12 Nuclear Magnetic Resonance Spectrometry
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
in Archaeology C U R T W. B E C K , C O N S T A N C E A. F E L L O W S , and E D I T H M A C K E N N A N
Vassar College, Poughkeepsie, Ν. Y. 12601 Proton magnetic resonance (PMR) spectrometry supple ments optical spectroscopy and gas chromatography in the identification of organic archaeological materials. PMR establishes the average chain length and unsaturation of fatty acids. An oil sample of the sixth-fourth century B.C. is shown to consist largely of oleic acid. A solid fat of the third century A.D. contained principally myristic and pal mitic acids. The absence of measurable glyceryl signals shows both samples were at least 95% hydrolyzed. PMR spectra also indicate that the pyrolysate of Baltic amber contains significantly less p-cymene than that of modern pine resins, confirming previous evidence that abietane structures are only a minor component of the fossil resin.
T n l i t t l e m o r e t h a n a d e c a d e , n u c l e a r m a g n e t i c resonance ( N M R ) specA
t r o m e t r y has b e c o m e a n i n d i s p e n s a b l e t o o l of o r g a n i c c h e m i s t r y , u s e d
as r o u t i n e l y as i n f r a r e d spectroscopy w h i c h i t s u p p l e m e n t s r a t h e r t h a n replaces. 1 7
0,
1 9
A t o m i c n u c l e i w i t h o d d mass n u m b e r s s u c h as Ή ,
F , and
3 1
n u m b e r s s u c h as H , B , a n d 2
signals.
1 3
C,
1 5
N,
P a n d a l l a t o m i c n u c l e i w i t h e v e n mass b u t o d d a t o m i c 1 0
1 4
N have magnetic moments a n d give N M R
O f these, c a r b o n a n d h y d r o g e n are f o u n d i n p r a c t i c a l l y a l l
organic compounds,
but while
1 3
C m a g n e t i c resonance
(CMR)
spec
t r o m e t r y r e q u i r e s v e r y expensive e q u i p m e n t , t h e i n s t r u m e n t a t i o n of p r o t o n m a g n e t i c resonance ( P M R ) s p e c t r o m e t r y is n o w w i t h i n the
financial
r e a c h of most l a b o r a t o r i e s . I n b r i e f , a m a g n e t i c a t o m i c n u c l e u s i n a m a g n e t i c field m a y b e e i t h e r l i n e d u p w i t h o r o p p o s e d to the e x t e r n a l field, a n d the t r a n s i t i o n f r o m one state t o the other corresponds to a n a m o u n t of e n e r g y w h i c h c a n b e provided
by
electromagnetic
radiation
i n the r a d i o f r e q u e n c y
226 Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
range.
12.
BECK
E T
AL.
N MR
227
Spectrometry
N M R i n s t r u m e n t s use either constant m a g n e t i c fields a n d v a r i a b l e r a d i o frequencies or constant frequencies a n d v a r i a b l e m a g n e t i c fields, b u t the abscissa of (cps)
N M R spectra is a l w a y s m e a s u r e d
i n u n i t s of
frequency
i n r e l a t i o n to a n a d d e d reference c o m p o u n d s u c h as t e t r a m e t h y l -
silane ( T M S ) a n d d i v i d e d b y the r a d i o f r e q u e n c y of the i n s t r u m e n t to y i e l d dimensionless n u m b e r s o n either the δ-scale, w h i c h sets the r e f e r ence s i g n a l e q u a l to zero, or o n the τ-scale, w h i c h sets it e q u a l to 10;
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
thus δ - j - τ =
10. T h e spectra i n this r e p o r t use the δ scale a n d s h o w t h e
reference s i g n a l of T M S at δ =
0.
T h e p r i m a r y a n d s e c o n d a r y l i t e r a t u r e of N M R s p e c t r o m e t r y is f a r too l a r g e to p e r m i t e v e n a r e c a p i t u l a t i o n here ( I , 2 ) .
