9 Determination of Ascorbic A c i d and Dehydroascorbic A c i d HOWERDE E. SAUBERLICH, MARTIN D. GREEN, and STANLEY T. OMAYE Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
1
U . S . Department of A g r i c u l t u r e - S E A Western H u m a n Nutrition Research Center and Letterman A r m y Institute of Research, Presidio of San Francisco, CA 94129
Advantages and limitations of commonly used and recently developed methods for the analysis of ascorbic acid and dehydroascorbic acid in foods and biological samples have been reviewed. Various procedures based on titrimetric, spectrophotometric, or fluorometric principles have been used for this purpose. Depending upon the procedure selected, dehydroascorbic acid, hydroascorbic acid, or total ascorbic acid levels may be measured. Although often quite accurate, these techniques can be laborious and time-con suming. Recently, the usefulness of high performance liquid chromatography (HPLC) in the measurement of ascorbic acid in multivitamin products has been extended to foods and biological materials, including plasma, and liver, brain, and adrenal glands. Advantages of the technique include fast analysis times, high sensitivity, and minimum sample preparation.
There are many methods for determining the α-ketolactone, L-ascorbic acid (1-threo-2,4,5,6-pentohexane-2-carboxylic acid lactone), activity in animal tissue extracts and fluids (1,2) and food extracts (3,4). With the exception of outdated bioassays, most of the analytical procedures used for the measurement of ascorbic acid fall into two categories: (i) the determination of the reduced form of ascorbic acid, usually based upon the oxidation-reduction properties of the vitamin; or (ii) the determination of total ascorbic acid based upon the oxidation of ascorbic 1
Current address: U.S. Department of Agriculture-SEA Western Regional Re search Center, Berkeley, CA 94710. This chapter not subject to U.S. copyright. Published 1982 American Chemical Society. In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
200
ASCORBIC
a c i d f o l l o w e d b y t h e f o r m a t i o n of a h y d r a z o n e or
fluorophor
ACID
(5).
The
s i t u a t i o n r e g a r d i n g c h e m i c a l analyses for the v i t a m i n r e m a i n s d y n a m i c , v e r y m u c h l i k e the s e a r c h for the b i o c h e m i c a l m e c h a n i s m of a c t i o n of ascorbic acid.
T h e complex biological relationship between
the
com
p o u n d ^ ) possessing v i t a m i n C a c t i v i t y , as w e l l as the c h e m i c a l s i m i l a r i t y of these c o m p o u n d s to others t h a t are i n a c t i v e , has m a d e t h e existence of a single, s i m p l e , a n d specific m e t h o d close to i m p o s s i b l e .
T h i s has
l e d to a p r o l i f e r a t i o n of m e t h o d p a p e r s t h a t has c o n t i n u e d to the present. Recently,
due
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
chromatography L-ascorbic
to
the advancements
(HPLC),
i n h i g h performance
quantitative measurements
of
liquid
unmodified
a c i d a n d its m e t a b o l i t e s h a v e b e c o m e possible.
Soon
the
m e a s u r e m e n t of L - a s c o r b i c a c i d a n d L - d e h y d r o a s c o r b i c a c i d a n d other ascorbate
metabolites
simultaneously should
be
forthcoming.
These
m e t h o d s w i l l be of p a r t i c u l a r interest i n research, since recent suggest
a b i o l o g i c a l significance f o r
ascorbate m e t a b o l i t e s ( 6 , 7 , 8 , 9 ) .
dehydroascorbic
findings
acid and
other
I n the f o l l o w i n g p a r a g r a p h s v a r i o u s
t e c h n i q u e s often u s e d to m e a s u r e a s c o r b i c a c i d c o n t e n t w i l l be b r i e f l y r e v i e w e d a n d some of the m o r e recent d e v e l o p m e n t s i n h i g h p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h i c t e c h n i q u e s u s e d i n a s c o r b i c a c i d analysis w i l l be explored.
Bioassays Bioassays h a v e the d i s t i n c t a d v a n t a g e of m e a s u r i n g the s u m m a t i o n of c h e m i c a l entities t h a t possess o n l y v i t a m i n C a c t i v i t y a n d
exclude
m a t e r i a l d e v o i d of v i t a m i n C a c t i v i t y . A t the p r e s e n t t i m e , bioassays are u s e d o n l y o n o c c a s i o n i n c o m p a r a t i v e studies to e s t a b l i s h the b i o l o g i c a l specificity of c h e m i c a l s a n d i n the d e t e r m i n a t i o n of the a n t i s c o r b u t i c a c t i v i t y of i n d i v i d u a l p r o d u c t s . H o w e v e r , bioassays are t i m e - c o n s u m i n g , expensive, a n d l a c k p r e c i s i o n ; therefore, t h e i r a p p l i c a b i l i t y is l i m i t e d . Rats c a n n o t be u s e d as test a n i m a l s because of t h e i r a b i l i t y to synthesize the v i t a m i n ; h o w e v e r , g u i n e a p i g s w i t h t h e i r h i g h r e q u i r e m e n t for v i t a m i n C h a v e b e e n p r o v e d satisfactory. U n f o r t u n a t e l y , t h e r e are n o m i c r o b i o l o g i c a l organisms t h a t h a v e a n absolute r e q u i r e m e n t for a s c o r b i c a c i d t h a t c a n be u s e d as the basis f o r a bioassay. O n e of the first bioassay m e t h o d s u s e d d e f i n e d the a m o u n t of test m a t e r i a l just sufficient to p r e v e n t s c u r v y i n the g u i n e a p i g as e q u i v a l e n t to one S h e r m a n u n i t or 0.5-0.6 m g a s c o r b i c a c i d ( 1 0 ) .
T e s t a n i m a l s are
f e d a b a s a l d i e t c o n t a i n i n g a l l k n o w n n u t r i e n t s except a s c o r b i c a c i d a n d s u p p l e m e n t e d w i t h g r a d e d a m o u n t s of the test s a m p l e . A t t h e e n d of 6 - 1 0 w e e k s , the degree of p r o t e c t i o n against s c u r v y is d e t e r m i n e d b y autopsy
findings
a n d s u r v i v a l rates ( 1 1 ) .
d e n t a l h i s t o l o g y as a n e n d p o i n t (4,12,13).
S e v e r a l bioassays h a v e u s e d A f t e r 2 weeks on a given
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
9.
SAUBERLICH E T A L .
201
Determination of Ascorbic Acid
b a s a l d i e t , s u p p l e m e n t e d w i t h g r a d e d levels of t h e test substance o r ascorbic a c i d , t h e g u i n e a p i g s are k i l l e d , t h e l o w e r jaws r e m o v e d a n d sections m a d e of t h e d e c a l c i f i e d incisors. T h e degree of p r o t e c t i o n is assessed
by microscopic
e x a m i n a t i o n f o r h i s t o l o g i c changes
s u c h as
d i s o r g a n i z a t i o n of t h e odontoblasts, the w i d t h of i r r e g u l a r i t y , a n d t h e structure of t h e d e n t i n e a n d t h e degree of c a l c i f i c a t i o n of t h e p r e d e n t i n e . T h e r e is also a s i m p l e c u r a t i v e m e t h o d b a s e d o n w e i g h t changes i n g u i n e a p i g s d u r i n g s c u r v y (14).
A q u a n t i t a t i v e bioassay b a s e d
upon
s e r u m levels of a l k a l i n e phosphatase has b e e n w o r k e d o u t f o r ascorbate Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
a c t i v i t y (15).
I n this m e t h o d , t h e l e v e l of s e r u m a l k a l i n e p h o s p h a t a s e
i n t h e test a n i m a l is first r e d u c e d 1-5 u n i t s b y ascorbate d e p l e t i o n , a n d t h e n t h e test s a m p l e is a d m i n i s t e r e d at v a r y i n g ascorbic a c i d levels. T h e details a n d t h e n u m e r o u s p r e c a u t i o n s that one s h o u l d t a k e i n bioassays h a v e b e e n r e v i e w e d elsewhere
(4).
