3 Asbestos as a Reinforcement and Filler in Plastics JOHN W. AXELSON
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
Johns-Manville Research Center, P . O . Box 5108, Denver, Colo. 80217
Four varieties of asbestos are used in the plastics industry: chrysotile, crocidolite, amosite, and anthophyllite. Some are used as raw fiber, felts, cloth yarns, and paper. Asbestos wets out in resin systems but is difficult to disperse. Because of its high chemical reactivity, under certain conditions it tends to cause some high temperature instability with cer tain resins—e.g., PVC and polypropylene. Generally, as bestos will improveflexuralmodulus of plastics 100% or more,flexuralstrength up to 50%, and heat distortion tem perature by 30°F or more. Thermal coefficient of expansion is also reduced. Impact strength can be reduced as much as 50% by adding asbestos. However, this apparently can be overcome by using lubricants or bond breakers on the asbestos to minimize the resin-asbestos bond; flexural properties and heat distortion temperature are not affected.
A sbestos has b e e n r e c o g n i z e d as a n i n d i v i d u a l m a t e r i a l f r o m t h e t i m e of M a r c o P o l o — i . e . , f o r m o r e t h a n 700 years.
H o w e v e r , its w i d e -
s p r e a d use d i d n o t o c c u r u n t i l t h e t w e n t i e t h c e n t u r y . T o d a y ' s e s t i m a t e d w o r l d w i d e asbestos u s e is almost five m i l l i o n tons.
Canada
produces
almost 4 0 % of this a m o u n t a n d R u s s i a almost one-half. W h a t is asbestos? T h e n a m e is a g e n e r i c t e r m g i v e n to a g r o u p o f fibrous
minerals.
T h e largest p o r t i o n contains o n l y o n e m i n e r a l w h i c h
is c a l l e d c h r y s o t i l e f r o m t h e s e r p e n t i n e g r o u p a n d is t h e w h i t e asbestos comprising about 9 5 % of the w o r l d production.
T h e second portion of
c o m m e r c i a l asbestos is i n t h e a m p h i b o l e g r o u p a n d has three varieties of i m p o r t a n c e . T h e first is c r o c i d o l i t e o r b l u e asbestos w h i c h is u s e d as a r e i n f o r c i n g fiber i n some plastics because of its a c i d resistance. I t is a v a i l a b l e as fiber, p a p e r , y a r n , felt, a n d c l o t h . i n these forms.
A m o s i t e is t h e s e c o n d
C h r y s o t i l e is also a v a i l a b l e
a m p h i b o l e b u t is n o t u s e d i n
16 Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
AXELSON
Table I.
Chemical Formulas of Asbestos
Chrysotile Crocidolite Amosite Anthophyllite Tremolite Actinolite
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
17
Asbestos in Plastics
Mg [(OH) Si 0 ]2 Na MgFe5[(OH)Si Oii]2 MgFe [(OH)Si Oii] (Mg, F e ) [ ( O H ) S i O i i ] 2 Ca Mg [(OH)Si Oii] Ca (Mg, Fe) [(OH)Si On] e
4
2
5
2
4
e
4
2
7
2
2
Figure 1.
Figure 2.
4
5
4
5
2
4
2
Plain view of chrysotile
Cross-sectional view of chrysotile
plastics as f a r as is k n o w n .
The third amphibole—anthophyllite—avail-
able o n l y as a short fiber, is u s e d extensively i n filled p o l y p r o p y l e n e . C h e m i c a l f o r m u l a s f o r t h e t w o f a m i l i e s of asbestos are g i v e n i n T a b l e I. F i g u r e 1 is a p l a i n v i e w of c h r y s o t i l e asbestos, a n d F i g u r e 2 is a cross-sectional v i e w . B o t h s h o w t h e h o l l o w , t u b u l a r n a t u r e of c h r y s o t i l e .
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
18
FILLERS AND REINFORCEMENTS
FOR PLASTICS
Asbestos is a n a t u r a l l y o c c u r r i n g m i n e r a l l a r g e l y m i n e d b y o p e n p i t b u t w i t h some b y u n d e r g r o u n d t e c h n i q u e s .