W e w i l l attempt
no m o r e t h a n a v e r y b r i e f s u m m a r y of the o b s e r v a b l e p a r a m e t e r s a n d t h e i r significance. Chemical Shift. T h e p o s i t i o n of the resonance s i g n a l of a p r o t o n ( or of a g r o u p of i d e n t i c a l protons ) is a n i n d i c a t i o n of the m o l e c u l a r e n v i r o n m e n t of that p r o t o n a n d p e r m i t s , e.g., the d i s t i n c t i o n of a l i p h a t i c , a l l y l i c , olefinic, a n d a r o m a t i c h y d r o g e n s . Integral. T h e area u n d e r a n N M R s i g n a l ( o r a g r o u p of s i g n a l s ) is a m e a s u r e of the n u m b e r of h y d r o g e n atoms w h i c h are r e s p o n s i b l e for t h a t signal. Spin-Spin Splitting. T h e s p l i t t i n g of a s i g n a l i n t o t w o , three, f o u r , or m o r e peaks w h i c h s h o w a b i n o m i a l d i s t r i b u t i o n p a t t e r n is a n i n d i c a t i o n of t h e n u m b e r of h y d r o g e n atoms o n n e i g h b o r i n g c a r b o n atoms w h i c h change the effective m a g n e t i c e n v i r o n m e n t of the p r o t o n u n d e r o b s e r v a t i o n b y s m a l l b u t p r e d i c t a b l e amounts. Coupling Constants.
T h e distance b e t w e e n the i n d i v i d u a l peaks of
a s p l i t N M R s i g n a l is a f u r t h e r i n d i c a t i o n of the m o l e c u l a r e n v i r o n m e n t of the o b s e r v e d protons.
F o r e x a m p l e , protons o n n e i g h b o r i n g s a t u r a t e d
c a r b o n atoms split e a c h others' signals w i t h c o u p l i n g constants of the o r d e r of 6 cps; protons o n n e i g h b o r i n g olefinic c a r b o n atoms o r d i n a r i l y h a v e c o u p l i n g constants w h i c h are s i g n i f i c a n t l y greater. S i n c e the n u m b e r of h y d r o g e n atoms i n a n average o r g a n i c m o l e c u l e is q u i t e l a r g e , most N M R spectra are f a i r l y c o m p l e x .
Since m a n y similar
protons w i l l g i v e signals w i t h n e a r l y the same c h e m i c a l shifts, r e s o l u t i o n is often i n c o m p l e t e .
T h e use of l a n t h a n i d e shift reagents is a recent
a d v a n c e w h i c h goes far t o w a r d s o l v i n g the latter p r o b l e m : B y c o o r d i n a t i n g a r a r e e a r t h c o m p l e x w i t h the substrate m o l e c u l e , protons are des h i e l d e d i n inverse p r o p o r t i o n to the t h i r d p o w e r of t h e i r d i s t a n c e f r o m the c o o r d i n a t i o n site, a n d thus the signals are s p r e a d o v e r a w i d e r r a n g e . T h u s N M R spectrometry can y i e l d information about the structure, a n d e v e n the c o n f o r m a t i o n , of p u r e c o m p o u n d s
of c o n s i d e r a b l e c o m p l e x i t y .
M i x t u r e s , of course, confront the spectroscopist w i t h s p e c i a l p r o b l e m s , b u t e v e n h e r e the N M R t e c h n i q u e c a n often d e a l w i t h the q u a n t i t a t i v e
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
228
ARCHAEOLOGICAL CHEMISTRY
analysis of, for e x a m p l e , m i x t u r e s of isomers m o r e effectively a n d effort lessly t h a n c a n i n f r a r e d spectroscopy. It is this aspect w h i c h m a k e s N M R spectrometry
p a r t i c u l a r l y a t t r a c t i v e to
archaeological
chemistry.
The
a r c h a e o l o g i c a l chemist is often c o n f r o n t e d w i t h v e r y s m a l l a m o u n t s of c o m p l e x m i x t u r e s . I f the m a t e r i a l is o r g a n i c , the first step is to e s t a b l i s h its g e n e r a l n a t u r e : is i t a fat or o i l , a p i t c h or tar, a r e s i n or g u m ? W h i l e s u c h b r o a d d i s t i n c t i o n s as w e l l as t h e final i d e n t i f i c a t i o n of the c o n s t i t u
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
ents c a n be m a d e b y v a r i o u s a n a l y t i c a l m e t h o d s , w e h a v e f o u n d N M R s p e c t r o m e t r y u n i q u e l y u s e f u l i n a n u m b e r of recent studies. Hydrolyzed
Vegetable
Oil
I n the N e w a r k M u s e u m there is a s m a l l glass flask w h i c h is d a t e d as s i x t h - f o u r t h c e n t u r y B . C . w i t h a g e n e r a l p r o v e n a n c e of S y r i a . f o u n d to c o n t a i n a d a r k b r o w n l i q u i d .
