10 Ascorbate Oxidase: Molecular Properties and Catalytic Activity PETER M. H. KRONECK, FRASER A. ARMSTRONG , HELLMUT MERKLE, and AUGUSTO MARCHESINI 1
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
2
Universität Konstanz, Fakultät für Biologie, D-7750 Konstanz, Federal Republic of Germany
Ascorbate oxidase (E.C. 1.10.3.3) of the squash C. pepo medullosa was investigated by electron paramagnetic resonance (EPR); redox titrations of the different copper sites were carried out anaerobically by following the absorbance at 610 and 330 nm, or thefluorescenceat 335 nm. The kinetics of ascorbate oxidase reduction by L-ascorbate were studied by stopped-flow and rapid-freeze techniques. The enzyme contains eight copper atoms/M , four detectable by EPR (three type 1, one type 2), and four that are EPR silent (type 3). Potentiometric titrations showed equivalence among the three type 1 copper atoms (average midpoint potential 350 mV, 25°C); the midpoint potential of type 3 copper was slightly higher than that of type 1. At 10°C, increased differences between the two copper types were observed. On reduction, a free L-ascorbate radical, which was not bound to a paramagnetic copper, was formed. Type 1 and type 3 copper were reduced at similar rates, whereas the type 2 copper reacted more slowly. r
The copper enzyme ascorbate oxidase (L-ascorbate:O oxidoreductase, E.C. 1.10.3.3) was originally discovered (1) in cabbage leaves and named "hexoxidase," and has been the subject of numerous chemical and biological investigations. The literature published prior to 1963 has been 2
1
Current address: Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX 13QR, England. Current address: Istituto Sperimentale Per La Nutrizione Délie Pian te, Sezione Periferica Operativa Di Torino, Via Ormea 47, 10125 Torino, Italy. 2
0065-2393/82 /0200-0223$07.50/0 © 1982 American Chemical Society In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
224
ASCORBIC
reviewed
(2).
properties
M o r e r e c e n t results c o n c e r n i n g s t r u c t u r a l a n d c a t a l y t i c
of the metalloenzyme
have been
summarized
r e v i e w e d i n c o n n e c t i o n w i t h c o p p e r p r o t e i n s (5-8). and Dawson
ACID
(9)
(3,4), and
I n addition, L e e
have recently p u b l i s h e d a n article s u m m a r i z i n g the
c o p p e r content a n d a c t i v i t y d a t a of 137 p u r i f i e d samples of
ascorbate
oxidase p r e p a r e d i n D a w s o n ' s l a b o r a t o r y d u r i n g 1951-1977. A s c o r b a t e oxidase b e l o n g s to t h e class of b l u e oxidases t h a t also i n c l u d e s t h e laccases a n d c e r u l o p l a s m i n ( 5 ) . A l l three p r o t e i n s c o n t a i n at least f o u r c o p p e r atoms a n d are c a p a b l e of c a t a l y z i n g t h e f o u r - e l e c t r o n r e d u c t i o n of d i o x y g e n , y i e l d i n g t w o m o l e c u l e s implies, L-ascorbate : 0
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
towards
2
L-ascorbic acid
oxidoreductase (vitamin C ) .
of w a t e r .
A s its n a m e
d i s p l a y s its greatest
specificity
T h e substrate is o x i d i z e d to
L - d e h y d r o a s c o r b a t e w i t h t h e p r o d u c t i o n of 1 m o l o f w a t e r / m o l of L - a s c o r bate o x i d i z e d .
A s w i l l b e d i s c u s s e d l a t e r i n this c h a p t e r , m a n y
r e d u c t a n t s m a y serve as e l e c t r o n donors t o ascorbate
other
oxidase, m a k i n g
this e n z y m e n o t o n l y a v a l u a b l e d i a g n o s t i c agent f o r t h e d e t e r m i n a t i o n of v i t a m i n C i n m e d i c i n e a n d f o o d c h e m i s t r y (10), b u t also a p o w e r f u l c h e m i c a l reagent, p e r f o r m i n g r e d o x reactions w i t h s t r u c t u r a l l y c o m p l i cated organic molecules
(11,12).
A s c o r b a t e oxidase, w h i c h has b e e n f o u n d o n l y i n p l a n t tissues, is g e n e r a l l y i s o l a t e d f r o m g r e e n o r y e l l o w squash.
Considerable caution
m u s t b e u s e d w h e n e v a l u a t i n g t h e ascorbate a c t i v i t y of p l a n t extracts (2).
M a n y m e t a l - c o n t a i n i n g p r o t e i n s , o r free C u
2 +
ions i n s o l u t i o n , c a n
u n d e r g o o x i d o r e d u c t i o n i n t h e presence of ascorbate, g e n e r a l l y p r o d u c i n g h y d r o g e n p e r o x i d e i n s t e a d of w a t e r . T h e r e are also reports m e n t i o n i n g a f u n g a l e n z y m e f r o m Myrothecium " a t y p i c a l ascorbate
verrucaria
(13) t h a t is t e r m e d a n
o x i d a s e " because i t is unaffected
b y inhibitors of
h e a v y m e t a l catalysis, i n contrast to t h e c o p p e r e n z y m e s
from higher
plants. W e h a v e r e p e a t e d t h e p u r i f i c a t i o n p r o c e d u r e o f W h i t e a n d K r u p k a (13) a n d subjected t h e y e l l o w - b r o w n m a t e r i a l , c o l l e c t e d after d i e t h y l a m i n o e t h y l c e l l u l o s e c h r o m a t o g r a p h y , to s p e c t r o p h o t o m e t r y a n d e l e c t r o n p a r a m a g n e t i c resonance
( E P R ) spectroscopy.
Neither a typical absorb
a n c e i n t h e 35O-1000-nm r e g i o n n o r a c h a r a c t e r i s t i c E P R s i g n a l c o u l d be detected under o x i d i z i n g a n d reducing conditions; only a very weak E P R s i g n a l at a g of a p p r o x i m a t e l y 4, i n d i c a t i v e o f n o n s p e c i f i c a l l y b o u n d iron from a denatured protein, w a s detected. A s c o r b a t e o x i d a s e is m o s t l y f o u n d i n t h e p e r i p h e r a l p a r t o f t h e p l a n t , as s h o w n i n F i g u r e 1 f o r c a u l i f l o w e r a n d a p p l e that h a d b e e n c u t t h r o u g h the m i d d l e a n d pressed o n a p i e c e of p a p e r c o a t e d w i t h a s o l u t i o n of L-ascorbate a n d the redox
dye dichloroindophenol
(14).
T h e close
a s s o c i a t i o n w i t h t h e c e l l - w a l l m a t e r i a l gives some s u p p o r t to t h e t h e o r y that t h e e n z y m e m i g h t b e i m p o r t a n t f o r p l a n t g r o w t h a n d r i p e n i n g o f
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
10.
KRONECK
ET
AL.
225
Ascorbate Oxidase
Figure 1. Peripheral location of ascorbate oxidase in cauliflower (left) and apple (right). The fruit was cut through the middle and pressed onto a piece of filter paper soaked with a mixture of L-ascorbate and dichloroindophenol, phosphate buffer (pH 6.0).
the f r u i t (2).
B e c a u s e of the h i g h r e a c t i v i t y of r e d u c e d ascorbate oxidase
t o w a r d s d i o x y g e n , the e n z y m e has also b e e n l i n k e d to p l a n t r e s p i r a t i o n b y a n a l o g y w i t h c y t o c h r o m e oxidase i n m a m m a l i a n tissues. I n contrast to tree a n d f u n g a l laccase, w h o s e m o l e c u l a r p a r a m e t e r s a n d m e c h a n i s m s of a c t i o n h a v e b e e n t h o r o u g h l y i n v e s t i g a t e d ( 8 ) , s u c h studies h a v e b e e n r e p o r t e d for ascorbate oxidase.
few
T h i s is m a i n l y
because of t h e r e l a t i v e l y difficult i s o l a t i o n a n d p u r i f i c a t i o n p r o c e d u r e of ascorbate oxidase i n c o m p a r i s o n w i t h laccase.
