u a l l y 6 0 0 ° - 9 0 0 ° C , a n d often less.
T h e a n c i e n t p o t t e r y m a d e b y the
I n d i a n s of the A m e r i c a s a n d b y peoples i n several other parts of t h e w o r l d was
fired
i n this m a n n e r .
Some
I n d i a n s of the s o u t h w e s t e r n U n i t e d
States, for e x a m p l e , c o n t i n u e this p r a c t i c e t o d a y .
Vessels are at times
i n t e n t i o n a l l y b l a c k e n e d at the e n d of the firing w h i l e they are s t i l l hot b y s m o t h e r i n g t h e m i n o r g a n i c m a t e r i a l s . Sherds f r o m vessels fired i n t h e w a y s just m e n t i o n e d c a n b e u s e f u l l y refired at the cooler e n d of the t h e r m a l g r a d i e n t f u r n a c e after the o r i g i n a l color changes f r o m the
surface
t h r o u g h the core h a v e b e e n n o t e d for a n a d e q u a t e series of sherds. T h e r m o c o u p l e p r o b e measurements b y S h e p a r d ( 6 )
of I n d i a n p o t
tery b e i n g m a d e i n the s o u t h w e s t e r n U n i t e d States s h o w e d
maximum
temperatures i n the range 6 2 5 ° - 9 4 0 ° C , the latter b e i n g most e x c e p t i o n a l . P o t t e r y m a d e i n P a p u a a n d N e w G u i n e a , a c c o r d i n g to L a u e r ( 7 ) , fired
f r o m 650° to 920 ° C .
20 m i n u t e s after the firing
firing
T h e highest temperatures are r e a c h e d
was about
begins, b u t t h e y are n o t m a i n t a i n e d . T o t a l
t i m e varies f r o m a b o u t 16 to 114 m i n u t e s . S o m e p o t t e r y w i t h w e l l - o x i d i z e d surfaces that has b e e n either k i l n
or h e a r t h fired m a y h a v e d a r k gray to b l a c k cores. W h i l e this c a n result f r o m l o w t e m p e r a t u r e short firing treatment, it m a y also b e c a u s e d the too-rapid
firing
of
fine-textured
b l a c k c o r i n g of some b u i l d i n g b r i c k ) .
W h i l e the c o r e color c a n result
e n t i r e l y f r o m the presence of c a r b o n , b l a c k F e 0 3
4
m a y also be responsible.
A f t e r s u c h w a r e is refired, t h e r e w i l l often b e a r e s i d u a l color
difference
b e t w e e n the core z o n e a n d the surfaces t h a t m u s t b e c o n s i d e r e d estimating original
firing
by
w a r e ( a s i t u a t i o n analogous to t h e
temperatures.
Iron i n a reduced
when
state, p a r
t i c u l a r l y F e O , c a n exert a fluxing a c t i o n o n the c l a y b o d y at r e l a t i v e l y l o w temperatures.
A s a result, sherds after a n o x i d i z i n g r e f i r i n g , even
to 9 0 0 ° - 1 0 0 0 ° C , m a y never d e v e l o p
t h e o p t i m u m color i n t h e i r cores
t h a t is f o u n d i n the test bars of c l a y . T h e surface
flashing
of t h e w a r e
a r i s i n g f r o m flame i m p i n g e m e n t a n d other factors i n the o r i g i n a l
firing
c a n also affect the surface color i n w a y s w h i c h are difficult to r e p r o d u c e c o m p l e t e l y i n a test f u r n a c e . T h e surfaces of a n c i e n t p o t t e r y w e r e often d e c o r a t e d w i t h a f e r r u ginous s l i p t h a t c o u l d b e i n t e n t i o n a l l y fired to a r e d or a b l a c k color.