T h e r o c k , c o n t a i n i n g veins
of fiber, is b l a s t e d a n d c r u s h e d to a b o u t a 1-inch m a x i m u m size. m a t e r i a l t h e n goes t h r o u g h v e r t i c a l h a m m e r m i l l s c a l l e d
The
fiberizers
release t h e fiber. G y r a t o r y screens separate the fiber f r o m the rock. u n d e r s i z e d r o c k goes to t a i l i n g s ; the o v e r s i z e d r o c k goes to
to The
fiberizers
w h e r e the a c t i o n is r e p e a t e d ; t h e fiber is a i r a s p i r a t e d off the e n d of the screens to c y c l o n e collectors.
T h e fiber m a y b e processed
f u r t h e r to
r e m o v e u n d e s i r a b l e fractions or to c h a n g e its c h a r a c t e r , b u t e v e n t u a l l y
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
i t is g r a d e d a n d b a g g e d for s h i p m e n t . Table II.
Grading of Asbestos
Grade
Length or Distribution
No. 1 Crude No. 2 Crude
1/2 inch
Grade
4
7.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table III.
Mesh 7.0 8.0 7.0 2.0 0.5 0.0 0.0 0.0 0.0
Analysis 10
Pan
Mesh
0.5 2.0 3.0 4.0 5.0 6.0 9.0 11.0 16.0
1.5 4.0 6.0 10.0 10.5 10.0 7.0 5.0 0.0
Approximate Comparative Lengths and Costs of Chrysotile Approximate Comparative Length inch y
2 3 4 5 6 7
Size
3 / 4 i n c h or longer 3/8 to 3/4 inch Quebec Screen
3K 3T 4D 4T 5D 5R 6D 7D 7R
by Screen
5/8 1/2 3/16 1/8 1/16 1/32
Approximate Price,
Delivered i/lb
45 27 13 10 7 4
Asbestos g r a d i n g is g e n e r a l l y d o n e b y a d r y screen analysis. T h e most p o p u l a r is the Q u e b e c screen test w h i c h designates the m a x i m u m ounces o n the t o p screen a n d the m i n i m u m ounces i n t h e p a n for a 1-lb sample.
T h e test p r o c e d u r e is v e r y specific, a n d t y p i c a l s a m p l e grade
designations are g i v e n i n T a b l e I I . T h e shorter the l e n g t h of the
fiber,
the h i g h e r t h e first d i g i t i n t h e classification; the l o w e r i n the a l p h a b e t
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
Asbestos in
AXELSON
Table IV.
Color
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
Properties of Asbestos
Chrysotile
Property
19
Plastics
A mosite
Crocidolite blue
brown
469,000605,000 27.1 Χ 10
148,000203,000 23.6 Χ 10
w h i t e to
gray Tensile strength, 281,000psi 436,000 M o d u l u s of e l a s t i c i t y , 23.2 Χ 10 psi Hardness, mohs 2.5-4 Flexibility good Specific heat, 0.266 Btu/lb/°F Specific g r a v i t y 2.4-2.6 pH 10.3 R e f r a c t i v e index 1.50-1.55 F i b r i l diameter, A 160-300 Surface area, B E T , 1.7-60 m /gram Coeff. of c u b i c a l 5 X 10exp, °F C h a r g e i n water positive Isoelectric p o i n t 11.3-11.8 R e s i s t a n c e to acids poor R e s i s t a n c e to bases good
6
6
A
nthophyllite gray to brown 350,000
6
22.5 Χ
10
4 fair 0.201
5.5-6.0 poor 0.193
5.5-6.0 poor 0.210
3.2-3.3 9.1 1.70 600-900 9-10.5
3.1-3.25 9.1 1.64 600-900 8-9
2.9-3.2 9.4 1.61 600-900 6-7
negative
negative
negative
good good
good fair
good good
6
2
5
Table V .
Mechanical Properties of Asbestos-Reinforced
Material P h e n o l i c c r o c i d o l i t e felt P o l y e s t e r crocidolite felt M e l a m i n e formaldehyde chrysotile paper Phenolic chrysotile molding compound
Resins
Tensile Strength, psi
Flexural Strength, psi
Tensile Modulus, psi (x m
30,000 35,000 9,000
58,000 45,000 18,000
3.3 3.0 1.7
13,000
30,000
4.0
i n a grade series, the shorter the
fiber.