F u r t h e r m o r e , this e n z y m e
appears t o b e m o r e sensitive to e n v i r o n m e n t a l factors
s u c h as i o n i c
s t r e n g t h of the buffer m e d i u m , its p H , or t h e presence
of
extraneous
m e t a l ions. C o n s e q u e n t l y , m a n y samples i s o l a t e d o v e r a l o n g p e r i o d w e r e f o u n d to b e h o m o g e n e o u s f r o m t h e s t a n d p o i n t of t h e p r o t e i n b i o c h e m i s t but appeared inhomogeneous
w i t h respect
to t h e c a t a l y t i c a l l y a c t i v e
c o p p e r sites ( 9 ) . T h i s c h a p t e r s u m m a r i z e s some r e c e n t d e v e l o p m e n t s i n the p u r i f i c a t i o n of ascorbate oxidase, t h e n u m b e r of c o p p e r atoms p e r a c t i v e m o l e c u l e , a n d the s t o i c h i o m e t r y of the different c o p p e r sites w i t h
reference
to the c l a s s i f i c a t i o n i n t r o d u c e d b y M a l k i n a n d M a l m s t r o m ( 5 ) .
Further
m o r e , p h y s i c a l p r o p e r t i e s of t h e m e t a l centers are d i s c u s s e d i n r e l a t i o n to other s i m p l e c o p p e r p r o t e i n s t h a t h a v e b e e n c h a r a c t e r i z e d i n r e c e n t years.
Finally,
k i n e t i c i n v e s t i g a t i o n s of
ascorbate
are p r e s e n t e d as s t u d i e d b y a n a e r o b i c s t o p p e d - f l o w
oxidase
reduction
and rapid-freeze
techniques.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
226
ASCORBIC
ACID
Purification of the Enzyme and Copper Content A h o m o g e n e o u s s a m p l e of ascorbate oxidase w a s first p r e p a r e d i n 1951. S i n c e t h e n , t h e specific a c t i v i t y a n d the c o p p e r content of h o m o g f r o m 740 u n i t s / / x g of
copper
a n d six c o p p e r a t o m s / M to 1000 units a n d t e n to t w e l v e c o p p e r
eneous p r e p a r a t i o n s g r e a t l y i n c r e a s e d ( 9 )
atoms.
r
T h e c h r o n o l o g i c a l c o r r e l a t i o n of the specific a c t i v i t y of t h e e n z y m e as a f u n c t i o n of
copper
content
documents
i m p r e s s i v e l y t h e difficulties
associated w i t h the p r e p a r a t i o n of " p u r e " ascorbate oxidase. d r a s t i c changes observed
of these a c t i v i t y values p e r c o p p e r
b y D a w s o n a n d coworkers
m o l e c u l a r w e i g h t (M )
been
( 2 , 3 , 9 ) , other c r i t e r i a , s u c h as
or h o m o g e n e i t y a n a l y z e d b y u l t r a c e n t r i f u g a t i o n ,
r
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
Although
atom have
or a m i n o a c i d c o m p o s i t i o n , h a v e
r e m a i n e d r e l a t i v e l y constant.
This
e x p e r i m e n t a l fact is h y p o t h e s i z e d to result f r o m v a r y i n g degrees p r o s t h e t i c c o p p e r loss o c c u r r i n g d u r i n g the p u r i f i c a t i o n steps A procedure was developed
(15)
that yielded a 1 4 %
of
(9). recovery
of
the t o t a l e n z y m a t i c a c t i v i t y present i n the c r u d e j u i c e extract f r o m green squash.
T h e o p t i m u m specific a c t i v i t y w a s i n the r a n g e of 4025 ±
u n i t s / m g protein i n a preparation containing 0.46-0.52%
copper
50
(10-12
C u atoms/140,000 M ) . r
T h r e e other p u r i f i c a t i o n methods h a v e b e e n d e s c r i b e d i n the l i t e r a t u r e — f o r c u c u m b e r (16)
a n d for the e n z y m e f r o m green s q u a s h (17,18).
T a b l e I s u m m a r i z e s the salient m o l e c u l a r p r o p e r t i e s of ascorbate oxidase purified
according
to
the
different p r o c e d u r e s
mentioned
d e t a i l e d p u r i f i c a t i o n t a b l e is p r e s e n t e d i n References
above.
15 a n d 18,
A and
i n c l u d e s the e n z y m e y i e l d c a l c u l a t e d o n t h e basis of t o t a l p r o t e i n present i n the c r u d e juice. T h e y i e l d is 1 4 % f o r t h e m e t h o d of L e e a n d D a w s o n Table I.
Specific Activity (Units/mg
RefSource
erence
Physical and Chemical Properties
M
r
Y e l l o w squash Cucumber G r e e n squash G r e e n squash
48 16 17 15
140,000 132,000 140,000 140,000
G r e e n squash
28
140,000
G r e e n squash
17
—
G r e e n squash
18
140,000
of
Protein)
3600 3500
Cu EPR/M
T
Cu/M
r
(%)
A o/A,
— —
> 1 0.79 1.9 1.8
3 3
3800-4250
8 8 8 8-10
—
3609
8
47 ± 3
0.68
5.4-6.5 7.5-8.0
59 48
0.87
—
3930
8
45
48 ±
2
0.65
° g values (g , g , g ) obtained from computer simulations. Source: Reprinted, with permission, from Ref. 18. Copyright 1979, Springer. z
v
x
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
10.
Ascorbate Oxidase
KRONECK E T A L .
227
( 9 ) vs. 3 4 % f o r t h e m e t h o d of M a r c h e s i n i a n d K r o n e c k (18). N a k a m u r a et a l . (16) recover 0.093 g of p u r e e n z y m e f r o m 15 k g o f f r e s h c u c u m b e r vs. 0.015 g f r o m fresh s q u a s h b y A v i g l i a n o et a l . (17).
T h e preparations
of L e e a n d D a w s o n ( 9 ) a n d of A v i g l i a n o et a l . (17) e x h i b i t r e l a t i v e l y h i g h variations i n c o p p e r / M
r
( T a b l e I ) , r a n g i n g f r o m 5.4 t o 10 C u
a t o m s / 1 4 0 , 0 0 0 M . A constant v a l u e of 7.95 ± 0.1 C u a t o m s / 1 4 0 , 0 0 0 M r
c a n b e a c h i e v e d b y t h e m e t h o d of M a r c h e s i n i a n d K r o n e c k
r
(18).
A m o n g t h e b l u e oxidases o n l y laccase appears to e x h i b i t r e p r o d u c i b l e values f o r the c o p p e r / M r a t i o . T h u s , i t is g e n e r a l l y a g r e e d that laccase r
contains f o u r c o p p e r atoms p e r e n z y m e m o l e c u l e ( 5 ) , w h e r e a s i n c e r u l o -
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
p l a s m i n ( 1 9 ) a n d ascorbate oxidase t h e m e t a l is m u c h m o r e l a b i l e a n d sensitive t o w a r d s v a r i o u s agents a n d e n v i r o n m e n t a l factors.
T h i s sensi
t i v i t y t o w a r d s extraneous agents is also e v i d e n t f r o m t h e d a t a r e p o r t e d b y A v i g l i a n o et a l . ( 2 0 ) , w h o r e m o v e d v a r y i n g amounts of t y p e 2 a n d type 3 copper (EDTA)
( 5 ) b y treatment w i t h ethylenediaminetetraacetic a c i d
or a c o m b i n a t i o n of E D T A
a n d dimethylglyoxime ( D M G ) .