I n 1931, t h e u n i t of v i t a m i n
C
a d o p t e d w a s t h e a c t i v i t y i n 0.1 m L of f r e s h l y s q u e e z e d l e m o n juice. S u b s e q u e n t l y , one I n t e r n a t i o n a l U n i t ( I . U . ) o r o n e U . S . P . X I V u n i t of v i t a m i n C w a s a d o p t e d as t h e a n t i s c o r b u t i c a c t i v i t y of 0.05 m g of a s c o r b i c a c i d , t h e a p p r o x i m a t e a m o u n t i n 1 m L of l e m o n j u i c e .
Therefore, 1 g
of a s c o r b i c a c i d is e q u i v a l e n t t o 20,000 I . U .
Chemical and Physical Methods of Analysis D i r e c t spec-
Optical Absorbance and Spectrophotometry Methods.
t r o p h o t o m e t r i c m e t h o d s i n v o l v i n g l i g h t a b s o r p t i o n h a v e some l i m i t e d value for very h i g h potency
material.
T h e absorbance
s p e c t r u m of
a s c o r b i c a c i d i n n e u t r a l aqueous solutions has a p e a k v a l u e at 265 n m w i t h E b e t w e e n 7500 a n d 16,650 as r e p o r t e d i n t h e l i t e r a t u r e . differences are d u e to n o n a n a e r o b i c c o n d i t i o n s (16,17).
The
The maximum
is s h i f t e d t o w a r d s 245 n m i n a c i d i c solutions. D e h y d r o a s c o r b i c a c i d is t r a n s p a r e n t i n t h e r e g i o n of 230 n m t o 280 n m , b u t has a w e a k a b s o r p t i o n , Emax =
720 at 300 n m (18).
A basic d r a w b a c k to t h e successful a p p l i
c a t i o n of s p e c t r o p h o t o m e t r i c m e t h o d s to the e s t i m a t i o n of a s c o r b i c a c i d is t h a t t h e w e l l - d e f i n e d a b s o r p t i o n b a n d i n t h e U V r e g i o n of t h e s p e c t r u m is subject to interference f r o m m a n y substances, w h i c h w o u l d present a p r o b l e m w h e n a p p l i e d to f o o d a n d tissue extracts. Colorimetric
Methods.
T h e most
frequently
used
colorimetric
m e t h o d s h a v e b e e n r e c e n t l y r e v i e w e d b y O m a y e et a l . ( 5 ) .
Several
m e t h o d s of analyses are b a s e d u p o n t h e fact that a s c o r b i c a c i d a n d d e h y d r o a s c o r b i c a c i d possess c e r t a i n c h e m i c a l p r o p e r t i e s c h a r a c t e r i s t i c of
sugars s u c h as f o r m a t i o n o f osazones a n d c o n v e r s i o n to f u r f u r a l .
C o l o r i m e t r i c d e t e r m i n a t i o n of f u r f u r a l , a n a n i l i n e d e r i v a t i v e , has b e e n u s e d to a l i m i t e d extent f o r t h e e s t i m a t i o n of a s c o r b i c a c i d i n c e r t a i n materials. T h e s e m e t h o d s h a v e g e n e r a l l y b e e n f o u n d to b e u n s a t i s f a c t o r y
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
202
ASCORBIC
for t h e m e a s u r e m e n t of a s c o r b i c a c i d i n f o o d .
ACID
F o r some t i m e , m e t h o d s
for t h e d e t e r m i n a t i o n of a s c o r b i c a c i d b a s e d o n t h e r e d u c t i o n of 2,6dichlorophenolindophenol
o r t h e f o r m a t i o n of a c o l o r e d d i n i t r o p h e n y l -
h y d r a z i n e d e r i v a t i v e b y the v i t a m i n , w e r e the most satisfactory. A l t h o u g h introduced
i n 1927 ( 1 9 , 2 0 ) , d i c h l o r o p h e n o l i n d o p h e n o l
has r e m a i n e d
u s e f u l because ascorbate is essentially t h e o n l y substance i n a c i d extracts that reduces t h e i n d o p h e n o l at p H 1 to 4 t o t h e colorless leuco f o r m . F o r h i g h s e n s i t i v i t y a n d specificity the d i n i t r o p h e n y l h y d r a z i n e m e t h o d , w h e r e t h e 2- a n d 3-carbon
keto g r o u p of d i k e t o g u l o n i c a c i d forms a bis-2,4-
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
d i n i t r o p h e n y l h y d r a z o n e , w a s often u s e d . T h e osazone rearranges i n a c i d to f o r m a stable r e d p r o d u c t . T h i o s u l f a t e ; c e r t a i n m e t a l ions, f o r e x a m p l e , c o p p e r a n d i r o n ; a n d reductones
m a y interfere.
Depending upon the
a n a l y t i c a l c o n d i t i o n s used, fructose, glucose, a n d g l u c u r o n i c a c i d m a y also interfere i n t h e d i n i t r o p h e n y l h y d r a z i n e m e t h o d t o y i e l d h i g h values T h e d i c h l o r o p h e n o l i n d o p h e n o l m e t h o d measures o n l y r e d u c e d w h i l e the d i n i t r o p h e n y l h y d r a z i n e m e t h o d w i l l measure
(21).
ascorbate,
dehydroascorbic
a c i d a n d t o t a l ascorbic a c i d , w i t h t h e difference reflecting t h e r e d u c e d a s c o r b i c a c i d (22,23).
D e h y d r o a s c o r b i c a c i d c a n b e r e d u c e d to a s c o r b i c
a c i d b y agents s u c h as 2 , 3 - d i m e r c a p t o p r o p a n o l
( B A L ) permitting the
m e a s u r e m e n t of t o t a l a s c o r b i c a c i d w i t h d i c h l o r o p h e n o l i n d o p h e n o l ( 2 4 ) . B e c a u s e of t e c h n i c a l reasons, t h e p r o c e d u r e appears to h a v e l i m i t e d use. Several automated procedures serum have been described
T h e colorimetric methods lactone r i n g of ascorbic
f o r t h e m e a s u r e m e n t of ascorbic a c i d i n
(25,26,27,28). often p r o v i d e measures to s t a b i l i z e t h e
acid from
hydrolysis b y decreasing the p H .
A l t h o u g h t h e d r y p u r e crystals of a s c o r b i c a c i d are stable o n t h e exposure to a i r a n d l i g h t at r o o m t e m p e r a t u r e f o r l o n g p e r i o d s of t i m e ,
aqueous
solutions of the v i t a m i n are o x i d i z e d o n exposure t o a i r , a l k a l i , a n d c e r t a i n traces of metals (1). occurring
oxidative
B e l o w p H 4.0, ascorbic a c i d a n d its b i o l o g i c a l l y product,
dehydroascorbic
a c i d , are stable.
Once
d e h y d r o a s c o r b i c a c i d has b e e n o x i d i z e d to d i k e t o g u l o n i c a c i d a n d other compounds,
its v a l u e as a n a n t i s c o r b u t i c agent has b e e n lost.
I n vivo,
d e h y d r o a s c o r b i c a c i d is r e d u c e d to ascorbic a c i d ; h o w e v e r , f u r t h e r o x i d a t i o n is i r r e v e r s i b l e . The
use of m e t a p h o s p h o r i c
a c i d solutions f o r t h e e x t r a c t i o n of
a s c o r b i c a c i d f r o m p l a n t a n d a n i m a l tissues w a s first p r o p o s e d i n 1935 (29).
M e t a p h o s p h o r i c a c i d , a l o n g w i t h t r i c h l o r o a c e t i c a c i d , r e m a i n as
the reagents of choice.