A d d i t i o n a l suffixes b y e a c h p r o
d u c e r i n d i c a t e the degree of openness of the
fiber.
T a b l e I I I lists a p
p r o x i m a t e average lengths for the v a r i o u s grades of asbestos fiber a n d also a n a p p r o x i m a t e d e l i v e r e d p r i c e . O n e of the attributes of asbestos fiber is its r e l a t i v e l y l o w p r i c e vs. its p e r f o r m a n c e . fiber.
N a t u r a l l y , the p r i c e is reflected b y the l e n g t h of t h e
L a t e r , w e s h o w that the shorter, l o w e r p r i c e d fibers are g e n e r a l l y
those that are u s e d i n plastics w i t h g o o d
effectiveness.
Asbestos exhibits u n i q u e properties ( T a b l e I V ) .
O n e p r o p e r t y not
l i s t e d i n T a b l e I V is its a b i l i t y to b e w e t out b y a l l r e s i n a n d latex systems. O c c a s i o n a l l y i t is difficult to disperse asbestos p r o p e r l y because the i n d i -
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
20
FILLERS AND R E I N F O R C E M E N T S FOR PLASTICS
vidual
fibrils
are v e r y s m a l l a n d t e n d to a g g l o m e r a t e , b u t there is n o
e v i d e n c e t h a t asbestos is n o t easily w e t t e d out b y a l l systems. O n e of t h e u n i q u e p r o p e r t i e s of c h r y s o t i l e is the p o s i t i v e c h a r g e i t d e v e l o p s i n the presence of w a t e r ; this m a y h a v e some b e a r i n g o n its excellent w e t t a bility. Asbestos fiber c a n b e c o n s i d e r e d as b o t h a r e i n f o r c i n g fiber a n d a reinforcing
filler.
I n the first case, s p e c i a l l o n g grades of asbestos or
s p e c i a l forms s u c h as p a p e r , c l o t h , or felt are u s e d to o b t a i n h i g h p e r formance products.
S o m e of t h e properties w h i c h c a n b e o b t a i n e d are
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
s h o w n i n T a b l e V . A s a r e i n f o r c i n g filler, asbestos i m p a r t s m a n y p r o p e r ties w h i c h are not o b t a i n e d w i t h g r a n u l a r fillers. V a r i o u s advantages a n d d i s a d v a n t a g e s of asbestos as a r e i n f o r c i n g fiber or
filler
are s h o w n i n
Tables V I and V I I . Table V I . Advantages L o w cost E a s y flash r e m o v a l F l o w control in mold M i n i n u m fiber d e g r a d a t i o n G o o d flexural s t r e n g t h L o w water absorption H e a t resistance G o o d e l e c t r i c a l properties C h e m i c a l resistance Table VII. Advantages H i g h modulus Tensile improvement F l o w control i n mold G o o d surface finish Heat stability Dimensional stability L o w creep C h e m i c a l resistance H i g h e r hardness A r c resistance L o w water absorption L o w t h e r m a l coefficient
as a Reinforcing Fiber Disadvantages F a i r impact strength D a r k color P o s s i b l e m i x i n g difficulties
Asbestos as a Reinforcing Filler Disadvantages Increase i n resin v i s c o s i t y F a i r e l e c t r i c a l resistance S o m e abrasiveness Possible polymer degradation H i g h density
O n e c o n t r o l l a b l e aspect of asbestos that s h o u l d b e f u l l y r e c o g n i z e d is its effect o n the heat s t a b i l i t y of c e r t a i n p o l y m e r s . B e c a u s e of its h i g h surface area a n d c h e m i c a l r e a c t i v i t y , c h r y s o t i l e p a r t i c u l a r l y tends to d e crease the heat s t a b i l i t y of c e r t a i n p o l y m e r s s u c h as p o l y ( v i n y l c h l o r i d e ) and polypropylene.
H o w e v e r , w i t h proper stabilizers a n d antioxidants.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
AXELSON
Asbestos in
21
Plastics
b o t h p o l y m e r s c a n b e s t a b i l i z e d f o r p r o c e s s i n g temperatures a n d l o n g t e r m use at e l e v a t e d temperatures. T h e next tables a n d figures s h o w w h a t k i n d of p h y s i c a l p r o p e r t i e s c a n b e o b t a i n e d w i t h v a r i o u s asbestos
fibers.