A c c o r d i n g to these authors, ascorbate oxidase contains o n l y five to six p r o s t h e t i c c o p p e r a t o m s / M , whereas t w o to three of t h e eight r
copper
atoms o r i g i n a l l y present are e x t r e m e l y l a b i l e . U n f o r t u n a t e l y , no precise a c t i v i t y values a r e specified f o r t h e s e v e r a l e n z y m e p r e p a r a t i o n s
con
t a i n i n g eight, six to seven
plus
(after E D T A ) , a n d five (after E D T A
D M G ) c o p p e r atoms p e r e n z y m e m o l e c u l e . I n investigations o n the s o - c a l l e d " r e a c t i o n i n a c t i v a t i o n " o f ascorbate oxidase b y h y d r o g e n p e r o x i d e (21,22), essentially n o p r o s t h e t i c
copper
b e c a m e b o u n d t o the r e s i n d u r i n g 64-copper exchange experiments o n a n A m b e r l i t e I R - 1 0 0 c o l u m n , at p H 5.6. of Ascorbate Oxidase from Different Type
A
Cu/
M
r
(nm)
(M'
Sources
1 Copper
Type 2
A„
1
cm' ) 1
g,,
— — 2
608 607 610
10,400 9,680 10,700
—
610
9,600
2.24
3
610
9,680
2.227
3
610
11,000
2.229
3
610
9,700
2.227
g j L
— 2.22 2.22
An
Cu/
M
r
g„
g
— — 2.22
— — 2.05
x
(mT)
— 2.06 2.05
— 5.0 5.4
— — 2
2.07
6.0
—
—
—
5.6
1
2.242°
2.053
19.0
5.8
1
2.248
—
18.8
5.6
1
2.242°
2.053
19.0
a
— a
(mT)
Copper
—
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
— — 19.5
228
ASCORBIC
ACID
T h e c o p p e r c o n t e n t a n d e n z y m e a c t i v i t y is also m a r k e d l y d e p e n d e n t o n the p H of the s o l u t i o n . E x t e n s i v e studies (23,24) s h o w a r a p i d loss of the m e t a l b e l o w
p H 4.6;
this loss is t e m p e r a t u r e d e p e n d e n t
a c c o m p a n i e d b y a n i r r e v e r s i b l e u n f o l d i n g of the p r o t e i n m o i e t y . 11, d i s s o c i a t i o n of a s u b u n i t (M
~
r
and
At p H
65,000) is o b s e r v e d b y u l t r a f i l t r a t i o n .
T h i s process is n o t a c c o m p a n i e d b y loss of c o p p e r , a n d r e s i d u a l a c t i v i t y ( - 2 5 % ) is detectable. A p a r t f r o m p r o s t h e t i c c o p p e r loss d u e
to
environmental
c o o r d i n a t i o n site s t r u c t u r a l changes t h a t are d e t e c t a b l e b y techniques can occur.
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
o n spectroscopic
factors,
spectroscopic
T h e s e changes are d i s c u s s e d later i n the section
properties.
Molecular Properties of the Protein T h e most extensive studies o n t h e m o l e c u l a r p r o p e r t i e s of oxidase h a v e b e e n c a r r i e d out i n D a w s o n ' s l a b o r a t o r y .
ascorbate
Sedimentation
e q u i l i b r i u m experiments h a v e c o n f i r m e d a m o l e c u l a r w e i g h t of a v a l u e of
137,000 was d e t e r m i n e d for t h e a p o p r o t e i n .
i s o l a t e d a n d p u r i f i e d a c c o r d i n g to the different m e t h o d s
140,000;
The
enzyme
(Table I)
is
h o m o g e n e o u s b y e l e c t r o p h o r e t i c m e t h o d s a n d u l t r a c e n t r i f u g a t i o n (s o,w 2
=
7.52)
i n the p H r a n g e 5.2-10.
r e p o r t e d e a r l i e r (23, 24).
A b o v e p H 11 d i s s o c i a t i o n occurs
as
W h e n exposed to s o d i u m d o d e c y l sulfate ( S D S )
or g u a n i d i n i u m c h l o r i d e , the e n z y m e dissociates into t w o e q u i v a l e n t s u b units of 65,000 M
r
a c c o m p a n i e d b y the loss of p r o s t h e t i c c o p p e r .
I n the
presence of a strong r e d u c i n g agent, s u c h as 2 - m e r c a p t o e t h y l a m i n e
(or
its c o r r e s p o n d i n g e t h a n o l d e r i v a t i v e ) , a n d S D S , t w o other s u b u n i t s are found.
T h e s e s u b u n i t s are t e r m e d c h a i n a (M
r
28,000).
(M
r
38,000) a n d c h a i n /?
O n the basis of these results ascorbate oxidase is p r o p o s e d
to be a t e t r a m e r c o m p o s e d of t w o a a n d t w o ft c h a i n s , w h e r e e a c h «/? p a i r is c o v a l e n t l y c o n n e c t e d
by
disulfide bonds
(25).
A
quaternary
structure s i m i l a r to that of the n a t i v e e n z y m e is b e l i e v e d to exist for t h e copper-free
a p o p r o t e i n , w h i c h is o b t a i n e d b y exhaustive d i a l y s i s against
c y a n i d e (26).
R e i n c o r p o r a t i o n of t h e m e t a l i n t o t h e a p o p r o t e i n
t h e p r o t e i n m o l e c u l e to d i m e r i z e , because w i t h g e l a M
r
of 285,000
(s o,w° = 2
9-79)
was obtained.
filtration
causes
techniques
Unfortunately neither
o p t i c a l n o r E P R spectra of the different p r o t e i n species
(which might
h a v e g i v e n some s t r u c t u r a l i n f o r m a t i o n a b o u t the r e c o n s t i t u t e d c o p p e r sites, p a r t i c u l a r l y w i t h respect to the r a t i o of t y p e 1 to t y p e 2 c o p p e r ) were presented. A q u a t e r n a r y structure c o n s i s t i n g of t w o i d e n t i c a l , l a c c a s e - l i k e , a c t i v e sites p e r m o l e c u l e , e a c h c o n t a i n i n g f o u r c o p p e r atoms, w a s for t h e n a t i v e e n z y m e
(27).
suggested
I n t h e e n z y m e t h e s u b u n i t s a a n d p are
a r r a n g e d i n a s y m m e t r i c a l w a y , aft/Pa,
w h e r e a s i n the a p o e n z y m e
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
an
10.
229
Ascorbate Oxidase
KRONECK E T A L .
a s y m m e t r i c a l g e o m e t r y , aa/fift,
is a s s u m e d .
T h i s i n t e r p r e t a t i o n of
the
q u a t e r n a r y s t r u c t u r e of n a t i v e ascorbate oxidase a n d its a p o p r o t e i n is somewhat
contradictory
to
reported
results
Evidence
(18,28).
was
p r o v i d e d for a n " a s y m m e t r i c " s t o i c h i o m e t r y of the t h r e e different c o p p e r classes ( 5 ) , that is, o n l y one t y p e 2 c o p p e r out of e i g h t c o p p e r atoms, a n d not t w o as p r e d i c t e d for t w o l a c c a s e - l i k e s u b u n i t s . L i k e laccase a n d c e r u l o p l a s m i n , ascorbate oxidase is a n a c i d i c p r o t e i n , w i t h a s p a r t i c a c i d a n d g l u t a m i c a c i d i n excess over h i s t i d i n e , l y s i n e , a n d a r g i n i n e . F o r t h e a m i n o a c i d c o m p o s i t i o n see the d e t a i l e d d a t a i n References 3 a n d 18.
U n l i k e laccase, ascorbate oxidase has a r e l a t i v e l y
l o w c a r b o h y d r a t e content, 2 . 4 %
vs. a p p r o x i m a t e l y 4 5 %
(29).
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
A s p e c i a l interest has b e e n d i r e c t e d t o w a r d s the n u m b e r a n d accessi b i l i t y of cysteine ( R S H ) s u l f u r a n d cystine ( R S S R ) s u l f u r groups, w h i c h h a v e b e e n p r o p o s e d as b i n d i n g sites for the b l u e t y p e 1 c o p p e r , a n d as p o t e n t i a l e l e c t r o n a c c e p t i n g sites (30-34).