It w a s
T h e contents w e r e r e m o v e d
by
R o b e r t H . B r i l l of the C o r n i n g M u s e u m of G l a s s a n d sent to us for analysis. A n N M R s p e c t r u m of the substance d i s s o l v e d i n d e u t e r o c h l o r o f o r m ( F i g u r e 1) i m m e d i a t e l y s h o w e d it to be p r e d o m i n a n t l y oleic a c i d ( o r a s o l u b l e m e t a l o l e a t e ) , p r o b a b l y w i t h some a d m i x t u r e of s a t u r a t e d fatty acids. T h e signals c a n be assigned as f o l l o w s . T h e t r i p l e t at 0.8 δ arises f r o m three protons of a t e r m i n a l m e t h y l g r o u p a t t a c h e d to a m e t h y l e n e g r o u p . T h e large, b r o a d singlet at 1.1 δ represents 22 protons o n m e t h y l ene g r o u p s w h i c h are n o t d e s h i e l d e d b y n e i g h b o r i n g sp
carbon
2
atoms
a n d w h i c h are so s i m i l a r to one another that n o m e a s u r a b l e s p l i t t i n g occurs.
T h e i l l - r e s o l v e d peaks b e t w e e n
1.6 a n d 3.0 δ are c a u s e d
by
m e t h y l e n e groups w h i c h are d e s h i e l d e d b y n e i g h b o r i n g s p c a r b o n atoms. 2
T h e c a r b o x y l g r o u p accounts for one s u c h m e t h y l e n e g r o u p .
7
Figure 1.
6
5
4
3
2
Oil from Syrian glass bottle, sixth-fourth B.C.
Since the
0
century
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
BECK
NMR
E T A L .
229
Spectrometry
i n t e g r a l i n this area i n d i c a t e s less t h a n six protons, there c a n b e n o m o r e t h a n t w o other d e s h i e l d e d m e t h y l e n e g r o u p s ; h e n c e there is a t m o s t o n e d o u b l e b o n d p e r m o l e c u l e . T h e t w o v i n y l i c protons of this d o u b l e b o n d p r o d u c e t h e s i g n a l at a b o u t 5.4 δ. T h e i n t e g r a l of this s i g n a l corresponds to o n l y 1.3 protons.
T h e deficiency
of d e s h i e l d e d m e t h y l e n e a n d of
v i n y l i c protons i n d i c a t e s a n a d m i x t u r e of s a t u r a t e d f a t t y acids. O l e i c a c i d is the p r i n c i p a l f a t t y a c i d of o l i v e o i l ( 8 3 % ) , w h i c h also
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
contains s m a l l e r amounts of t h e s a t u r a t e d p a l m i t i c ( 6 % ) (4%)
a n d stearic
a n d of t h e d o u b l y u n s a t u r a t e d l i n o l e i c a c i d ( 7 % ) .
TheN M R
s p e c t r u m of t h e a r c h a e o l o g i c a l s a m p l e w a s closely m a t c h e d b y spectra of c o m m e r c i a l o l e i c a c i d ( F i g u r e 2 ) as w e l l as b y m i x t u r e s o f t h e a c i d w i t h its s o d i u m a n d p o t a s s i u m salts ( F i g u r e 3 ) .
j
ι
8
7
ι 6
ι 5
ι
Figure 2.
J
1
8
7
Figure 3.