Standard techniques were
u s e d to p r e p a r e a l l specimens, a n d testing w a s d o n e i n a c c o r d a n c e A S T M procedures.
F i g u r e s 3, 4, a n d 5 d e p i c t the i m p a c t a n d
strengths w h i c h c a n b e o b t a i n e d i n a p o l y e s t e r m i x w i t h asbestos
with flexural fibers
of v a r i o u s lengths ( 1 / 8 to 1/2 i n c h ) vs. a c o m m e r c i a l fiber w i t h a n o m i n a l
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
length (3/16 inch).
T h e asbestos
40001 10
for these tests w e r e p r e p a r e d
20 F K R
Figure 3.
fibers
SO
LOADING-%
Flexural strength for
chrysotile-polyester
f r o m c r u d e fiber. T h e s e w e r e c a r e f u l l y c u t b y h a n d to t h e d e s i r e d l e n g t h a n d t h e n o p e n e d g e n t l y to m i n i m i z e fiber s h o r t e n i n g b y p a s s i n g t h r o u g h a small impact mill.
T h e fibers w e r e i n c o r p o r a t e d i n t o t h e l i q u i d p o l y -
ester i n a s m a l l s i g m a b l a d e t y p e m i x e r . T h e final m i x w a s c o m p r e s s i o n m o l d e d at 300° F for 5 m i n at 500 p s i , a n d test specimens w e r e c u t f r o m the m o l d e d piece.
A s c a n be seen, fiber l e n g t h does not seem to h a v e
a n y significant effect o n the p h y s i c a l p r o p e r t i e s o b t a i n e d .
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
22
F I L L E R S A N D R E I N F O R C E M E N T S FOR PLASTICS
1201
lOOl -I
ao
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
/
/
/
/
1/4 N.0LA88
20
5
0
FBER LOADING -%
Figure 4. Notched impact strength for chrysotilepolyester
IN. At 8.
30
Figure 5. Unnotched impact strength for chrysotile-polyester
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
23
Asbestos in Plastics
AXELSON
T a b l e V I I I lists t h e g e n e r a l treatments w h i c h w e r e g i v e n to asbestos fiber before i n c o r p o r a t i o n i n a polyester resin. T h e treatments w e r e g e n e r a l l y d o n e i n a solvent s l u r r y w i t h subsequent d r y i n g a n d o p e n i n g of t h e asbestos.
S a m p l e p r e p a r a t i o n a n d testing w e r e as p r e v i o u s l y d e
s c r i b e d . P h y s i c a l p r o p e r t i e s w e r e not i m p r o v e d w i t h a n y of these treat ments.
T h i s a d d s to t h e e v i d e n c e for g o o d fiber w e t t i n g a n d t h e l a c k
of n e e d for fiber treatment. T a b l e s I X , Χ , X I , a n d X I I a n d F i g u r e s 6, 7, a n d 8 d e p i c t some p r o p
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
erties o b t a i n e d w h e n asbestos fiber is i n c o r p o r a t e d i n f o u r t y p i c a l resins. Table VIII. 1. 2. 3. 4. 5.
Fiber Treatments
C r o s s l i n k asbestos to resin F l e x i b i l i z e t h e fiber to resin b o n d C o a t asbestos t o i m p r o v e c o m p a t a b i l i t y E n c a p s u l a t e asbestos t o give i n t e g r a l b u n d l e s L e t free w a t e r react on asbestos surface Table I X .
Fiber
%
None 7M02
Added — 20 30 40 20
Glass, 1/4 inch
Asbestos in Polyethylene
Flexurol Strength, psi
Flexural Modulus, psi Χ 10
4170 4560 5840 5440 4800
1.54 2.82 4.21 6.44 3.50
Table X .