F o r ascorbate oxidase
from
y e l l o w squash, t e n to t w e l v e cysteine residues p l u s six to e i g h t c y s t i n e residues w e r e f o u n d ; n o n e of the S H groups w a s accessible to m e r c u r i a l s (35).
T h e s e results are i n g o o d a g r e e m e n t w i t h the d a t a r e p o r t e d
for the enzyme
from
green
squash.
O n l y three to
residues w e r e d e t e r m i n e d for t h e laccases
four
(18)
half-cystine
(36).
Spectroscopic Properties and Stoichiometry of the Copper Types T h e a b s o r p t i o n s p e c t r u m of the p u r e e n z y m e i n
Optical Spectra. p h o s p h a t e buffer
( p H 7.0)
exhibits the t y p i c a l b l u e m a x i m u m at 610
n m , a s s i g n e d to the b l u e or t y p e - 1 c o p p e r , a n d the s h o u l d e r at 330 n m , assigned to the E P R - n o n d e t e c t a b l e type 3 c o p p e r ( 5 ) I).
tions b y L e e a n d D a w s o n ( 1 5 ) , is
( F i g u r e 2, T a b l e
T a b l e I also i n c l u d e s m o l e c u l a r p a r a m e t e r s f r o m p r e v i o u s p r e p a r a the
absence
of
a
a n d other authors.
distinct absorption
A notable
maximum around
r e p o r t e d b y L e e a n d D a w s o n for t h e i r p u r e s t p r e p a r a t i o n . to o u r standards (18) 6
A io/A oo = 6
5
7.00
0
=
25 =b 0.5, A O/AQ 33
d= 0.25.
10
=
nm,
According
p u r e ascorbate oxidase is c h a r a c t e r i z e d b y
optical indices A 8 o / A i 2
feature
800
0.65 d b 0.05,
the and
D e v i a t i o n s f r o m these v a l u e s i n d i c a t e t h e
loss of the t y p e 1 c o p p e r , as is also s u p p o r t e d b y the c o r r e s p o n d i n g E P R spectra.
A n increase of the a b s o r b a n c e at 500 n m is associated w i t h a
d e n a t u r a t i o n of the p r o t e i n , as o b s e r v e d hydrogen peroxide
(18).
at the e n d of t i t r a t i o n s w i t h
U p o n a d d i t i o n of a r e d u c t a n t , for
example,
L - a s c o r b a t e or r e d u c t a t e , t h e b l u e c h r o m o p h o r e a n d the a b s o r b a n c e 330 n m are b o t h b l e a c h e d . reported
for
laccase (5-8).
the
two
at
N e a r l y i d e n t i c a l e l e c t r o n i c spectra h a v e b e e n
other
multicopper
oxidases,
ceruloplasmin and
I n the latter case the o p t i c a l p r o p e r t i e s h a v e b e e n e l u c i
d a t e d i n m u c h greater d e t a i l u s i n g l o w - t e m p e r a t u r e s p e c t r o s c o p y
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
(37,
230
ASCORBIC
ACID
050
^025
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
0 1 300
, 400
, 500
, 600
• 700 X (nm)
800
1000
900
Figure 2. Absorption spectra of pure ascorbate oxidase. Enzyme 48 fxM in 0.1 M phosphate buffer (pH 7.0), 20°C, 1.0-cm cell. Key: 1, oxidized enzyme; 2, reduced enzyme, slight excess of L-ascorbate. (Reproduced, with permission, from Ref. 18. Copyright 1979, Springer.) 38).
Furthermore, based on earlier calculations (39)
for the type
1
copper protein plastocyanin, ligand-field parameters for the blue copper i n laccase h a v e b e e n d e r i v e d .
T h e s e reports
(37,38)
also i n c l u d e a
s t r u c t u r a l r e p r e s e n t a t i o n of t h e t y p e 1 c e n t e r c o m p o s e d of a
flattened
tetrahedron ( D j symmetry) w i t h t w o i m i d a z o l e side-chains, a cysteine 2 (
sulfur, a n d a f o u r t h l i g a n d
(which probably
is m e t h i o n i n e s u l f u r ) ,
b o u n d to t h e m e t a l i o n . A l t h o u g h no s u c h l o w - t e m p e r a t u r e e x p e r i m e n t s h a v e b e e n p e r f o r m e d w i t h ascorbate oxidase, one m i g h t a n t i c i p a t e s i m i l a r s t r u c t u r a l features f o r t h e b l u e t y p e 1 centers. R e m o v a l of t h e t y p e 2 c o p p e r a c c o r d i n g to a r e p o r t e d (20)
procedure
leads to significant decreases of t h e a b s o r b a n c e at 330 a n d 7 5 0 n m .
T h e s e decreases i n d i c a t e t h a t t y p e 2 c o p p e r c o n t r i b u t e s to t h e a b s o r b a n c e i n these regions. F o r f u n g a l a n d t r e e laccase, structures b a s e d o n t e t r a g o n a l six, five, o r s q u a r e - p l a n a r f o u r c o o r d i n a t i o n , as f o u n d i n s e v e r a l low-molecular-weight copper complexes, were proposed
(37).
F l u o r e s c e n c e s p e c t r a of o x i d i z e d , p a r t i a l l y r e d u c e d , a n d f u l l y r e d u c e d ascorbate oxidase are s h o w n i n F i g u r e 3. A t p H 7.0 ( p h o s p h a t e b u f f e r ) , t h e p u r e e n z y m e gives a n e x c i t a t i o n m a x i m u m at 295 n m , a n d a n e m i s s i o n m a x i m u m at 330 n m .
E a r l i e r r e p o r t e d values
(15,28)
differ slightly
f r o m o u r figures, t h a t is, 325 a n d 335 n m are q u o t e d f o r t h e e m i s s i o n m a x i m u m . R e c e n t l y , a v a l u e of 328 n m f o r ascorbate o x i d a s e f r o m g r e e n s q u a s h w a s m e a s u r e d (40).
T h i s v a l u e , i n c o n t r a s t to a l l o t h e r v a l u e s
mentioned above, was obtained on a corrected optical data the A
3 3
fluorometer.
F r o m the
o / A i o i n d e x w a s e s t i m a t e d to b e greater t h a n 6
1.0;
f u r t h e r m o r e , t h e a b s o r p t i o n m a x i m u m w a s l o c a t e d at 605 n m . F o r o u r p r e p a r a t i o n s t h e e m i s s i o n m a x i m u m w a s a l w a y s at 330 n m , i n d e p e n d e n t of w h e t h e r w e u s e d t h e p u r e s t f r a c t i o n , e n z y m e w i t h a l o w e r
copper
content, o r e n z y m e t h a t h a d b e e n t r e a t e d w i t h C h e l e x 100 o r s u b j e c t e d t o l y o p h i l i z a t i o n (18).
O b v i o u s l y , d e s p i t e s i g n i f i c a n t differences
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
within
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982. 380
(20
X(nrn)
1
2
3
Mole Ascorbate/Enzyme
4
Anaerobic reduction of ascorbate oxidase by L-ascorbate, as followed byfluorescencespectroscopy (A) and by the change in absorbance at 610 nm (B).
340
cm
t80
(A) Enzyme 4.38 fM in 0.1 M phosphate buffer, pH 7.0, Ai . = 1.3; L-ascorbic acid 1.0 mM, 10.0 fM EDTA; 20°C, 1.0-cm cell, excitation at 295 nm, slit width 6 mm. Key: 1, oxidized enzyme; 2, half-reduced enzyme, 2 equivalents of L-ascorbate enzyme; 3, fully reduced enzyme, 4 equivalents of iL-ascorbate enzyme. (B) Enzyme 36.3 fiM in 0.1 M phosphate buffer, pH 7.0; L-ascorbic acid 5.0 mM, 10.0 fiM EDTA, 20°C, 1.0-cm cell. (Reproduced, with permission, from Ref. 18. Copyright 1979, Springer.)
Figure 3.