Besides t h e decreased t e n d e n c y f o r h y d r o l y s i s of
the lactone r i n g , m e t a p h o s p h o r i c a c i d i n h i b i t s t h e c a t a l y t i c o x i d a t i o n of ascorbic a c i d b y m e t a l catalysts, s u c h as c o p p e r a n d i r o n ions, a n d i t inactivates t h e enzymes t h a t o x i d i z e ascorbic a c i d . O x i d a t i o n of a s c o r b i c a c i d , w h i c h a p p a r e n t l y is t h e r e s u l t of t h e a c t i o n of o x y h e m o g l o b i n , m a y o c c u r w h e n a n i m a l tissues a r e g r o u n d w i t h m e t a p h o s p h o r i c a c i d . T h i s
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
9.
SAUBERLICH E T A L .
Determination of Ascorbic Acid
203
o x i d a t i o n is p r o p o r t i o n a l to t h e b l o o d content of t h e tissue, b u t is n o t a serious o b j e c t i o n except i n the case of w h o l e b l o o d or i s o l a t e d r e d b l o o d cells.
T o a c e r t a i n extent, t h e p r o b l e m of o x i d a t i o n b y o x y h e m o g l o b i n
c a n b e r e d u c e d b y p r i o r t r e a t m e n t of b l o o d samples w i t h c a r b o n m o n oxide ( 3 0 ) . O t h e r c o l o r i m e t r i c m e t h o d s i n c l u d e t h e official m e t h o d of t h e U n i t e d States P h a r m a c o p e i a , w h i c h is a n i o d o m e t r i c d e t e r m i n a t i o n (31). V a r i o u s t i t r i m e t r i c p r o c e d u r e s h a v e b e e n d e s c r i b e d (32).
R e c e n t l y , a sensitive
rate assay m e t h o d f o r t h e d e t e r m i n a t i o n of a s c o r b i c a c i d w a s d e s c r i b e d
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
that u s e d a s t o p p e d - f l o w a p p a r a t u s (33).
Several methods based u p o n
c o u p l i n g a s c o r b i c a c i d to d i a z o n i u m c o m p o u n d s (34,35).
have been
proposed
T h e d e e p b l u e d e r i v a t i v e is d e t e r m i n e d c o l o r i m e t r i c a l l y . A
q u a n t i t a t i v e r e a c t i o n b e t w e e n selenious a c i d ( 1 m o l ) a n d ascorbic a c i d (2 m o l ) to f o r m s e l e n i u m has b e e n r e p o r t e d
(36).
S t a b l e selenious
c o l l o i d s c a n b e f o r m e d w h e n f o o d extracts c o n t a i n i n g a s c o r b i c a c i d are t r e a t e d w i t h selenious a c i d , a n d t h e r e s u l t i n g t u r b i d i t y is p r o p o r t i o n a l to t h e a s c o r b i c
a c i d content.
T h e r e is also a c h e m i c a l test f o r t h e
d e t e r m i n a t i o n of a s c o r b i c a c i d that d e p e n d s u p o n t h e r e d u c t i o n of f e r r i c i o n to ferrous i o n b y a s c o r b i c a c i d f o l l o w e d b y t h e d e t e r m i n a t i o n of t h e ferrous i o n as t h e r e d orange a - a ' - d i p y r i d y l c o m p l e x .
I n t h e presence of
o r t h o p h o s p h o r i c a c i d at p H 1—2, other r e d u c i n g or i n t e r f e r i n g m a t e r i a l s are i n h i b i t e d . usage
T h i s s i m p l e m e t h o d is fast a n d has g a i n e d c o n s i d e r a b l e
(5,37,38).
Attempts have been
made
to a d a p t t h e c e n t r i f u g a l a n a l y z e r to
provide a n automated method for determining ascorbic a c i d i n serum a n d u r i n e ( 3 9 ) . T h e m e t h o d is b a s e d o n t h e r e d u c t i o n o f f e r r i c i r o n b y a s c o r b i c a c i d , p r o d u c i n g d e h y d r o a s c o r b i c a c i d , a n d t h e f o r m a t i o n of a c o l o r b e t w e e n t h e r e s u l t i n g ferrous i o n a n d t h e c h r o m o g e n i c
reagent,
ferrozine [3-(2-pyridyl)-5,6-bis-(4-phenylsulfonic acid)-l,2,4-triazine d i s o d i u m salt]
(40).
A l t h o u g h t h e m e t h o d w a s r e p o r t e d to b e h i g h l y
p r e c i s e a n d specific, a d d i t i o n a l v a l i d a t i o n a p p e a r s necessary. E n z y m e m e t h o d s u s i n g a s c o r b i c a c i d oxidase h a v e n o t b e e n w i d e l y u s e d b u t several versions of reagents b a s e d o n d i a z o t i z e d n i t r o a n i l i n e s h a v e b e e n r e p o r t e d (41). T h e r e a c t i o n is c o m p l i c a t e d a n d t h e a s c o r b i c a c i d m o l e c u l e is p a r t l y d e s t r o y e d i n f o r m i n g t h e c o l o r e d p r o d u c t . c h r o m a t o g r a p h i c s e p a r a t i o n stage m u s t p r e c e d e t h e c o l o r
A
development
r e a c t i o n (42). T h e p r o c e d u r e is t i m e - c o n s u m i n g a n d t h e r e is n o p r o v i s i o n for r e d u c i n g a n y d e h y d r o a s c o r b i c a c i d i n t h e s a m p l e extract to a s c o r b i c acid. Fluorometric Methods. determination
of a s c o r b i c
O n e of t h e most specific m e t h o d s f o r t h e acid
a n d its b i o l o g i c a l l y a c t i v e
p r o d u c t , d e h y d r o a s c o r b i c a c i d , is t h e
fluorometric
oxidation
method introduced b y
D e u t s c h a n d W e e k s (43), w h i c h is a n official A O A C m e t h o d (44).
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
I t is
204
ASCORBIC
ACID
b a s e d o n t h e o x i d a t i o n of a s c o r b i c a c i d t o d e h y d r o a s c o r b i c a c i d a n d t h e c o n d e n s a t i o n of d e h y d r o a s c o r b i c form the
fluorophor,
a c i d w i t h orrTio-phenylenediamine to
quinoxaline. Deutsch a n d Weeks
(43) r i g o r o u s l y
e x a m i n e d t h e s e n s i t i v i t y a n d specificity of t h e m e t h o d a n d c o n c l u d e d t h a t t h e p r o c e d u r e w a s s u i t a b l e f o r samples c o n t a i n i n g l a r g e a m o u n t s of r e d u c i n g substances or h i g h l y c o l o r e d m a t e r i a l s . F o r t h e i n i t i a l o x i d a t i o n of ascorbic a c i d to d e h y d r o a s c o r b i c a c i d , v a r i o u s c h e m i c a l o x i d a n t s , s u c h as i o d i n e , f e r r i c y a n i d e , c h l o r a m i n e - T , 2 , 6 - d i c h l o r o i n d o p h e n o l , m e t h y l e n e blue, N-bromosuccinimide, a n d charcoal ( N o r i t ) have been reported i n Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
the l i t e r a t u r e . S e v e r a l p r o b l e m s h a v e b e e n e n c o u n t e r e d w h e n c h a r c o a l w a s u s e d to o x i d i z e a s c o r b i c a c i d present i n t h e extracts f r o m meats, d a i r y p r o d u c t s , a n d other c o m p l e x m i x t u r e s of foods ( 4 5 ) . T h e a n a l y t i c a l results w e r e affected b y t h e grades of t h e c h a r c o a l u s e d a n d b y t h e m e t h o d of a c t i v a t i o n . T h i s is u n d e r s t a n d a b l e , since t h e c a t a l y t i c p e r f o r m ance of t h e c h a r c o a l i n m a n y redox reactions d e p e n d s u p o n t h e presence of u n s a t u r a t e d sites o n t h e c a r b o n surfaces, w h i c h c a n v a r y f r o m source to source.