1 6
1 5
ι
4
2
1
1
L
0
Oleic acid
1 4
1
3
I 3
I 2
I
L 1
0
Oleic acid containing 21 % sodium oleate
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
230
ARCHAEOLOGICAL CHEMISTRY
I n spite of its c o n s i d e r a b l e age, one m i g h t suspect that t h e a r c h a e o l o g i c a l m a t e r i a l c o u l d h a v e r e t a i n e d some u n s a p o n i f i e d o l i v e o i l , a n d w e therefore a t t e m p t e d to e s t a b l i s h the l i m i t s of detection of the u n s a p o n i f i e d o i l i n the presence of free fatty acids or salts. T h e N M R s p e c t r u m ( F i g u r e 4 ) of the s i m p l e s t t r i g l y c e r i d e , t r i a c e t i n ( t h e ester of g l y c e r o l w i t h acetic a c i d ) shows the resonance of t h e f o u r protons of the m e t h y l e n e groups of g l y c e r o l as a m u l t i p l e t at a b o u t 4.3 δ ( t h e m u l t i p l i c i t y of t h e s i g n a l is
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
caused b y the magnetic non-equivalence methylene
group).
The
of the t w o protons
single t e r t i a r y p r o t o n
i n each
of the g l y c e r y l
group
appears essentially as a q u i n t e t at a b o u t 5.3 δ. T h e latter p o s i t i o n is the same as t h a t of t h e v i n y l protons i n o l e i c a c i d , a n d the t w o signals c a n n o t b e u s e d to d i s t i n g l i s h t h e g l y c e r y l ester a n d the free f a t t y a c i d o n o u r instrument.
T h e N M R s p e c t r u m of fresh o l i v e o i l ( F i g u r e 5 )
confirms
t h i s ; the v i n y l protons of the u n s a t u r a t e d f a t t y a c i d a n d the t e r t i a r y p r o -
Figure 4.
Figure 5.
Triacetin
Italian olive oil
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
12.
BECK
NMR
ET AL.
231
Spectrometry
A. 7
8
6
5
Figure 6. ton
4
3
2
0
Oleic acid containing 10% olive oil
of the g l y c e r o l m o i e t y c o i n c i d e , b u t the s i g n a l of f o u r
methylene
protons is c l e a r l y v i s i b l e . I n a s y n t h e t i c m i x t u r e of o l e i c a c i d c o n t a i n i n g 10%
olive oil (corresponding
to 0 . 5 %
free g l y c e r o l )
(Figure 6),
the
g l y c e r y l protons at 4.3 δ are b a r e l y v i s i b l e as a d i s t u r b a n c e i n the baseline at l o w a m p l i t u d e s , b u t after a m p l i f i c a t i o n t h e y are c l e a r l y i d e n t i f i a b l e i n spite of the large a m o u n t of noise w h i c h is the p r i c e of e l e c t r o n i c a m p l i fication.
However, 5%
o l i v e o i l ( c o r r e s p o n d i n g to 0 . 2 5 % free g l y c e r o l )
can no l o n g e r b e d e t e c t e d b y o u r V a r i a n T - 6 0 i n s t r u m e n t . T h e l i m i t s of detection
could
be
lowered
substantially b y
using a more
sensitive
spectrometer a n d a t i m e - a v e r a g i n g c o m p u t e r w h i c h stores m a n y r e p e a t e d s p e c t r a l runs a n d p r i n t s out t h e i r s u m ; the signals g r o w i n p r o p o r t i o n to the n u m b e r of scans s u p e r i m p o s e d w h i l e the noise increases o n l y i n p r o p o r t i o n to the square root of that n u m b e r , so t h a t 100 r e p e a t e d r u n s w i l l i m p r o v e the signal-to-noise r a t i o b y a factor of 10. T h e i d e n t i f i c a t i o n of the a n c i e n t o i l s a m p l e was c o n f i r m e d b y other a n a l y t i c a l t e c h n i q u e s , i n c l u d i n g i n f r a r e d spectroscopy, t i t r a t i o n , a n d gas chromatography.
A f u l l a c c o u n t w i l l be p u b l i s h e d e l s e w h e r e ; o u r p u r
pose h e r e is to s h o w h o w m u c h u s e f u l i n f o r m a t i o n c o u l d b e g a i n e d f r o m N M R s p e c t r o m e t r y alone. Hydrolyzed
Animal
Fat
A n o t h e r a p p l i c a t i o n concerns t h e s o l i d r e s i d u e i n a p i l g r i m flask of the t h i r d c e n t u r y A . D . f r o m t h e R h i n e l a n d , w h i c h was also r e f e r r e d to us b y R o b e r t H . B r i l l . A b o u t 7 0 % of the m a t e r i a l was s o l u b l e i n c a r b o n t e t r a c h l o r i d e , a n d its N M R s p e c t r u m ( F i g u r e 7 ) i m m e d i a t e l y i d e n t i f i e d it as a m i x t u r e of s a t u r a t e d fatty acids ( a n d t h e i r s o l u b l e salts) w i t h a n average c h a i n l e n g t h of 14 to 16 c a r b o n atoms, c o r r e s p o n d i n g to m y r i s t i c and
p a l m i t i c acids.