300
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
to ^
232
ASCORBIC
ACID
t h e o p t i c a l o r E P R p r o p e r t i e s of t h e i n d i v i d u a l p r e p a r a t i o n s of ascorbate oxidase, t h e Upon
fluorescence
stepwise
e m i s s i o n m a x i m u m retains its 3 3 0 - n m v a l u e .
addition of
stoichiometric
amounts
of
reducing
substrates u n d e r t h e r i g o r o u s e x c l u s i o n of d i o x y g e n ( f o r t e c h n i c a l d e t a i l s , see R e f . 18), t h e i n t r i n s i c 1.5-1.75
fluorescence
e m i s s i o n at 330 n m increases b y
( F i g u r e 3 ) w i t h o u t changes
i n p e a k shape
or position.
In
c o m p a r i s o n w i t h tree laccase o r f u n g a l laccase (41,42), ascorbate oxidase reacts r a p i d l y w i t h L - a s c o r b a t e , e v e n after t h e a c c e p t a n c e o f five to six electrons p e r m o l e c u l e .
F o r the identical experiment, a
fluorescence
e n h a n c e m e n t f a c t o r of t w o f o r a s a m p l e of ascorbate oxidase p r e p a r e d a c c o r d i n g to R e f e r e n c e 17 w a s o b s e r v e d
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
increase p a r a l l e l to changes detected,
F u r t h e r m o r e , at i n t e r
(40).
m e d i a t e r e d u c t i o n stages a t i m e - d e p e n d e n t i n absorbance
fluorescence
decrease a n d
at 3 3 0 a n d 605 n m w a s
a n d w a s a t t r i b u t e d to a n i n t r a m o l e c u l a r e l e c t r o n
transfer
b e t w e e n t h e t y p e 1 a n d t h e t y p e 3 c o p p e r sites. A
similar relationship between
the intrinsic
fluorescence
a n d the
r e d o x state of t h e c o p p e r atoms i n l a c q u e r tree laccase w a s r e p o r t e d (43). E P R Spectra and Stoichiometry of the Copper Classes.
A m o n g the
p h y s i c a l m e t h o d s that h a v e c o n t r i b u t e d t o o u r k n o w l e d g e a b o u t s t r u c t u r a l a n d m e c h a n i s t i c aspects of c o p p e r e n z y m e s a n d p r o t e i n s , E P R spectros c o p y has p l a y e d a d o m i n a n t role over t h e past t w o decades (5,6).
At
p H 7.0 ( p h o s p h a t e b u f f e r ) , p u r e ascorbate oxidase gives t h e E P R s i g n a l ( r e c o r d e d at X - b a n d , ~
9.3 G H z ) i l l u s t r a t e d i n F i g u r e 4. T h e s i g n a l
demonstrates t h e presence o f t h e t y p e 1 a n d t y p e 2 copper, s h o w n b y t h e different h y p e r f i n e s p l i t t i n g s i n t h e g
M
r e g i o n ( T a b l e I ) . T h e spec
t r u m s h o w n i n F i g u r e 4 is n e a r l y i d e n t i c a l w i t h t h e spectra p u b l i s h e d earlier for the enzyme from cucumber
(16), a n d f o r ascorbate
isolated from green squash, cucumber, or m a r r o w squash
oxidase
(28,44).
D o u b l e i n t e g r a t i o n of t h e area u n d e r t h e first d e r i v a t i v e reveals that 48 ±
2% of t h e c h e m i c a l l y d e t e r m i n e d c o p p e r
(18) is E P R d e t e c t a b l e
i n f r o z e n s o l u t i o n . T a b l e I s u m m a r i z e s t h e e x p e r i m e n t a l g a n d A values m e a s u r e d f r o m t h e r e c o r d e d spectra. A best fit o f t h e E P R s p e c t r u m of o x i d i z e d ascorbate o x i d a s e is o b t a i n e d b y c o m p u t e r s i m u l a t i o n , u s i n g t h e h i g h - f r e q u e n c y measurements at 35 G H z (28).
T h e ratio of t y p e 1
to t y p e 2 c o p p e r is e s t i m a t e d b y d o u b l e i n t e g r a t i o n of t h e first l o w - f i e l d l i n e , w h i c h arises f r o m t h e t y p e 2 c o p p e r , at a p p r o x i m a t e l y 0.270 T
(18).
R o u g h l y 2 5 % of t h e E P R - d e t e c t a b l e c o p p e r i n ascorbate oxidase is t y p e 2, whereas
7 5 % is b l u e t y p e
1 copper.
T h i s r a t i o is c o n f i r m e d b y
c o m p u t e r analysis (18) a n d agrees w i t h e a r l i e r results (28) ( F i g u r e 4 ) . A d d i t i o n of r e d u c i n g e q u i v a l e n t s causes c o m p l e t e loss of t h e E P R s i g n a l ( F i g u r e 2 ) , w h i c h reappears r a p i d l y a n d c o m p l e t e l y u p o n r e o x i d a t i o n w i t h d i o x y g e n or f e r r i c y a n i d e . and type 2 copper technique.
S t r u c t u r a l changes
of t h e t y p e 1
sites c a n b e c o n v e n i e n t l y m o n i t o r e d b y t h e E P R
T h u s , after l y o p h i l i z a t i o n of t h e p u r e e n z y m e i n p h o s p h a t e
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
10.
233
Ascorbate Oxidase
KRONECK E T A L .
buffer ( p H 7.0) a s e c o n d p e a k close to the m =
— 3 / 2 l i n e of the t y p e 2
center appears i n t h e E P R s i g n a l ( F i g u r e 4 ) . to t y p e 2 c o p p e r r a t i o b e c o m e s 1.5:1 changes i n the p u r i t y i n d e x A o / A i o 3 3
6
F u r t h e r m o r e , the t y p e 1
or e v e n 1:1, from
0.65
as s h o w n
to
0.9 a n d
by
the
greater.
R e c e n t l y , s i m i l a r observations w e r e m a d e f o l l o w i n g dialysis ( a e r o b i c or a n a e r o b i c ) against acetate buffer ( p H 5.0 or 4.5)
(45).
t y p e 1 c o p p e r decreases significantly, y i e l d i n g a n e w
T h e amount EPR
of
spectrum
w i t h l a r g e r n u c l e a r hyperfine splittings Aj| ( F i g u r e 4; for f u r t h e r details,
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
see Ref.
IS).
© /
© A
5A ®A A y i
w
2 6i 0
i i
1 290
1
,
i 320
Magnetic flux density Figure 4A.
,
i
i 350
i
(mT)
Experimental X-band EPR spectra of ascorbate oxidase.
Enzyme 0.228 mM in 0.1 M phosphate buffer (pH 7.0), temperature 105 K, 100 kHz modulation frequency, 1.0 mT modulation amplitude, ~ 2 mW power (20 dB), 0.2 s time constant, 0.10 mT/s scan rate, 9.39148 GHz microwave frequency. Key: 1, oxidized enzyme; V as 1, but 5 X instrument sensitivity; 2, reduced enzyme, sensitivity as in 1'; 3, oxidized enzyme, lyophilized at 0°C, redissolved, AWA*w = 1.1; 4, oxidized enzyme, after treatment with Chelex 100, AWA«i* = 1.0, sensitivity in 3 and 4 as in 1'. (Reproduced, with permission, from Ref. 18. Copyright 1979, Springer.)
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
234
ASCORBIC
265
285
305
325
ACID
345
Magnetic flux density (mT) Figure 4B.
Simulated X-band EPR spectra of ascorbate oxidase.
Spectra were simulated with the parameters of Table 111. Lorentzian lineshape (18). Key: 1, 3 type 1 Cu, 1 type 2 Cu; 2, 2 type 1 Cu, 2 type 2 Cu. (Reproduced, with permission, from Ref. 18. Copyright 1979, Springer.)
T h e presence of a s i n g l e t y p e 2 center i n ascorbate oxidase is not consistent w i t h the p r o p o s e d c o n c e p t of a q u a t e r n a r y s t r u c t u r e c o m p o s e d of t w o i d e n t i c a l subunits afS (25).