I V - B r o m o s u c c i n i m i d e has b e e n r e p o r t e d to serve as a r e p l a c e
m e n t f o r N o r i t i n the s m o o t h o x i d a t i o n of ascorbic a c i d to d e h y d r o a s c o r b i c acid i n an automated
fluorometric
assay of t o t a l v i t a m i n C i n f o o d
p r o d u c t s ( 4 5 ) . I t appears to serve as a n o x i d i z i n g agent that is selective (46, 47). T h e reagent is i m m u n e to reductones a n d r e d u c t i c a c i d s , w h i c h are g e n e r a l l y present i n fruits a n d vegetables. S e v e r a l adaptations of t h e b a s i c
fluorometric
m e t h o d are n o w a v a i l
a b l e f o r specific a p p l i c a t i o n to p l a s m a (48), a n d to f o o d extracts
(49,50).
A s p e c t r o p h o t o f l u o r o m e t r i c assay p r o c e d u r e also has b e e n d e v i s e d u s i n g D E A - S e p h a d e x c o l u m n t o separate e r y t h o r b i c
(isoascorbic
acid) a n d
ascorbic a c i d ( 5 1 ) . T h i s is o f p a r t i c u l a r i m p o r t a n c e since e r y t h o r b i c a c i d , a v e r y c o m m o n f o o d a d d i t i v e , has b e e n suggested to b e a n antagonist of a s c o r b i c a c i d (52,53,54).
I n g e n e r a l , t h e spectrofluorometric assay p r o
cedures i n v o l v e measurements of
fluorescence
o n solvent extracts of t h e
a c i d i f i e d samples at 3 6 5 - 3 4 8 n m a n d 4 3 5 - 4 5 0 n m , as t h e w a v e l e n g t h s o f m a x i m u m excitation and emission, respectively Chromatographic Methods.
(48,50,51).
T h e methods mentioned for ascorbic
a c i d analysis suffer f r o m l a c k of specificity to v a r y i n g degrees.
Several
attempts h a v e b e e n m a d e to correct this b y t h e a d d i t i o n o f m a s k i n g agents o r t h e use of c o l u m n a n d / o r t h i n l a y e r c h r o m a t o g r a p h y . A l t h o u g h combining
chromatographic
described
above complicates
separations
with
t h e analyses
p e n s a t e d f o r b y t h e i n c r e a s e d specificity.
the analytical
methods
c o n s i d e r a b l y , this is c o m I n m a n y cases, p a r t i c u l a r l y
n a t u r a l p r o d u c t s , w h e r e interference is h i g h , t h e use of a c h r o m a t o g r a p h i c separation
is u n a v o i d a b l e .
T h e selection o f t h e specific
method
or
c o m b i n a t i o n of m e t h o d s to b e u s e d d e p e n d s u p o n a v a r i e t y o f factors i n c l u d i n g t h e i n f o r m a t i o n d e s i r e d a n d t h e n a t u r e of t h e s a m p l e .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
9.
205
Determination of Ascorbic Acid
SAUBERLICH E T A L .
M a n y p u b l i c a t i o n s h a v e dealt w i t h modifications of t h e w o r k o f M a p s o n a n d P a r t r i d g e ( 5 5 ) as a p p l i e d to t h e q u a l i t a t i v e a n d q u a n t i t a t i v e d e t e r m i n a t i o n of ascorbic a c i d a n d v a r i o u s b r e a k d o w n p r o d u c t s ( 8 ) b y paper chromatography.
T h e l o c a t i o n of a s c o r b i c a c i d o n t h e c h r o m a t o -
grams c a n b e r e v e a l e d b y several d e v e l o p m e n t dichlorophenolindophenol,
agents i n c l u d i n g 2,6-
a m m o n i a c a l s i l v e r n i t r a t e t e t r a z o l i u m salts,
iodine vapor, ammonium molybdate, and molybdophosphoric acid. Other c h r o m a t o g r a p h i c m e t h o d s , s u c h as c o l u m n a n d t h i n l a y e r c h r o m a t o g r a p h y h a v e b e e n t r i e d o u t i n a s c o r b i c a c i d studies (56,57,58). S u c h c h r o m a t o Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
g r a p h i c p r o c e d u r e s h a v e b e e n v e r y v a l u a b l e i n s p e c i a l investigations s u c h as t h e o c c u r r e n c e of b r e a k d o w n p r o d u c t s or metabolites of t h e v i t a m i n Chromatographic procedures
(9,59). firmatory
are also u s e f u l to p r o v i d e
con
e v i d e n c e w h e n testing f o o d f o r w h i c h t h e specificity of t h e
m e t h o d is not k n o w n . A s m e n t i o n e d before, t h e isomer of a s c o r b i c a c i d , erythorbic acid
(isoascorbic
a c i d ) , is p a r t i c u l a r l y difficult to i d e n t i f y
w h e n present i n foods. Interference b y isoascorbic a c i d i n a s c o r b i c a c i d analyses has b e e n c o r r e c t e d b y c h r o m a t o g r a p h i c means
(60).
S e v e r a l investigators have r e p o r t e d that a s c o r b i c a c i d c a n b e a n a l y z e d by g a s - l i q u i d chromatography following conversion of the parent c o m p o u n d to its t r i m e t h y l s i l y l ether (61-66). found
to b e r e l i a b l e a n d to p r o d u c e
obtained b y colorimetric procedures.
T h e procedures
results c o m p a r a b l e
have
been
with
those
I n most cases, h o w e v e r ,
m e n t of o n l y t h e r e d u c e d f o r m of t h e v i t a m i n is p o s s i b l e
measure
(67).
One
m e t h o d is suitable f o r m i c r o a n a l y t i c a l w o r k a n d has t h e a d v a n t a g e t h a t several other c a r b o h y d r a t e s a n d c a r b o h y d r a t e d e r i v a t i v e s c a n b e m e a s u r e d s i m u l t a n e o u s l y i n t h e same extract (67). T h e recent d e v e l o p m e n t of c o m m e r c i a l H P L C
systems h a s p r o v i d e d
a p o w e r f u l i n s t r u m e n t a t i o n f o r t h e separation, c h a r a c t e r i z a t i o n , i d e n t i f i c a t i o n , a n d q u a n t i t a t i o n of m i n u t e amounts of essential d i e t a r y c o m p o n ents (68,69).
Developments i n hardware a n d packings for H P L C
have
o v e r c o m e t h e p r o b l e m s o f n o n r e p r o d u c i b l e b e h a v i o r a n d l o w efficiency separations p r e v i o u s l y associated
with column
chromatography
(70).
H P L C has a l r e a d y b e e n a p p l i e d to t h e q u a n t i t a t i v e analysis of analgesics, pesticides, a n d fat-soluble v i t a m i n s w i t h p r e c i s i o n a n d a c c u r a c y a n d a m i n i m u m of s a m p l e c l e a n - u p .
Such instrumentation provides a rapid,
accurate, a n d sensitive t e c h n i q u e subnanomole
f o r the s e p a r a t i o n a n d analysis of
q u a n t i t i e s of a w i d e r a n g e of c o m p l e x
high-molecular-
w e i g h t , n o n v o l a t i l e , t h e r m a l l y l a b i l e , c o m p o u n d s t h a t are v i t a l f o r m e t a b o l i c a n d n u t r i t i o n a l studies. S e v e r a l reports h a v e d e s c r i b e d t h e use of H P L C i n t h e analyses of ascorbic a c i d i n foods a n d v i t a m i n p r o d u c t s (71, 72, 73, 74) a n d i n tissue samples
(75).