T h i s a v e r a g e m o l e c u l a r w e i g h t was o b t a i n e d
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
by
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
232
ARCHAEOLOGICAL CHEMISTRY
J
I
8
I
7
6
Figure 7.
I
I
5
4
I
3
I
I
2
L
1
0
Fat from pilgrim flask, third century A . D .
c o m p a r i n g t h e i n t e g r a l of the t e r m i n a l m e t h y l g r o u p ( w h i c h is k n o w n to c o n t a i n three p r o t o n s )
a n d the i n t e g r a l of the α-methylene
group
( w h i c h is k n o w n to c o n t a i n t w o p r o t o n s ) w i t h the i n t e g r a l of the l a r g e singlet p r o d u c e d b y essentially i d e n t i c a l n o r m a l m e t h y l e n e groups the s a t u r a t e d straight c h a i n .
of
T h i s m e t h o d c a n n o t b e h i g h l y accurate
because the signals u s e d are too close to p e r m i t p r e c i s e m e a s u r e m e n t of t h e i r i n t e g r a l s . F u r t h e r m o r e the a n s w e r o b t a i n e d is necessarily a n a v e r age c h a i n l e n g t h of a m i x t u r e ; t h e a c t u a l c o m p o s i t i o n m u s t b e e s t a b l i s h e d b y gas c h r o m a t o g r a p h y of the m e t h y l esters.
I n the present case the
latter t e c h n i q u e s h o w e d t h a t m y r i s t i c a c i d is i n d e e d the p r i n c i p a l f a t t y a c i d present. H o w e v e r , N M R s p e c t r o m e t r y c a n be u s e d v e r y effectively to d e t e r m i n e the c h a i n l e n g t h , a n d h e n c e i d e n t i f y the a c i d , of a s i n g l e p u r e c o m p o n e n t after c h r o m a t o g r a p h i c s e p a r a t i o n ; the m e t h y l ester g r o u p i n t r o d u c e s a n e w s i g n a l at a b o u t 3.7 δ w h i c h is w e l l s e p a r a t e d f r o m a l l other signals a n d c a n therefore b e i n t e g r a t e d p r e c i s e l y . c o n t a i n three protons.
It is k n o w n to
A c o m p a r i s o n of its i n t e g r a l w i t h the i n t e g r a l of
a l l t h e other signals c o m b i n e d is a n excellent m e a s u r e of c h a i n l e n g t h as s h o w n b y the e x a m p l e of m e t h y l p a l m i t a t e ( F i g u r e 8 ) w h i c h shows a n e r r o r of less t h a n one p r o t o n . The Structure
of
Amber
A n o t h e r p r o m i s i n g a p p l i c a t i o n of N M R s p e c t r o m e t r y to a r c h a e o l o g i c a l p r o b l e m s deals w i t h fossil resins. T h e s e t e r p e n o i d p o l y m e r s , the best k n o w n of w h i c h is a m b e r , h a v e p l a y e d a large r o l e i n t r a d e relations d u r i n g p r e h i s t o r i c times since at least t h e n e o l i t h i c e r a , a n d the deter m i n a t i o n of t h e i r g e o g r a p h i c a n d b o t a n i c a l o r i g i n c a n c o n t r i b u t e to o u r k n o w l e d g e of this e a r l y c o m m e r c e .
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
NMR
BECK E T A L .