O n the other h a n d , a l l the m u l t i c o p p e r
oxidases d e s c r i b e d i n t h e l i t e r a t u r e (5-^5) h a v e o n l y one t y p e 2 center p e r active m o l e c u l e .
A d d i t i o n a l c o p p e r w i t h t y p e 2 characteristics c a n
b e b o u n d b y the m a c r o m o l e c u l e d u r i n g i s o l a t i o n a n d p u r i f i c a t i o n
(19).
A close e x a m i n a t i o n of t h e E P R spectra p r e s e n t e d b y L e e a n d D a w s o n (9)
i n d i c a t e s t h e presence
h y p e r f i n e s p l i t t i n g s at g|,.
of so-called nonspecific
copper w i t h
A s expected, the r a t i o A O / A Q 3 S
1 0
large
is a p p r o x i
m a t e l y 1.5-2 for these p r e p a r a t i o n s ( e s t i m a t e d f r o m F i g u r e 2 i n R e f . 9 ) .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
10.
KRONECK E T A L .
235
Ascorbate Oxidase
Anaerobic Reduction of Ascorbate Oxidase—Number of Redox Equivalents and Midpoint Potentials of the Copper Sites R e d u c t i o n a n d r e o x i d a t i o n of t h e c o p p e r i n ascorbate oxidase c a n b e easily f o l l o w e d b y s p e c t r o p h o t o m e t r y at 330 a n d 610 n m ,
fluorescence
emission
and E P R
at 330 n m ( d e s c r i b e d
spectroscopy
(Figure 4).
i n the previous
section),
U s i n g the anaerobic titration techniques de
s c r i b e d i n R e f e r e n c e 18, c o m p l e t e r e d u c t i o n of t h e e n z y m e is a c h i e v e d b y f o u r e q u i v a l e n t s of L - a s c o r b a t e o r r e d u c t a t e .
W i t h total reduction,
the a b s o r b a n c e at 610 n m c o m p l e t e l y disappears, w h e r e a s some r e s i d u a l a b s o r b a n c e i n t h e 3 3 0 - n m r e g i o n r e m a i n s , c a u s e d b y t h e a b s o r b a n c e of
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
r e d u c e d p r o t e i n a n d o x i d i z e d substrate. P o t e n t i o m e t r i c t i t r a t i o n s o f t h e t y p e 1 c o p p e r w i t h f e r r i c y a n i d e as a m e d i a t o r ( e q u a l a m o u n t s o r a t e n f o l d e x c e s s / e n z y m e g i v e a N e r n s t factor, n i o , of 1.1 a n d a m i d p o i n t 6
potential, E '
O f 6
i , of 344 m V [vs. s t a n d a r d h y d r o g e n electrode 0
2 5 ° C , p h o s p h a t e buffer
(SHE),
( p H 7.0) w i t h I — 0.1 M ] ( F i g u r e 5 ) . F o r
m a n y titrations a r e l a t i v e l y l o n g l a g phase o f u p to t h r e e electrons w a s o b s e r v e d before a n y decrease i n a b s o r b a n c e at e i t h e r 610 o r 330 n m w a s
Ed
610
vs. S H E
[mV ]
Figure 5A. Anaerobic potentiometric titration of the type-1 Cu centers in ascorbate oxidase using ferricyanide as mediator, phosphate buffer (pH 7.0), I = 0.10 M, 25.0°C, K Fe(CN) 210 fiM, enzyme 21 fiM. 3
6
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
236
ASCORBIC
log ( A / ( A o - A ) )
ACID
[X=610nm]
Figure 5B. Double Nernst plot of the reduction by L-ascorbate at 610 and 330 nm, phosphate buffer (pH 7.0), I = 0.20 M , 10.0°C, enzyme 28 fiM. Potentials are reported in mV vs. SHE. detected.
T h i s effect p r o b a b l y arises f r o m traces of d i o x y g e n left i n t h e
r e s t i n g e n z y m e e v e n after r i g o r o u s d e o x y g e n a t i o n
(18).
T h e results of a s i m u l t a n e o u s s p e c t r o p h o t o m e t r i c
t i t r a t i o n at 330
a n d 610 n m are d e p i c t e d i n a d o u b l e N e r n s t p l o t i n F i g u r e 5, g i v i n g a n £'0,330 v a l u e f o r t h e t y p e 3 c e n t e r t h a t is n e a r l y i d e n t i c a l t o E'o.eio of t h e type 1 copper. 30 ±
H o w e v e r , at l o w e r t e m p e r a t u r e s (e.g., 1 0 ° C ) a v a l u e of
10 m V w a s m e a s u r e d f o r the difference E'0,330 ~~ JE'ceio* A s i m i l a r
r e d o x s i t u a t i o n is f o u n d f o r tree laccase (E'
Q
m V ; E ' f o r the t y p e 3 c o p p e r , 434 m V ) . 0
for t h e t y p e 1 c o p p e r , 394
H o w e v e r , at 2 5 ° C , w h e r e t h e
difference £'0,330 ~ £'0,610 is c o n s i d e r a b l y d i m i n i s h e d i n ascorbate oxidase ( i n t h e p r e s e n c e of t h e r e d o x m e d i a t o r f e r r i c y a n i d e ) ; t h e r m o d y n a m i c c o n t r o l f o r t h e o c c u p a n c y of t h e i n d i v i d u a l c o p p e r sites is less p r o n o u n c e d . I n t e r e s t i n g l y , i n the case o f b o t h t h e t h r e e t y p e 1 centers a n d t h e f o u r t y p e 3 centers, a l i n e a r N e r n s t r e l a t i o n s h i p exists i n t h e 1 0 - 2 5 ° C
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
10.
t e m p e r a t u r e r a n g e , p h o s p h a t e buffer among
237
Ascorbate Oxidase
KRONECK E T A L .
the single members
( p H 7.0), indicating equivalence
of the t w o copper
classes.
T h e Nernst
coefficient r a t i o n 3 o / n i o ( F i g u r e 5 ) , w h i c h h e r e does n o t a p p r o a c h t h e 3
6
e x p e c t e d n u m b e r of 2, raises some c o n t r o v e r s i a l p o i n t s r e g a r d i n g t h e m o d e of e l e c t r o n t r a n s f e r b e t w e e n t h e t w o c h r o m o p h o r e s .
Based largely
o n p o t e n t i o m e t r i c e v i d e n c e , a n d t h e c o m p l e t e l a c k of a n E P R s i g n a l i n e i t h e r t h e f u l l y o x i d i z e d o r f u l l y r e d u c e d state (8,46), t h e t y p e 3 c o p p e r pair probably
functions
as a c o o p e r a t i v e
two-electron
acceptor
(7).
H o w e v e r , this is o p e n t o q u e s t i o n ; u n c o u p l i n g of t h e t y p e 3 c o p p e r p a i r w a s p r o p o s e d to o c c u r i n t h e m a j o r i t y of cases (47).
Double Nernst
plots f o r s p e c t r o p h o t o m e t r i c t i t r a t i o n s of tree laccase ( s u c h as F i g u r e 5 )
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
p r o d u c e d slopes o f 1.0-2.0, d e p e n d i n g o n t h e t i t r a n t u s e d . T i t r a n t s s u c h as h y d r o q u i n o n e o r f e r r o c y a n i d e gave slopes of 2.0, w h e r e a s R u ( N H ) 3
6
2 +
gave a slope of 1.0. A c c o r d i n g t o some reports s t r o n g r e d u c i n g agents are c a p a b l e o f u n c o u p l i n g t h e t y p e 3 c o p p e r successive
one-electron
acceptor.
existence of p s e u d o c o o p e r a t i v i t y
unit, turning i t into a
A n a l t e r n a t i v e i n t e r p r e t a t i o n is t h e between
the type 1 copper
and the
optically almost invisible type 2 center h a n d l i n g two-electron packages to t h e t y p e 3 d i m e r . B e c a u s e t h e t y p e 2 c o p p e r i n tree laccase has t h e l o w e s t p o t e n t i a l , its a b i l i t y to b e c o m e i n v o l v e d i n a p s e u d o c o o p e r a t i v e e l e c t r o n - t r a n s f e r m e c h a n i s m w o u l d increase w i t h t h e r e d u c i n g of t h e t i t r a n t , i n a g r e e m e n t w i t h e x p e r i m e n t a l
findings
power
(47).