P r o c e d u r e s v a r y i n t h e t y p e of c o l u m n ,
d e t e c t i o n systems a n d means o f s t a b i l i z a t i o n o f extracts.
mobile-phase,
Reversed-phased,
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
206
ASCORBIC
ACID
B o n d a p a k C c o l u m n s ( W a t e r Associates, M i l f o r d , M a s s a c h u s e t t s ) w i t h fixed
w a v e l e n g t h detector ( 2 5 4 n m ) a n d t h e s a m p l e o r standards sta
b i l i z e d i n 0 . 8 % m e t a p h o s p h o r i c a c i d h a v e b e e n u s e d w i t h u r i n e samples (76).
I n t h a t s t u d y 0 . 8 % m e t a p h o s p h o r i c a c i d s e r v e d as t h e m o b i l e
phase. O t h e r m o b i l e phases, s u c h as m e t h a n o l - w a t e r ( 5 0 : 5 0 ) o r a m m o n i u m salts i n m e t h a n o l - w a t e r , w e r e t r i e d b u t r e s u l t e d i n a s c o r b i c a c i d values t h a t w e r e t o o h i g h w h e n c o m p a r e d w i t h t i t r i m e t r i c measurements ( 7 6 ) . A s i m i l a r p r o c e d u r e , s u b s t i t u t i n g a n i o n exchange c o l u m n , has b e e n u s e d f o r m u l t i v i t a m i n p r o d u c t analyses ( 7 7 ) . W i t h t h e a d d i t i o n of elec Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
t r o c h e m i c a l d e t e c t i o n , l i q u i d c h r o m a t o g r a p h y analysis of a s c o r b i c a c i d becomes q u i t e specific a n d sensitive (77,78,79).
T h e s e c o u p l e d detector
systems ( l i q u i d c h r o m a t o g r a p h y e l e c t r o c h e m i c a l detector, L C E C )
have
been
acid
a p p l i e d w i t h excellent success
content i n food
to t h e analyses of a s c o r b i c
a n d a n i m a l tissues
(78,79).
F i g u r e 1 represents a
c h r o m a t o g r a m f o r h u m a n u r i n e o b t a i n e d w i t h t h e use of H P L C a n d a n a m p e r o m e t r i c e l e c t r o c h e m i c a l detector
(72).
T h e ascorbic
acid peak
represents 19 n g . F i g u r e 2 represents t h e analysis of a s c o r b i c a c i d i n a m o u s e b r a i n tissue extract also e m p l o y i n g H P L C a n d a n e l e c t r o c h e m i c a l detector ( 7 5 ) . T h e ascorbic a c i d p e a k corresponds to a p p r o x i m a t e l y 15 ng.
A l t h o u g h t h e a b o v e p r o c e d u r e s f o r t h e analysis of a s c o r b i c a c i d
content b y H P L C h a v e b e e n v e r y u s e f u l f o r d e t e r m i n i n g t h e r e d u c e d
URIC ACID
ASCORBIC ACID
Figure 1. Analysis of ascorbic acid in urine employing HPLC and an amperometric electrochemical detector (72): column, Zipax SAX, 2.1 mm X 50 cm glass; mobile phase, 0.05M acetate buffer, pH 4.75; flow rate, 0.33 mL/min.
4 ELUTION
TIME
1
O
(Minutes)
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
9.
Determination of Ascorbic Acid
SAUBERLICH E T A L .
207
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
2 , 5 - D I H Y D R O X Y B E N Z O I C ACID
I
I
I
I
L
0
2
4
6
8
ELUTION TIME (Minutes)
Figure 2. Analysis of ascorbic acid in a mouse brain tissue extract employing HPLC and an electrochemical detector. (Reproduced, with permission, from Ref. 75. Copyright 1975, Pergamon Press, Inc.) f o r m of t h e v i t a m i n , t h e y w e r e n o t u s e f u l f o r d e t e r m i n i n g other forms of ascorbate.
Recently, conditions were described for the h i g h performance
l i q u i d c h r o m a t o g r a p h i c s e p a r a t i o n of a s c o r b i c a c i d f r o m d e h y d r o a s c o r b i c a c i d w h e n i n p u r e solutions ( S O ) . D e h y d r o a s c o r b i c a c i d w a s m o n i t o r e d at 228 n m a n d a s c o r b i c a c i d a t 268 n m ( F i g u r e 3 ) . U n f o r t u n a t e l y , t h e m i n i m u m d e t e c t i o n l i m i t s w e r e 500 n g p e r i n j e c t i o n f o r d e h y d r o a s c o r b i c a c i d c o m p a r e d w i t h 10 n g p e r i n j e c t i o n f o r ascorbic a c i d . F i n l e y a n d Duang
(81)
h a v e also d e s c r i b e d r e c e n t l y a h i g h p e r f o r m a n c e
liquid
c h r o m a t o g r a p h i c m e t h o d that w i l l separate a n d estimate a s c o r b i c a c i d , dehydroascorbic acid, a n d 2,3-diketogulonic a c i d i n fruit a n d vegetable extracts. S u b s e q u e n t methods f o r m e a s u r i n g t h e three forms of ascorbate i n a n i m a l tissue extracts s h o u l d b e soon f o r t h c o m i n g . Other Chemical and Physical Methods.
P o l a r o g r a p h y has b e e n
t r i e d i n s p e c i a l i n v e s t i g a t i o n s , s u c h as studies of t h e b o u n d f o r m of ascorbic a c i d . B u t because of l i m i t e d specificity, t h e p r o c e d u r e has n o t seen w i d e a p p l i c a t i o n (82,83).
A s c o r b i c a c i d is o x i d i z e d at t h e d r o p p i n g
m e r c u r y electrode, t h e basis of t h e p o l a r o g r a p h i c d e t e r m i n a t i o n . D e h y d r o a s c o r b i c a c i d is n o t m e a s u r e d , h o w e v e r , since i t is n o t r e d u c i b l e at t h e d r o p p i n g m e r c u r y electrode. M a s o n et a l . (84) h a v e d e v e l o p e d a m e t h o d for the d e t e r m i n a t i o n of ascorbic a c i d b a s e d o n e l e c t r o c h e m i c a l o x i d a t i o n at t h e t u b u l a r c a r b o n electrode t h a t has b e e n m o d i f i e d to measure w a t e r -
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
208
ASCORBIC
Figure 3. Simultaneous analysis for ascorbic acid and dehydroascorbic acid with the use of a gradient analysis HPLC method. The minimum detectable quantities were 10 ng/ injection for ascorbic acid and 500 ng/injection for dehydroascorbic acid (80): column, LiChrosorb NH , 10 ixm; mobile phase, 0.005M KH2PO4, pH 3.5 and CH3CN; detection, ascorbic acid, 268 nm and dehydroascorbic acid, 228 nm. (Reproduced, with permission, from Hewlett-Packard.)
ACID
2
soluble
vitamins
1
1
1
0 2 4 ELUTION TIME (Minutes)
(thiamin, riboflavin, pyridoxine,
nicotinamide,
and
ascorbic a c i d ) i n p h a r m a c e u t i c a l p r e p a r a t i o n s . Other methods
for the d e t e r m i n a t i o n of a s c o r b i c
acid include a
q u a l i t a t i v e spot test ( 8 5 ) a n d h i g h v o l t a g e electrophoresis
(86).
Applications Blood and Animal Tissues.
T h e most c o m m o n l y u s e d a n d p r a c t i c a l
p r o c e d u r e for e v a l u a t i n g v i t a m i n C n u t r i t i o n a l status is t h e m e a s u r e m e n t of s e r u m ( p l a s m a ) ascorbic
a c i d do
levels of ascorbic a c i d ( 8 7 ) . not
necessarily i n d i c a t e
L o w p l a s m a levels of
scurvy, although
scorbutic
patients i n v a r i a b l y have l o w or no p l a s m a a s c o r b i c a c i d , b u t c o n t i n u e d l o w levels of p l a s m a ascorbate
of less t h a n 0.10
e v e n t u a l l y l e a d to signs a n d s y m p t o m s
of s c u r v y .
mg/100
mL
would
I n general, serum
ascorbic a c i d concentrations are u s u a l l y m o r e reflective of recent intakes rather t h a n of t o t a l b o d y stores
(88).