The
c o l o r c h a n g e w a s the result of not o n l y k i l n a t m o s p h e r e a n d t e m p e r a t u r e , b u t at times also of the degree of v i t r i f i c a t i o n of the s l i p . C o l o r v a r i a t i o n s i n b o t h the p a i n t e d d e c o r a t i o n a n d i n the c l a y b o d y of sherds f r o m one a r c h a e o l o g i c a l site a n d t i m e are s h o w n i n F i g u r e 6. T h i s series of sherds w a s e x c a v a t e d at T e l l H a l a f i n n o r t h e a s t e r n S y r i a a n d comes f r o m p o t t e r y
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
M A T S O N
Ceramic
Study with Thermal Gradient
43
Furnace
m a d e a b o u t 5000 B . C . A c o m p l e t e t e c h n o l o g i c a l analysis of this w a r e s h o u l d start w i t h t h e s t u d y of t h e v a r i a t i o n s i n c o l o r of t h e b o d y a n d p a i n t , t e x t u r a l a n d m i n e r a l o g i c a l c o n s i d e r a t i o n s , r e f i r i n g tests, a n d i f pos sible, c o m p o s i t i o n a l analyses of t h e p a i n t a n d b o d y w i t h t h e a i d of a s c a n n i n g e l e c t r o n m i c r o s c o p e . O n c e t h e sherds h a v e b e e n s t u d i e d v i s u a l l y , r e f i r i n g tests i n t h e t h e r m a l g r a d i e n t f u r n a c e c a n g r e a t l y accelerate t h e analysis a n d a i d i n i n t e r p r e t i n g t h e a p p e a r a n c e of this a t t r a c t i v e p o t t e r y .
Figure
6.
Potsherds from Tell Halaf in northeastern Syria with varying grees of slip-painted and body oxidation
de-
M o r e t h a n 3000 years after H a l a f times t h e G r e e k potters p e r f e c t e d the t e c h n i q u e s u s e d b y t h e H a l a f i a n s a n d a c c u r a t e l y c o n t r o l l e d t h e p r o d u c t i o n of b l a c k a n d r e d s l i p d e c o r a t e d w a r e s .
S o m e of t h e p o s s i b l e
t e c h n i q u e s f o r p r e p a r i n g slips u s e d i n p a i n t e d d e c o r a t i o n s u c h as those f o u n d o n G r e e k vases h a v e b e e n d i s c u s s e d b y W i n t e r (4).
T h e inclusion
of p o t a s h f r o m l e a c h e d w o o d a s h i n the finely f r a c t i o n a t e d c l a y a n d t h e m a n n e r of firing s t r o n g l y i n f l u e n c e d t h e a p p e a r a n c e of t h e fired w a r e . T h e rate o f c o o l i n g of test pieces after firing m u s t b e c o n t r o l l e d f o r o p t i m u m color to b e d e v e l o p e d .
I n c o o l i n g the test bars f r o m r e d - b u r n i n g
N i l e m u d c o l l e c t e d at Q e n a , E g y p t that are seen i n F i g u r e 7, t h e colors v i s u a l l y c h a n g e d d u r i n g t h e last 200 ° C of c o o l i n g as r o o m t e m p e r a t u r e
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
44
ARCHAEOLOGICAL CHEMISTRY
w a s a p p r o a c h e d . H a d the c o o l i n g b e e n too r a p i d , the i r o n present w o u l d not have fully oxidized. T h e t h e r m a l g r a d i e n t f u r n a c e c a n also b e u s e d to c h e c k t h e a r c h a e o l o g i c a l significance of the colors of m o d e r n b u i l d i n g b r i c k , h o l l o w b u i l d i n g b l o c k s , a n d roofing tiles m a d e t o d a y i n regions w h e r e a n c i e n t p o t t e r y is b e i n g e x c a v a t e d a n d s t u d i e d . It is easy to o b t a i n samples of t h e clays n o w i n use, the k i l n s c a n be v i s i t e d , a n d the c o l o r r a n g e i n the
Figure
7.