Mechanism of Action of Ascorbate Oxidase—Kinetics of the Anaerobic Reduction by Ascorbate and Reductate F a c e d w i t h t h e p r o b l e m of e l u c i d a t i n g t h e i n d i v i d u a l roles of t h e different c o p p e r centers i n t h e b l u e oxidases, t h e researcher has n a t u rally focused
i n recent
years
o n t h e laccases
(9).
Being
isolate, b e t t e r c h a r a c t e r i z e d , a n d c o n t a i n i n g f e w e r c o p p e r ceruloplasmin
o r ascorbate
l a c q u e r tree Rhus vernicifera
oxidase,
t h e laccases
from
easier t o
atoms
than
t h e Japanese
a n d t h e f u n g u s Polyporus versicolor h a v e
b e e n t h e subject of several t r a n s i e n t k i n e t i c studies i n t h e m i l l i s e c o n d r a n g e , t h a t i s , studies u s i n g s t o p p e d - f l o w s p e c t r o p h o t o m e t r y a n d r a p i d freeze E P R spectroscopy
(9,49,50).
L a c c a s e , b y a n a l o g y w i t h ascorbate oxidase, catalyzes the o x i d a t i o n of o- o r p - a r y l d i a m i n e s a n d d i p h e n o l s b y d i o x y g e n t o p r o d u c e w a t e r a n d the corresponding quinones.
S t e a d y state k i n e t i c s h a v e e s t a b l i s h e d t h a t
a " p i n g - p o n g " m e c h a n i s m is o p e r a t i v e (51).
T h i s finding i m p l i e s t h a t t h e
r e d u c t i o n o f d i o x y g e n a n d the o x i d a t i o n of t h e o r g a n i c substrate a r e separate events, r e q u i r i n g t h e e n z y m e to f u n c t i o n as a m u l t i e l e c t r o n mediator.
D u r i n g t h e c a t a l y t i c c y c l e t h e o r g a n i c substrate u n d e r g o e s a
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
238
ASCORBIC
r a p i d o n e - e l e c t r o n o x i d a t i o n to a free r a d i c a l , w h i c h p r o b a b l y
ACID
decays
b y n o n e n z y m a t i c d i s m u t a t i o n ( 5 2 ) , as f o u n d i n v a r i o u s e n z y m e - c a t a l y z e d o x i d a t i o n reactions ( 5 3 ) . K i n e t i c experiments u n d e r a n a e r o b i c c o n d i t i o n s h a v e l e d to t h e c o n c l u s i o n t h a t t h e t y p e 1 c o p p e r is t h e e n t r y site of electrons i n t o t h e e n z y m e (49,54).
T h e t y p e 3 c o p p e r p a i r is r e d u c e d
i n a process d e p e n d e n t u p o n t h e i n t r a m o l e c u l a r transfer of o n e e l e c t r o n from the type
1 copper.
F u r t h e r m o r e , t h e rate o f e l e c t r o n transfer
b e t w e e n t h e t y p e 1 a n d t h e t y p e 3 centers is c o n t r o l l e d b y t h e p H of the m e d i u m , p o s s i b l y v i a a t r i g g e r m e c h a n i s m i n v o l v i n g t h e t y p e 2 copper
(49).
A c o m p l e x m e c h a n i s m f o r t h e f o u r - e l e c t r o n r e d u c t i o n of d i o x y g e n
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
to w a t e r m u s t c o m p l e t e t h e c a t a l y t i c c y c l e .
A n y mechanism involving
f o u r c o n s e c u t i v e s i n g l e - e l e c t r o n transfers is u n l i k e l y ( 5 5 ) . F o r laccase some e x p e r i m e n t a l e v i d e n c e i n d i c a t e s that at least t w o single electrons are e x c h a n g e d , because d u r i n g d i o x y g e n r e d u c t i o n a p a r a m a g n e t i c i n t e r m e d i a t e , w h i c h decays s l o w l y b y t h e r e a c t i o n w i t h t h e r e d u c e d t y p e 2 center, is f o r m e d radical O
t
(56,57).
T h i s p a r a m a g n e t i c species, most l i k e l y t h e
, is t r a p p e d d u r i n g s i m p l e o x i d a t i o n reactions. U s i n g o x y g e n -
1 7 - i s o t o p e - e n r i c h e d d i o x y g e n , o n l y o n e p r o d u c t w a t e r m o l e c u l e is r a p i d l y released i n t o t h e s o l u t i o n , w h e r e a s t h e second o n e r e m a i n s c o o r d i n a t e d to t h e t y p e 2 c o p p e r site a n d exchanges s l o w l y i n c o m p a r i s o n to t h e first F r o m these results i t appears t h a t t h e t y p e 2 c o p p e r p l a y s a n
(56,57).
i m p o r t a n t r o l e i n b o t h t h e r e d u c t i v e a n d o x i d a t i v e f u n c t i o n i n g of t h e enzyme.
( F o r f u r t h e r d e t a i l s , see R e f s . 9 a n d 49).
A n o t h e r i n t e r e s t i n g aspect of t h e r e d u c t i o n of d i o x y g e n b y laccase arises f r o m t h e o b s e r v a t i o n t h a t t h e e n z y m e forms a stable i n t e r m e d i a t e w i t h h y d r o g e n p e r o x i d e (58,59,60).
T h i s p e r o x y c o m p o u n d of laccase
is o b t a i n e d e i t h e r b y o x i d a t i o n of t h e r e d u c e d e n z y m e w i t h h y d r o g e n p e r o x i d e o r b y d i r e c t t i t r a t i o n of t h e o x i d i z e d e n z y m e w i t h h y d r o g e n peroxide.
P r i m a r i l y o n t h e basis of a b s o r p t i o n a n d c i r c u l a r d i c h r o i s m
spectra i t w a s p r o p o s e d t h a t t h e p e r o x i d e b i n d s to t h e t y p e 3 c o p p e r p a i r . M e a n w h i l e , these i n v e s t i g a t i o n s w e r e e x t e n d e d to m a g n e t i c s u s c e p t i b i l i t y measurements (60), w h i c h g i v e f u r t h e r s u p p o r t f o r a p e r o x i d e - c o o r d i n a t e d type 3 copper couple. S o m e o f these experiments h a v e b e e n r e p e a t e d w i t h ascorbate oxidase (two type 3 copper p a i r s ) , confirming the spectrophotometric data of R e f e r e n c e 58. T w o e q u i v a l e n t s o f h y d r o g e n p e r o x i d e , t h a t i s , 1 m o l / t y p e 3 c o p p e r p a i r (18), w h e r e s p e c i f i c a l l y b o u n d to ascorbate oxidase, p r o d u c e d a n increase i n t h e a b s o r b a n c e a r o u n d 330 n m . T h e s e e x p e r i m e n t a l results, a l t h o u g h of r a t h e r p r e l i m i n a r y n a t u r e , suggest t h a t there m i g h t b e some s i m i l a r i t i e s b e t w e e n t h e laccases a n d ascorbate oxidase, w i t h respect t o t h e d i o x y g e n - r e d u c i n g sites of t h e e n z y m e .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
10.
Ascorbate
KRONECK E T A L .