W h o l e b l o o d a s c o r b i c a c i d values m a y be a less sensitive i n d i c a t o r of v i t a m i n C n u t r i t u r e t h a n s e r u m o r p l a s m a levels of t h e v i t a m i n because the v i t a m i n C content i n erythrocytes n e v e r falls to the l o w levels f o u n d i n s e r u m o r p l a s m a (89,90).
A l s o there are n o w e l l - e s t a b l i s h e d classifi
cations a v a i l a b l e r e l a t i n g b l o o d v i t a m i n C values to the n u t r i t i o n a l status of this v i t a m i n i n a p o p u l a t i o n
(88).
L e u k o c y t e a s c o r b i c a c i d c o n c e n t r a t i o n s are g e n e r a l l y c o n s i d e r e d p r o v i d e a better reflection of tissue stores t h a n other b l o o d S u p p o r t i n g e v i d e n c e for this b e l i e f i n c l u d e s observations
to
components. s u c h as:
l e u k o c y t e ascorbate levels d r o p s l o w l y d u r i n g a s c o r b i c a c i d
(i)
deficiency,
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
9.
209
Determination of Ascorbic Acid
SAUBERLICH E T A L .
r e a c h i n g zero just before the onset of c l i n i c a l s y m p t o m s of s c u r v y
(91);
( i i ) l e u k o c y t e ascorbate levels correlate w e l l w i t h a s c o r b i c a c i d r e t e n t i o n o n diets w i t h a fixed, i n a d e q u a t e l e v e l of a s c o r b i c a c i d ( 9 2 ) ; ( i i i ) studies c o r r e l a t i n g p l a s m a ascorbate levels w i t h l e u k o c y t e ascorbate levels s u g gest t h a t t h e l e u k o c y t e levels reflect the a m o u n t of a s c o r b i c a c i d for storage w h i l e p l a s m a levels reflect its m e t a b o l i c t u r n o v e r rate ( 9 3 , 9 4 ) ; a n d ( i v ) d i r e c t e v i d e n c e i n d i c a t e s t h a t l e u k o c y t e ascorbate levels reflect total b o d y ascorbate p o o l better t h a n a n y other b l o o d c o m p o n e n t
(95).
P r o m p t s t a b i l i z a t i o n of a s c o r b i c a c i d is e s p e c i a l l y i m p o r t a n t i n t h e Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
case of p l a s m a or s e r u m samples. M e t a p h o s p h o r i c a c i d is often u s e d f o r this p u r p o s e because it also serves as a p r o t e i n p r e c i p i t a n t . S u c h p r o p e r ties are d e s i r a b l e i n the i n a c t i v a t i o n of oxidase a n d the c a t a l y t i c effect of copper.
O x a l i c a c i d is a n a t t r a c t i v e s t a b i l i z e r for a s c o r b i c a c i d analysis
because of its l o w e r cost a n d greater s t a b i l i t y ; h o w e v e r , i t is not a p r o t e i n p r e c i p i t a n t , therefore, it has a l i m i t e d use f o r the e x t r a c t i o n of a n i m a l tissues. T h e use of e t h y l e n e d i a m i n e t e t r a a c e t i c a c i d ( E D T A ) i n a d d i t i o n to t h e m e t a p h o s p h o r i c a c i d has b e e n r e c o m m e n d e d ( 9 6 ) .
E D T A would
chelate d i v a l e n t cations, a n d a s t u d y has s h o w n i t w i l l s t a b i l i z e a s c o r b i c a c i d i n the presence of c o p p e r for several days (96).
P e r c h l o r i c a c i d has
b e e n u s e d also b u t because of its i n h e r e n t dangerous p r o p e r t i e s its use is g e n e r a l l y a v o i d e d .
T r i c h l o r o a c e t i c a c i d a n d E D T A also seem a p p r o
p r i a t e extractants for ascorbate i n p l a n t m a t e r i a l s ( 9 7 ) . A s n o t e d earlier, p l a s m a f r o m b l o o d
samples m u s t b e
promptly
s t a b i l i z e d a n d , i f necessary, the a c i d i f i e d samples m a y b e stored f r o z e n at — 6 5 ° C .
B e c a u s e of the existence of o x y h e m o g l o b i n i n w h o l e b l o o d
or r e d c e l l suspensions, some c o n s i d e r a t i o n m u s t be g i v e n to i n a c t i v a t e o x y h e m o g l o b i n or use a n assay for t o t a l ascorbic a c i d content.
With
respect to tissue analysis, some d i s c r e t i o n m u s t be c o n s i d e r e d as to the degree of b l o o d c o n t a m i n a t i o n . Foods.
T h e d i s t r i b u t i o n of a s c o r b i c a c i d w i t h i n one i n d i v i d u a l f r u i t
or v e g e t a b l e
or
between
v a r i o u s foods
is often
extremely variable.
Significant difference c a n b e f o u n d i n t h e s k i n as c o m p a r e d w i t h t h e p u l p of f r u i t .
S e e d - c o n t a i n i n g tissues s h o w s t r i k i n g changes i n c o n c e n
t r a t i o n of ascorbic a c i d d u r i n g m a t u r a t i o n , b u t i n storage organs s u c h as potatoes a n d leaves, the average l e v e l r e m a i n s r e l a t i v e l y constant t h r o u g h out the g r o w t h p e r i o d . Post-harvest storage w i l l affect the v i t a m i n content of the r a w f r u i t or v e g e t a b l e c o m m e n s u r a t e w i t h the t i m e a n d t e m p e r a t u r e of storage, extent of c e l l u l a r tissue d a m a g e d , a n d the presence of ascorbic a c i d oxidase. T e m p e r a t u r e changes, s l i c i n g , c u t t i n g , or b r u i s i n g of fruits a n d vegetables, s u c h as is l i k e l y to o c c u r i n p r o c e s s i n g , c a n a l l c o n t r i b u t e to ascorbate loss. S i g n i f i c a n t losses also o c c u r w i t h c o o k i n g because
of
the t e m p o r a r i l y a c c e l e r a t e d a c t i o n of e n z y m e s . I n these instances, extrac t i o n takes p l a c e a n d t h e c o n c e n t r a t i o n of v i t a m i n i n the l i q u o r a p p r o x i -
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
210
ASCORBIC
ACID
mates that of the tissues. H o w e v e r , w h e n f r u i t is b o i l e d w i t h sugar, as in
the m a k i n g of
j a m , the v i t a m i n C
content
is r e m a r k a b l y
stable.
F r e e z i n g is a g o o d m e t h o d of p r e s e r v i n g f r u i t s a n d vegetables o n l y after p r o p e r p r e c a u t i o n s h a v e b e e n t a k e n to b l a n c h a n d r e m o v e e n z y m e s t h a t m i g h t o x i d i z e ascorbic a c i d .
A l s o t h a w i n g of the f o o d before
cooking
m a y result i n progressive loss of the v i t a m i n , e s p e c i a l l y i f e n z y m e s
are
present. F o r ascorbic a c i d analysis, m e t a p h o s p h o r i c a c i d is v e r y u s e f u l i n the i n a c t i v a t i o n of t h e c a t a l y t i c effect of ascorbic
a c i d oxidase
as w e l l as
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
other c a t a l y t i c o x i d i z i n g agents discussed p r e v i o u s l y . F o o d s s u c h as f r u i t s and
vegetables
dehydroascorbic
also h a v e a t e n d e n c y
to h a v e
a larger proportion
a c i d t h a n a n i m a l tissues; c o n s e q u e n t l y ,
methods
of
that
assay for o n l y the r e d u c e d f o r m of ascorbate m a y p r o v i d e m i s l e a d i n g l o w values. Pharmaceuticals.