Test bars of Egyptian clays fired in the thermal furnace
fired
gradient
p r o d u c t s c a n q u i c k l y b e e s t a b l i s h e d . F i g u r e 8 shows thé c o l o r v a r i a t i o n s i n a stack of b r i c k fired i n a scove k i l n n e a r B a g h d a d . O n e c a n o b s e r v e the v a r i a t i o n s f r o m t a n to r e d , the y e l l o w - t o - w h i t e surface s c u m o n some b r i c k , a n d the c o n c h o i d a l l y s p a l l e d y e l l o w - g r e e n o v e r t i r e d corners of b r i c k t h a t w e r e too n e a r the flames. T h e t h e r m a l g r a d i e n t testing of clays u s e d
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Ceramic
M A T S O N
Study with Thermal Gradient
45
Furnace
Figure 8. Color variations in contemporary brick formed of Tigris River deposited clay and fired in a scove kiln near Baghdad
for c o n t e m p o r a r y c e r a m i c p r o d u c t s a n d the s t u d y of the i n d u s t r i a l w a r e s themselves is d e s i r a b l e , e s p e c i a l l y w h e n the a n c i e n t p o t t e r y is l i m i t e d i n q u a n t i t y or c a n n o t b e e x p o r t e d f r o m t h e c o u n t r y i n w h i c h i t w a s excavated. Egyptian A
Clay Studies
specific
archaeological
ceramic
problem
that has b e e n
partly
s t u d i e d u s i n g the t h e r m a l g r a d i e n t f u r n a c e is that of the v a r i a t i o n i n the p h y s i c a l properties of the clays u s e d b y the v i l l a g e potters of
Egypt
t o d a y — t h e N i l e m u d together w i t h clays f r o m the eastern o r w e s t e r n deserts.
T h e a n c i e n t potters h a d the same r a w m a t e r i a l s , a n d t h e y p r o
d u c e d m a n y c e r a m i c wares.
B y s t u d y i n g the clays i t has b e e n possible
to d e t e r m i n e w h y t h e a d d i t i o n of N i l e m u d to the desert clays i m p r o v e s t h e i r w o r k i n g p r o p e r t i e s a n d w h y vessels m a d e of N i l e m u d alone t e n d to b e coarser.
T h e results h a v e b e e n r e p o r t e d i n d e t a i l elsewhere
T h e test bars of the N i l e m u d w e r e r e d d i s h b r o w n ( 5 Y R 5 / 4 ) M u n s e l l c o l o r n o t a t i o n at the 6 0 0 ° C z o n e of the g r a d i e n t (2.5YR 5/6)
(5). i n the
firing,
red
at 8 5 0 ° C , a n d d a r k e n e d w i t h i n c i p i e n t v i t r i f i c a t i o n to w e a k
red (2.5YR 4/3)
at 1 1 0 0 ° C after a h o l d i n g p e r i o d of 30 m i n u t e s .
The
s c r a t c h hardness, u s i n g M o h s ' scale, i n c r e a s e d f r o m 3.0 to 6.5 for the " m a l e " ( b e t t e r w o r k i n g c l a y i n the p o t t e r s t e r m i n o l o g y ) , a n d f r o m 2.3 to 5.0 for the " f e m a l e " m u d . T h e N i l e m u d s h r a n k far m o r e w h e n
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
fired
46
ARCHAEOLOGICAL CHEMISTRY
t h a n d i d t h e other clays—cf. t h e lengths o f t h e test bars i n F i g u r e 7 — for t h e y w e r e a l l t h e same l e n g t h ( 7 i n c h e s ) w h e n f o r m e d .