233
Spectrometry
Palaeobotanists h a v e assigned t h e source tree of t h e B a l t i c a m b e r o f n o r t h e r n E u r o p e to a n extinct species of p i n e , Firms succinifera,
on purely
m o r p h o l o g i c a l g r o u n d s b u t h a v e b e e n u n a b l e to relate this tree to a n y l i v i n g p i n e species
( 3 ) . T h i s assignment has l e d some investigators t o
t h e hypothesis that B a l t i c a m b e r m a y b e a d e r i v a t i v e o f t h e p r i n c i p a l r e s i n a c i d of most c o m m o n i n f r a r e d spectroscopic
m o d e r n p i n e s — a b i e t i c a c i d (4).
Chemical and
e v i d e n c e raises some serious difficulties w i t h this
v i e w ( 5 ) b u t w i t h o u t b e i n g a b l e to resolve t h e q u e s t i o n .
One crucial
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
p o i n t concerns t h e presence of i s o p r o p y l groups i n B a l t i c a m b e r .
Such
groups are present i n a b i e t i c a c i d a n d i n a l l t h e p o l y m e r i c d e r i v a t i v e s o f a b i e t i c a c i d w h i c h h a v e b e e n c o n s i d e r e d as constituents of f o s s i l a m b e r , b u t t h e y a r e absent i n t h e p r i n c i p a l r e s i n acids of m a n y other possible source trees, i n c l u d i n g n o t o n l y other conifers b u t also N o r t h A m e r i c a n a n d A s i a t i c pines w h i c h m i g h t w e l l h a v e
flourished
i n the m i l d climate
of t h e E u r o p e a n T e r t i a r y p e r i o d . U n f o r t u n a t e l y , fossil resins a r e l a r g e l y i n s o l u b l e b e c a u s e of t h e i r p o l y m e r i c character, a n d a d i s s o l v e d s a m p l e is a p r e r e q u i s i t e f o r a w e l l resolved N M R spectrum.
W e h a v e therefore
carried out comparative
N M R studies o n t h e s o l u b l e pyrolysates of a m b e r a n d of p i n e resins.
I
1
8
ι
1
7
6
ι 5
Figure 8.
ι 4
Methyl
ι 3
ι 2
ι 1
L J 0
palmitate
T h e p y r o l y s i s of p i n e r o s i n y i e l d s p i n e o i l w h i c h has l o n g
been
k n o w n ( 6 ) to c o n t a i n l a r g e amounts of p - c y m e n e ( p - i s o p r o p y l t o l u e n e , bp, 177°C).
W e have prepared pine o i l b y d r y distillation of commercial
r o s i n a n d f r a c t i o n a t e d i t at a t m o s p h e r i c pressure i n t o 10° cuts. T h e N M R s p e c t r u m of t h e f r a c t i o n b o i l i n g at 1 7 0 ° - 1 8 0 ° C ( F i g u r e 9 ) shows t h a t p - c y m e n e is i n d e e d t h e m a j o r constituent present.
T h e N M R spectrum
of p u r e p - c y m e n e has b e e n r e p o r t e d ( 7 ) , a n d its signals are p r o m i n e n t i n the s p e c t r u m of p i n e o i l . T h e d o u b l e t at 1.22 δ, w i t h a c o u p l i n g constant
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
234
ARCHAEOLOGICAL CHEMISTRY
of 7 cps, is c a u s e d b y the t w o i d e n t i c a l m e t h y l groups of the i s o p r o p y l structure, split b y the n e i g h b o r i n g t e r t i a r y p r o t o n .
T h i s latter p r o t o n
accounts f o r the m u l t i p l e t ( t h e o r e t i c a l l y a septet) at 2.85 δ. T h e s i n g l e t of the t o l u e n e - m e t h y l g r o u p appears at 2.30 δ i n p u r e p - c y m e n e .
The
s p e c t r u m of the p i n e o i l f r a c t i o n shows t w o singlets, at 2.28 a n d 2.29 δ, respectively.
E i t h e r m a y be the p - c y m e n e
m e t h y l g r o u p ; the other is
m o s t l i k e l y c a u s e d b y a n a d m i x t u r e of the isomer m - c y m e n e .