I n commerce, ascorbic
s i v e l y b y synthesis ( 9 8 ) .
a c i d is p r o d u c e d
exclu
B e c a u s e o f its r a t h e r p u r e n a t u r e a n d h i g h
concentrations i n v i t a m i n - m u l t i v i t a m i n tablets, analysis b y
conventional
or s o p h i s t i c a t e d p r o c e d u r e s c a n be p e r f o r m e d easily. T h e U S P p r o v i d e s a reference s t a n d a r d of L - a s c o r b i c a c i d for assay purposes.
The
methods
u s e d c a n be chosen f r o m the m a n y discussed above. T h e m e t h o d officially a p p r o v e d b y the A s s o c i a t i o n of O f f i c i a l A n a l y t i c a l C h e m i s t s is t h e m i c r o fluorometric
A
procedure developed by Deutsch and Weeks
Method for
in Biological
the Determination Tissues by
Introduction. methods
of Ascorbic
Acid
HPLC
A s n o t e d e a r l i e r , s e v e r a l investigators h a v e r e p o r t e d
for t h e d e t e r m i n a t i o n of ascorbic
using H P L C
(44).
(71-75).
acid i n various
substances
D i f f e r e n t groups of investigators h a v e
employed
a v a r i e t y of c o l u m n s a n d e l u t i o n c o n d i t i o n s to a c h i e v e the s e p a r a t i o n of ascorbic
from
exchange samples
i n t e r f e r i n g substances.
columns
have been
u s e d i n these
Both
reversed-phase
u s e d to a c h i e v e
ascorbic
a c i d assays
an H P L C
have
and
assay.
represented
ion The
mainly
n o n m a m m a l i a n m a t e r i a l s . I n some instances, the samples h a v e r e q u i r e d v a r i o u s p r e - c o l u m n treatments. A m o n g the d e s i r a b l e characteristics of a n HPLC
a n a l y t i c a l assay are m i n i m a l s a m p l e h a n d l i n g a n d m o d i f i c a t i o n
p a r t i c u l a r l y w i t h r e g a r d t o c o m p l e x b i o l o g i c a l tissues.
A s i m p l e assay
u s e d to d e t e r m i n e the ascorbic a c i d content of s e r u m , l i v e r , b r a i n , a n d a d r e n a l g l a n d of the g u i n e a p i g is d e s c r i b e d i n the f o l l o w i n g section. Methods. of 3 %
A l l tissues w e r e c o l l e c t e d a n d s t a b i l i z e d b y t h e a d d i t i o n
metaphosphoric
a c i d i n the r a t i o of
1 p a r t tissue to 3 parts
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
9.
Determination
SAUBERLICH E T A L .
metaphosphoric acid ( w / v ) .
of Ascorbic
211
Acid
S a m p l e s w e r e t h e n c e n t r i f u g e d at 3 X
10
3
g to r e m o v e p r e c i p i t a t e d p r o t e i n s . Samples w e r e t h e n t r a n s f e r r e d to c l e a n tubes, f r o z e n , a n d stored at — 6 5 ° C u n t i l assayed. S a m p l e s w e r e a n a l y z e d on
commercially
Associates).
available H P L C
columns
and
equipment
(Waters
S a m p l e s w e r e i n j e c t e d d i r e c t l y i n t o the c o l u m n i n 1 fxh
aliquots u s i n g a n auto-injector
(Waters Associates).
N o deterioration
i n c o l u m n p e r f o r m a n c e w a s o b s e r v e d over a 6 - m o n t h i n t e r v a l . F l o w rate was m a i n t a i n e d at 1 m L / m i n u n d e r a l l c o n d i t i o n s t h r o u g h o u t the assays. A s c o r b i c a c i d w a s m e a s u r e d i n U V a b s o r b a n c e u n i t s at 254 n m a n d Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
q u a n t i t a t e d b y m e a s u r i n g p e a k heights. S t a n d a r d curves w e r e p r e p a r e d b y the a d d i t i o n of k n o w n a m o u n t s of ascorbic a c i d to solutions of metaphosphoric
acid.
I n the d e v e l o p m e n t
of
3%
this assay, the use
of
p e r c h l o r i c a c i d w a s a v o i d e d w h i l e t r i c h l o r o a c e t i c a c i d w a s f o u n d to b e u n s u i t a b l e as a s t a b i l i z e r because of its U V characteristics. S t a n d a r d curves w e r e p r e p a r e d for e a c h assay.
T h e final assay as a d a p t e d u s e d
0 . 1 2 5 % citrate m a d e f r o m t h e t r i s o d i u m salt at p H 7.3 as t h e eluant. Results.
I n the d e v e l o p m e n t
of this assay, s e v e r a l
reverse-phase
c o l u m n s as w e l l as the /JPorasil c o l u m n w e r e e x a m i n e d for t h e i r separatory ability.
F r o m a m o n g the f o l l o w i n g c o l u m n s the P o r a s i l c o l u m n
was
j u d g e d as g i v i n g the best e l u t i o n p a t t e r n w i t h p l a s m a : jaBondapak C N , /xBondapak p h e n y l , /xBondapak C i . A l t h o u g h r e t e n t i o n times for b o t h 8
m e t a p h o s p h o r i c a c i d a n d a s c o r b i c a c i d r e m a i n e d a p p r o x i m a t e l y t h e same ( T a b l e I ) , the q u a l i t y of the c h r o m a t o g r a m w a s j u d g e d s u p e r i o r for the /xPorasil c o l u m n .
T h i s d e c i s i o n w a s b a s e d o n o v e r a l l p e a k shape a n d
s y m m e t r y as w e l l as baseline s t a b i l i t y .
Table I. Effect of Column Types on the H P L C Retention Time of Ascorbic A c i d Dissolved in 3 % Metaphosphoric A c i d Retention Column
Type
/xBondapak C N /xBondapak p h e n y l ^Bondapak Cis /xPorasil
Ascorbic
Acid
Time
(min)
a
Metaphosphoric
2.67 2.68 2.36 2.31
Acid
2.09 2.15 1.84 1.84
° E l u t i o n buffer was 0.125% citrate, t r i s o d i u m salt, p H 7.3. used are stated i n text. V a l u e s are the average of three trials.
A l l other c o n d i t i o n s
S u b s e q u e n t to the selection of a n a p p r o p r i a t e c o l u m n v a r i o u s c h a r a c teristics of the buffer w e r e e x a m i n e d . B o t h p H a n d buffer s t r e n g t h w e r e varied a n d retention time was measured.
T h e results are p r e s e n t e d i n
T a b l e I I . G e n e r a l l y i t was f o u n d t h a t a decrease i n buffer strength or a n
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
212
ASCORBIC
ACID
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
Table II. Effect of Various Concentrations of Citrate Buffer and p H on H P L C Retention Time and Chromatographic Pattern for Ascorbic A c i d and Metaphosphoric A c i d Buffer Concentration (% Citrate)
pH
Ascorbic Acid
1.000 0.500 0.125 0.062
7.3 7.3 7.3 7.3
2.73 2.68 2.20 1.94
2.47,2.52 (2) 2.20,2.36 (2) 1.78 (1) 1.68 (1)
1.000 0.500 0.125 0.062
5.5 5.5 5.5 5.5
3.10 2.83 2.47 2.26
2.68 (1) 2.57, 2.73 (2) 1.99,2.15 (2) 1.78,1.89 (2)
1.000 0.500 0.125 0.062
3.0 3.0 3.0 3.0
3.10 3.10 2.83 3.10
2.78 2.73 2.26, 2.20
Retention Time
(min)'
Metaphosphoric
(1) (1) 2.41 (2) (2)
°A11 values are the average of three trials. V a l u e s i n parentheses indicate the n u m b e r of peaks observed for metaphosphoric acid. A n a l y t i c a l conditions e m p l o y e d : /xPorasil c o l u m n ; flow rate, 1.0 m L / m i n ; sample size, 1 fiL.
increase i n p H decreased the retention time.