T h e clay
f r o m B a l l a s , n o r t h o f L u x o r , w a s f r o m t h e w e s t e r n desert, w h i l e t h a t f r o m Q e n a , also n o r t h o f L u x o r , a n d f r o m H e l w a n , just s o u t h o f C a i r o , w e r e o b t a i n e d east o f t h e N i l e . A l l three areas p r o v i d e d calcarous clays Ithat fired f r o m l i g h t r e d d i s h b r o w n at t h e l o w e r t e m p e r a t u r e s to v e r y p a l e b r o w n at 1 1 0 0 ° C . T h e y h a d v a r i a b l e degrees o f s h r i n k a g e , b u t a l l w e r e f a r less t h a n that o f t h e N i l e m u d . T h e B a l l a s c l a y , a n a n c i e n t sea b e d deposit, d e v e l o p e d a hardness o f 7 at 1 1 0 0 ° C , b u t the other b r o w n Clays h a d a hardness o f o n l y 3. T h u s o n e c a n r e a d i l y u n d e r s t a n d w h y potters c o m b i n e clays w h e n p r e p a r i n g t h e p l a s t i c b o d y . T h e clays u s e d a n d t h e i r p r o p o r t i o n s , together w i t h t h e a d d i t i o n o f aplastics, v a r i e d i n t h e several p o t t e r y m a k i n g v i l l a g e s . A n u n d e r s t a n d i n g o f these p h y s i c a l p r o p e r t i e s h e l p e d i n i n t e r p r e t i n g t h e f a b r i c a t i n g a n d firing c o n d i t i o n s of e x c a v a t e d E g y p t i a n p o t t e r y f r o m t h e same r e g i o n s ; f u r t h e r , t h e y m a y m a k e i t possible t o i d e n t i f y wares t r a n s p o r t e d some distance i n a n c i e n t times f r o m t h e i r places o f m a n u f a c t u r e .
S u c h studies l e a d to a better
u n d e r s t a n d i n g o f past t e c h n o l o g i c a l p r a c t i c e s a n d h e l p to e s t a b l i s h effec tive criteria for sorting a n d classifying the voluminous ceramic y i e l d from E g y p t i a n a r c h a e o l o g i c a l excavations.
Conclusion T h e selective uses o f t h e t h e r m a l g r a d i e n t f u r n a c e i n a r c h a e o l o g i c a l c e r a m i c studies m u s t b e d e t e r m i n e d t h r o u g h t h e close c o l l a b o r a t i o n o f the archaeologist r e s p o n s i b l e f o r t h e c e r a m i c s a n d t h e t e c h n o l o g i s t d o i n g the l a b o r a t o r y w o r k .
U n l e s s e a c h p r o b l e m is c l e a r l y defined a n d t h e
a r c h a e o l o g i c a l c l a y samples a n d potsherds h a v e b e e n a c c e p t a b l y c h o s e n , firing
studies c a n at best b e p a r t o f p r e l i m i n a r y surveys. T h e y s h o u l d b e
m u c h more.
T h e y s h o u l d h e l p us to u n d e r s t a n d t h e significance o f t h e
v a r i a t i o n s f o u n d i n p o t t e r y e x c a v a t e d a n d t h e d e g r e e of t e c h n o l o g i c a l k n o w l e d g e a n d c o n t r o l d e m o n s t r a t e d b y t h e potters w h o m a d e t h e w a r e s as p a r t i c i p a t i n g m e m b e r s of a n a n c i e n t c o m m u n i t y . Literature
Cited
1. Harrell, George O., Ralston Russell, Jr., "Influence of Ambient Atmosphere in Maturation of Structural Clay Products," Ohio State Univ. Eng. Exp. Sta. Bull. 204 (1968). 2. Brownell, W. E., "Scum and Its Development on Structural Clay Products," Structural Clay Products Institute, Chicago, Ill., Research Report No. 4 (1955). 3. Matson, Frederick R., "A Study of Temperatures Used in Firing Ancient Mesopotamian Pottery," in "Science and Archaeology," Robert H. Brill, Ed., pp. 65-79, M.I.T. Press, Cambridge, Mass., 1971.
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
M A T S O N
Ceramic Study with Thermal Gradient
Furnace
47
4. Winter, Α., "Die Technik des griechischen Töpfers in ihren Grundlagen," in "Technische Beiträge zur Archäologie," Vol. I, pp. 1-45, Römish-Germanisches Zentralmuseum zu Mainz, 1959. 5. Matson, Frederick R., "Technological Studies of Egyptian Pottery—Modern and Ancient," Cairo Solid State Conf., 2nd, April 1973, in press. 6. Shepard, Anna O., "Ceramics for the Archaeologist," Carnegie Inst. Wash., Publ. (1965) 609,
77-93.
7. Lauer, Peter K., "Preliminary Report on Ethnoarchaeological Research in the Northwestern Massim, T.P.N.G.," Asian Perspectives (1973) 14, 69-75.
RECEIVED July 20,
1973.
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.