Asbestos
Added
—
4 0 % l o n g fiber (Plastibest #20) 4 0 % short fiber (7D04) 2 0 % 1/4-inch glass
5
Tensile Strength, psi Χ 10
5
3260 2440 3380 3900 3220
Impact Strength (Notched Izod) ftlbs/inch
Heat Distortion^
0.9 0.4 0.6 0.9 1.6
op
120 131 157 192 122
Asbestos in ABS
Tensile Strength, psi
Impact Strength, (Notched Izod), ft- Distortion. op Ibs/inch
Flexural Strength, psi
Flexural Modulus, psi Χ 10
10,650
0.54
5855
1.42
190
8,765
1.11
4715
0.52
202
8,290
1.39
6340
0.58
208
10,350
0.58
5595
0.70
207
6
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
24
FILLERS AND R E I N F O R C E M E N T S FOR PLASTICS
Table X I .
Asbestos in Phenolics Flexural Modulus, psi Χ 10
Flexural Strength, psi
Material
Impact Strength (Notched Izod), ft-lbs/inch
6
A . T w o Stage P h e n o l i c P o w d e r p l u s Asbestos None 4 0 % 7 R F 0 2 fiber 6 0 % 7 R F 0 2 fiber o
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
0.78 1.44 2.03
0.28 0.20 0.39
13,700
1.03
0.32
9,800
1.31
0.30
8,900 13,500 12,900
B . Filled Commercial M o l d i n g Compound G e n e r a l purpose w o o d flour H e a t resistant J - M 7 T 1 5 asbestos
Table XII.
Asbestos
Added
Asbestos in Polystyrene
Heat Dostortion, °F
Flexural Strength, psi
Flexural Modulus, psi Χ 10
5195
2.91
2585
1.42
179
5180
6.24
3570
1.09
201
7410
5.97
2500
0.56
194
5895
4.86
2680
0.65
194
None 4 0 % l o n g fiber (plastibest #20) 4 0 % short fiber (7D04) 2 0 % 1/4-inch glass
5
Tensile Strength, psi
Impact Strength (Notched Izod), ftlbs/inch
T h e p o l y e t h y l e n e samples for T a b l e I X w e r e p r e p a r e d b y p r e b l e n d i n g the r e s i n a n d fiber i n a t u m b l e r a n d t h e n fluxing o n a r o l l m i l l at 2 5 0 ° F for 10 m i n . Pieces w e r e c u t 4 X 4 inces f r o m the sheet off the m i l l a n d c o m p r e s s i o n m o l d e d to samples 4 % inches X 4 X 1 / 8 - i n c h . H o t p r e s s i n g w a s d o n e at 3 5 0 ° F for 5 m i n w i t h a 1-ton l o a d ; t h e n the m o l d w a s t r a n s f e r r e d to a w a t e r - c o o l e d press w h e r e a 20-ton l o a d w a s a p p l i e d o v e r 60 sec a n d h e l d for several m i n u t e s . S p a c e r bars w e r e u s e d to c o n t r o l t h i c k ness. C u t t i n g a n d testing of s a m p l e s w e r e a c c o r d i n g to A S T M p r o c e d u r e s . T h e p r e p a r a t i o n o f A B S samples for t h e d a t a i n T a b l e X started w i t h f u s i n g of the r e s i n o n a r o l l m i l l at 325° F a n d s l o w a d d i t i o n of the Sheets 8 X
fiber.
8 inches w e r e c u t a n d p l a c e d i n a m o l d to g i v e a s a m p l e
9 X 9 X 1 / 4
inch.
T h e y w e r e pressed at 4 0 0 ° F w i t h 100 tons w i t h a
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
AXELSON
Asbestos in
Plastics
25
w a r m - u p t i m e of 5 m i n , 10 m i n for p r e s s i n g , a n d 15 m i n i n t h e c o o l i n g press. P h e n o l i c specimens i n T a b l e X I w e r e p r e p a r e d b y d r y b l e n d i n g a two-stage r e s i n a n d the fiber b e f o r e p l a s t i c a t i n g o n a r o l l m i l l at 2 9 0 ° F for IV2 m i n . T h e c o o l e d sheet w a s passed t h r o u g h a h a m m e r m i l l , a n d the resultant p o w d e r w a s c o m p r e s s i o n m o l d e d for 30 m i n at 290° F a n d 3000 p s i to g i v e specimens 9 X 9 X 1 / 8 i n c h . P o l y s t y r e n e w a s h a n d l e d
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
i n t h e same w a y as A B S except t h e r o l l m i l l t e m p e r a t u r e w a s o n l y 275 ° F .