F u r t h e r , t h e n u m b e r of
peaks o b s e r v e d for m e t a p h o s p h o r i c a c i d v a r i e d f r o m 2 to 1 w i t h changes i n buffer s t r e n g t h or p H . A t p H 3.0, a n y changes i n buffer s t r e n g t h c a u s e d a shift i n baseline. T o d e t e r m i n e the s t a b i l i t y of ascorbic a c i d u n d e r t h e v a r i o u s c o n centrations of
c i t r a t e buffer
a n d p H , the
following experiment
was
p e r f o r m e d w i t h the use of a d o u b l e w a v e l e n g t h , d o u b l e b e a m , spectro photometer ( P e r k i n - E l m e r 557). V a r i o u s c o n c e n t r a t i o n s of a s c o r b i c a c i d (0.2, 2.0, a n d 20 pM)
were
i n c u b a t e d i n a cuvette w i t h the v a r i o u s buffers l i s t e d i n T a b l e I I a n d m o n i t o r e d at 254 n m . T h e c o n c e n t r a t i o n of a s c o r b i c a c i d w a s
selected
to a p p r o x i m a t e the s a m p l e a s c o r b i c a c i d c o m i n g i n t o contact w i t h a buffer v o l u m e d e t e r m i n e d b y its t i m e i n t r a n s i t t h r o u g h t h e c o l u m n . N o detect a b l e losses
were
observed
over
the 5 - m i n
incubation time for
any
c o n c e n t r a t i o n of a s c o r b i c a c i d u n d e r a n y c o n c e n t r a t i o n of citrate buffer or p H . T o q u a n t i t a t e the a s c o r b i c content of v a r i o u s tissues, a s t a n d a r d curve (3.0-50 / x g / m L ascorbic acid) was prepared i n 3 %
metaphosphoric
for e a c h a n a l y t i c a l r u n . A t y p i c a l s t a n d a r d c u r v e is s h o w n i n F i g u r e 4. C o r r e l a t i o n coefficients of 0.998 or b e t t e r w e r e c o n s i s t e n t l y o b t a i n e d for the s t a n d a r d c u r v e . P o o l e d s e r u m samples w e r e u s e d to m e a s u r e d a y - t o d a y a n d w i t h i n - r u n p r e c i s i o n . T h e coefficient of v a r i a t i o n for w i t h i n - r u n
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
9.
SAUBERLICH ET
AL.
213
Determination of Ascorbic Acid
20.0
18.0
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
16.0
14.0
12.0
E c
10.0
8.OH
6.0^
4.0
2.0A
0.0 10
20
30
40
50
60
ASCORBIC ACID, >xg/ml Figure 4. HPLC standard calibration curve obtained for ascorbic acid dissolved in 3% metaphosphoric acid; see text for conditions used; for ascorbic acid: y = 0.3547x + 0.620, r = 0.9983.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
214
ASCORBIC
d e t e r m i n a t i o n s w a s 0 . 7 8 % a n d for d a y - t o - d a y d e t e r m i n a t i o n s w a s
ACID
4.6%.
P r e c i s i o n d a t a are p r e s e n t e d i n T a b l e I I I . A s c o r b i c a c i d a d d e d to s e r u m samples w a s r e c o v e r e d i n the r a n g e of 9 0 - 9 3 % . T h e a s c o r b i c a c i d contents of s e r u m , l i v e r , a d r e n a l g l a n d , a n d b r a i n w e r e d e t e r m i n e d i n t w o groups of g u i n e a p i g s . O n e g r o u p of g u i n e a p i g s was f e d a n ascorbic a c i d a d e q u a t e g u i n e a p i g c h o w diet ( R a l s t o n P u r i n a N o . 5 0 2 2 ) , w h i l e the second g r o u p w a s f e d the R e i d - B r i g g s ( 9 9 ) v i t a m i n C deficient diet. A f t e r a n 18-day f e e d i n g p e r i o d , the a n i m a l s w e r e s a c r i ficed
by
decapitation
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
centrifuged.
and
trunk blood
was
collected,
chilled, and
T h e s e r u m f r a c t i o n w a s t h e n s t a b i l i z e d b y the a d d i t i o n of
3 parts ( v / v )
3%
m e t a p h o s p h o r i c a c i d , c e n t r i f u g e d at 4 ° C to
remove
the p r e c i p i t a t e , t r a n s f e r r e d , a n d stored at — 6 5 ° C u n t i l assayed. tissues w e r e
homogenized
in 3%
metaphosphoric
All
a c i d to a c h i e v e
a
f o u r f o l d d i l u t i o n ( w / v ) , c e n t r i f u g e d at 4 ° C , t r a n s f e r r e d , a n d s t o r e d at — 6 5 ° C u n t i l assayed. T h e results are p r e s e n t e d i n T a b l e I V . A l l g u i n e a p i g s f e d the ascorbate deficient R e i d - B r i g g s diet c o n t a i n e d s i g n i f i c a n t l y less ascorbic a c i d i n e a c h tissue e x a m i n e d w h e n c o m p a r e d to a n i m a l s f e d the ascorbate a d e q u a t e c h o w diet. T h e greatest percentage decrease i n ascorbic a c i d content w a s f o u n d i n the a d r e n a l g l a n d ( 9 2 . 4 % ) by brain ( 6 6 . 9 % ) , liver ( 5 6 . 9 % ) , and serum ( 4 3 . 5 % ) .
followed
Figures
5-8
d e p i c t t y p i c a l H P L C c h r o m a t o g r a m s of a s c o r b i c a c i d extracts of s e r u m , liver, adrenal gland, a n d brain, respectively. Discussion.
The
method
presented
provides
a fast
and
repro
d u c i b l e means of d e t e r m i n i n g the ascorbic a c i d content of v a r i o u s tissues. I n a d d i t i o n to a h i g h rate of s a m p l e h a n d l i n g (12 s a m p l e s / h f o r c o m p l e x tissues s u c h as l i v e r , b r a i n , a n d a d r e n a l g l a n d a n d 15 s a m p l e s / h
for
p l a s m a ) , the m e t h o d r e q u i r e s a m i n i m u m of s a m p l e p r e p a r a t i o n a n d is p r a c t i c a l for r o u t i n e analysis of b i o l o g i c a l samples. method
utilizes equipment
F u r t h e r m o r e , the
a v a i l a b l e to e a c h l a b o r a t o r y w i t h a
rudi
m e n t a r y H P L C system.
Table III.
Precision Data for H P L C of Ascorbic A c i d
Parameter W i t h i n R u n (n = M e a n ± s.d. C.V., % D a y - t o - D a y (n = M e a n ± s.d. C.V., %
Determination
Ascorbic Acid
(mg/dL)
a
10) 8.5 ± 0.067 0.78 10) 13.8 db 0.63 4.6
° P o o l e d guinea p i g serum samples were e m p l o y e d . A n a l y t i c a l conditions e m p l o y e d : c o l u m n , /xPorasil; eluant, 0.125% citrate t r i s o d i u m salt, p H 7.3; flow rate, 1.0 m L / m i n ; sample size, 1 /xL.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
9.
SAUBERLICH ET
AL.
215
Determination of Ascorbic Acid
Downloaded by UNIV OF GUELPH LIBRARY on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch009
0.0075-1
m-PHOSPHORIC 0.0050-
ACID
E c to CN
u z