T h e pres
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
ence of other isomers is also e v i d e n t f r o m the m u l t i p l i c i t y of the a r o m a t i c r i n g protons. W h i l e p u r e p - c y m e n e gives a s h a r p singlet at 7.08 δ, p i n e o i l shows s p l i t t i n g of the b e n z e n o i d protons w h i c h a g a i n m a y be
ac
c o u n t e d for b y the presence of the m e t a isomer. B o t h isomers w o u l d b e e x p e c t e d f r o m the p y r o l y t i c cleavage of a n a b i e t i c a c i d m o l e c u l e . T h e same signals of p - c y m e n e
are also present, a l t h o u g h at l o w e r intensities, i n
the N M R spectra o f the p i n e o i l fractions b o i l i n g at 1 6 0 ° - 1 7 0 ° C , 190°C, and 190°-200°C.
180°-
T h u s N M R offers a s i m p l e means of e s t a b l i s h
i n g the presence of i s o p r o p y l groups i n resins of the a b i e t i c a c i d t y p e .
J 8
1 7
Figure 9.
1 6
1 5
ι 4
ι 3
ι
ι
2
Pine oil fraction, boiling point
L 1
0
170°-180°C
O i l of a m b e r o b t a i n e d b y d e s t r u c t i v e d i s t i l l a t i o n of B a l t i c y i e l d e d o n l y a v e r y s m a l l f r a c t i o n b o i l i n g i n t h e r a n g e of T h e N M R s p e c t r u m of this f r a c t i o n ( F i g u r e 10)
amber
160°-180°C.
lacks the p r o m i n e n t
i s o p r o p y l d o u b l e t . I n its a p p r o x i m a t e p l a c e there appears a c h a r a c t e r i s t i c s i g n a l of three e v e n l y s p a c e d peaks. It c a n n o t b e a p r o p e r t r i p l e t because the distance b e t w e e n the peaks is o n l y a b o u t 3.5 cps a n d because
the
intensity of the peaks is not i n the r e q u i r e d 1:2:1 r a t i o . I t seems t h e r e fore l i k e l y t h a t this t r i p l e s i g n a l is m e r e l y a n a c c i d e n t a l s u p e r i m p o s i t i o n of a d o u b l e t h a v i n g a n o r m a l c o u p l i n g constant of 7 cps w i t h another q u i t e u n r e l a t e d singlet. I f so, the d o u b l e t m a y s t i l l be the r e s u l t of a n i s o p r o p y l g r o u p , b u t the w e i g h t s of the fractions a n d t h e i r spectra s h o w
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF TENNESSEE KNOXVILLE on March 15, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0138.ch012
12.
NMR
BECK E T A L .
8
6
7
Figure 10.
235
Spectrometry
5
4
Oil of amber fraction,
Ο
2
3
boiling point
that a m b e r y i e l d s s i g n i f i c a n t l y less p - c y m e n e
160°-180°C
t h a n does r e s i n . C u r r e n t
w o r k o n the i s o l a t i o n o f i n d i v i d u a l a l k y l b e n z e n e s f r o m r e s i n p y r o l y s a t e s f o l l o w e d b y N M R analysis o f the p u r e c o m p o n e n t s structures f o r t h e constituents o f B a l t i c a m b e r . NMR
spectroscopy
has c o n f i r m e d
that there
may provide partial E v e n now, however,
a r e essential s t r u c t u r a l
differences b e t w e e n B a l t i c a m b e r a n d the a b i e t i c a c i d resins o f t h e c o m m o n species o f l i v i n g pines.
T h e s e f e w r a n d o m examples i l l u s t r a t e t h e
p o t e n t i a l c o n t r i b u t i o n s w h i c h N M R s p e c t r o m e t r y is a b l e t o m a k e to t h e archaeological chemistry of organic materials. Literature Cited 1. Roberts, J. D., "Nuclear Magnetic Resonance: Applications to Organic Chemistry," McGraw-Hill, New York, 1959. 2. Bible, R. H., "Interpretation of NMR Spectra; An Empirical Approach," Plenum Press, New York, 1965. 3. Schubert, K., Beiheft z. Geol. Jahrb. (1961) 45. 4. Rottländer, R. C. Α., Archaeometry (1970) 12, 35. 5. Beck, C. W., Naturwissenschaften (1972) 59, 294. 6. Kelbe, W., Ann. (1882) 210, 1. 7. Varian Associates, "High-Resolution NMR Spectra Catalog," 1962, spec trum 268. RECEIVED July 9, 1973.
Beck; Archaeological Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1974.