100 20
40
20
60
40
% Fiber
% Fiber
Flexural Modulus
Htat Deflection (264 psi)
Figure 6.
Asbestos in
polyethylene
T h e increases i n m o d u l u s , flexural strength, a n d heat deflection t e m p e r a t u r e are t h e m o s t notable.
I m p r o v e m e n t i n these properties is the
p r i m a r y reason f o r u s i n g asbestos.
C o n v e r s e l y , the m a j o r deficiency is
the loss i n i m p a c t strength. It is h o p e d t h a t this c a n be o v e r c o m e b y t h e t e c h n i q u e d e s c r i b e d b y D u p o n t b y r e d u c i n g the b o n d b e t w e e n t h e
fiber
a n d the m a t r i x ( 1 ). S o m e recent w o r k not yet r e a d y for p u b l i c a t i o n shows t h a t this t e c h n i q u e does w o r k for asbestos i n r i g i d P V C . T h e
asbestos
is p r e t r e a t e d w i t h a l u b r i c a n t a n d p r e b l e n d e d w i t h P V C b e f o r e e x t r u s i o n . F i n a l properties of the e x t r u d e d a r t i c l e , i n c l u d i n g i m p a c t strength, h a v e e q u a l e d those of a n u n f i l l e d p a r t , a n d the m o d u l u s has s h o w n c o n s i d e r able improvement.
T h i s w o r k looks v e r y i n t e r e s t i n g a n d s h o u l d
a p p l i c a b l e to other systems.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
be
26
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
R e c e n t w o r k w i t h p r o p e r l y s t a b i l i z e d p o l y p r o p y l e n e has s h o w n t h e effectiveness
o f c h r y s o t i l e vs. v a r i o u s other types of
fillers.
T h e work
r e p o r t e d i n T a b l e X I I I w i t h p o l y p r o p y l e n e u s e d t h e m i x i n g c h a m b e r of a This was roughly
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
B r a b e n d e r P l a s t i c o r d e r t o b l e n d the fillers a n d r e s i n .
General Purpose
Heat Resistant
Strength Lots Figure 7.
Asbestos in phenolics; two-weeks water saturation at 75°F
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
3.
AXELSON
Figure 8.
Asbestos in phenolics; two-weeks oven aging at 375°F
Table XIII.
Physical Properties of Filled Polypropylene
Flexural, Filler Unfilled Talc Wollastonite Anthoplyllite Chrysotile α
Strength
Impact Heat Strength Deflection (Notched), Temp, °F ft-lbs/inch
psi Modulus
5200 7200 5700 6900 9000
1.9 5.9 3.7 5.1 6.1
Χ Χ X Χ Χ
10 10 10 10 10
5 5 s 5 5
136 204 159 183 239
Heat Stability, hrs at 150°C 2000+ 2000+ 2000+ 1000 1500"
0.5 0.5 0.5 0.5 0.5
Contained special antioxidant.
Table X I V .
Filler CaC0 Chrysotile 3
a
27
Asbestos in Plastics
Radiant Panel Flammability Test for H i g h Density Polyethylene-40% Filler Heat Evolution Factor, Q
Flame Spread Factor, F
10.8* 14.4
19.6 4.3
S
Flame Spread Index, I = F Q 8
213 62
Low because of drippage through screen support.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
S
28
FILLERS A N D R E I N F O R C E M E N T S F O R PLASTICS
compacted into a disc about 1/4-inch thick a n d then compression m o l d e d u s i n g t h e h o t - c o l d press t e c h n i q u e d e s c r i b e d f o r p o l y e t h y l e n e .
However,
the h o t press t e m p e r a t u r e w a s 4 0 0 ° F . O n e significant f e a t u r e is t h e fire resistance w h i c h is i m p a r t e d to a n asbestos-filled r e s i n as s h o w n i n Table X I V .
Literature Cited
Downloaded by EAST CAROLINA UNIV on April 11, 2018 | https://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch003
1. Speri, W. M., Jenkins, O. F., "Effect of Fiber-Matrix Adhesion on the Prop erties of Short Fiber Reinforced ABS," Ann. Tech. Conf., 28th, Society of Plastics Industry, Washington, D. C., 1973. RECEIVED October 11, 1973.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.