239
Oxidase
T h e k i n e t i c results of the a n a e r o b i c r e d u c t i o n of ascorbate
oxidase
b y L - a s c o r b a t e o r r e d u c t a t e p r e s e n t e d i n this c h a p t e r h a v e b e e n o b t a i n e d by
anaerobic
spectroscopy.
stopped-flow
spectrophotometry
a n d rapid-freeze E P R
I n v i e w of the d i o x y g e n s e n s i t i v i t y of t h e r e d u c e d e n z y m e ,
extreme care m u s t b e exercised to o b t a i n r e p r o d u c i b l e a n d statistically m e a n i n g f u l d a t a . F o r t h e a n a e r o b i c i t y of the i n s t r u m e n t , b o t h t h e m i x i n g a n d t h e o b s e r v a t i o n c h a m b e r i n c l u d i n g t h e s y r i n g e system w e r e e m b e d d e d into a t h e r m o s t a t e d , w a t e r c i r c u l a t i n g b a t h ( n o r m a l l y m a i n t a i n e d at 1 0 - 1 5 ° C ) , w h i c h w a s k e p t u n d e r a constant pressure o f p u r i f i e d a r g o n ( 1 8 ) , as d e s c r i b e d i n R e f e r e n c e 61. A s i m i l a r s y s t e m w a s c o n s t r u c t e d for t h e r a p i d - f r e e z e a p p a r a t u s , a l l o w i n g a n a e r o b i c m i x i n g
of t h e r e -
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
actants p r i o r to f r e e z e - q u e n c h i n g of the r e a c t i o n m i x t u r e i n a n i s o p e n t a n e c o o l i n g b a t h at a p p r o x i m a t e l y — 1 4 5 ° C
(62). T h e r e d u c t i o n of t h e t y p e
Stopped-Flow Spectrophotometry.
c o p p e r [ o b s e r v e d at 6 1 0 n m , p h o s p h a t e buffer ( p H 7 . 0 ) , 7 =
1
0.20 M ,
2 5 ° C ] was very r a p i d a n d complex, b y both L-ascorbate a n d reductate. F u r t h e r m o r e , trace amounts of d i o x y g e n
(less t h a n 1 fiM)
significant p l a t e a u regions i n t h e r e d u c t i o n profile.
produced
A d d i t i o n of s m a l l
a m o u n t s of r e d u c t a n t r e s u l t e d first i n the r e d u c t i o n of t h i s p l a t e a u p h a s e to zero a n d t h e n i n t h e p a r t i a l r e d u c t i o n o f the e n z y m e , j u d g i n g f r o m t h e t o t a l a b s o r b a n c e at 6 1 0 n m . T o decrease t h e r e d u c t i o n rate, t h e t e m p e r a t u r e w a s l o w e r e d to 1 0 ° C w i t h s i m i l a r b u t s l o w e r o p t i c a l changes. S i m i l a r observations w e r e m a d e f o r t h e change i n a b s o r b a n c e at 330 n m (Figure 6 ) . REDUCTION
KINETICS
COPPER.
OF T H E TYPE-1
r a p i d p h a s e d u r i n g w h i c h plots of l o g (A
t
yielding &init
6 1 0
first-order
rate
constants,
is
an
initial
x
fc it . in
There
— A ) v s . t i m e are l i n e a r , A
610
linear
dependence
of
o n r e d u c t a t e c o n c e n t r a t i o n is f o u n d w i t h i n t h e l i m i t of 5.2 m M
reductate.
T h e a m p l i t u d e of the i n i t i a l phase increases w i t h r e d u c t a t e
c o n c e n t r a t i o n , l e v e l i n g off to a p p r o a c h a l i m i t o f a p p r o x i m a t e l y 5 0 % of the t o t a l a b s o r b a n c e at 6 1 0 n m . A t 2 5 ° C , t h e i n i t i a l r e a c t i o n is m u c h faster, i n d i c a t i n g a c o n s i d e r a b l e a c t i v a t i o n e n t h a l p y , a n d the c o n c e n t r a t i o n r a n g e is l i m i t e d to a v a l u e e q u a l to or less t h a n 1.35 m M f o r the t i m e scale of o u r stopped-flow spectrophotometer.
A g a i n the rate is first o r d e r w i t h respect to b o t h
e n z y m e a n d substrate. T h e a m p l i t u d e of t h e i n i t i a l phase at this h i g h e r t e m p e r a t u r e also increases w i t h r e d u c t a t e c o n c e n t r a t i o n , b u t i n a m o r e p r o n o u n c e d m a n n e r . A t the highest c o n c e n t r a t i o n u s e d , this i n i t i a l r a p i d phase represents 8 0 % of t h e t o t a l r e a c t i o n a m p l i t u d e . I n t h e absence of d i o x y g e n , t h e i n i t i a l r a p i d step is f o l l o w e d d i r e c t l y by a slower reaction.
T h i s second
rate,
fc ,
enzyme concentration.
F r o m a p l o t w h i c h is linear, of l / f c
610
2
is a g a i n first o r d e r i n 2
6 1 0
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
v s . the
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
240
ASCORBIC
r e c i p r o c a l c o n c e n t r a t i o n of r e d u c t a t e , a l i m i t i n g rate of
ACID
approximately
80 s" c a n be e s t i m a t e d . T h e a b o v e - m e n t i o n e d features w e r e r e m a r k a b l y 1
reproducible
u s i n g separate
ascorbate
oxidase
stored i n l i q u i d n i t r o g e n over a 3-year p e r i o d
samples
prepared
and
(18).
T h e r e is a v e r y s l o w final stage, a c c o u n t i n g for a p p r o x i m a t e l y 4 - 5 % of the t o t a l r e a c t i o n a m p l i t u d e at 610 n m .
T h e l o w amplitude makes
q u a n t i t a t i v e e v a l u a t i o n of this stage v e r y difficult, a n d the r e p r o d u c i b i l i t y w a s not v e r y satisfactory. H o w e v e r , the rate is p r o b a b l y i n d e p e n d e n t of the r e d u c t a t e c o n c e n t r a t i o n w i t h a rate constant, k
, of less t h a n 1.0 s" .
610
3
1
I n t h e presence of d i o x y g e n , the i n i t i a l r a p i d p h a s e a n d the s l o w e r second phase are separated b y a p l a t e a u o n the stopped-flow also m e a s u r e d f o r the d e c a y of t h e absorbance
trace, as
at 330 n m ( F i g u r e 7 ) .
T h e extent of t h e i n i t i a l r a p i d phase decreases s i g n i f i c a n t l y w i t h i n c r e a s i n g dioxygen concentration.
T h e effects of d i o x y g e n
removal by
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
induced
10.
241
Ascorbate Oxidase
KRONECK E T A L .
e n z y m e t u r n o v e r , a n d of p a r t i a l p r e r e d u c t i o n o f t h e e n z y m e , a r e s h o w n i n F i g u r e 7. V a r i a t i o n of p H f r o m 7.0 to 6.1 r e s u l t e d i n little c h a n g e q u a l i t a t i v e l y , although measured
fcinit
610
values w e r e s l i g h t l y h i g h e r . A single r u n at
p H 7.8 c o n f i r m e d this t r e n d ( T a b l e I I ) . REDUCTION
ment
KINETICS O F T H E T Y P E
of t h e c o m p l e x
kinetic behavior
3
COPPER.
Quantitative
assess
at 330 n m is difficult.
This
difficulty p r o b a b l y is p a r t i a l l y c a u s e d b y t h e s m a l l a n d v a r i e d c o n t r i b u t i o n f r o m t h e p r o d u c t i o n a n d d e c a y of t h e substrate r a d i c a l species ( 6 3 ) , a f e a t u r e that is r e v e a l e d w h e n r u n s at at v a r i o u s w a v e l e n g t h s are compared.
T h e d e c a y r a t e of t h e r a d i c a l , p r e s u m a b l y d e c a y
by non-
Downloaded by CORNELL UNIV on May 14, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch010
e n z y m a t i c d i s m u t a t i o n , has a m a g n i t u d e s i m i l a r t o t h e r e d u c t i o n rate of t h e t y p e 3 c o p p e r .
I n t h e experiments w i t h ascorbate as substrate,
0.100
E c o CO CO
CD
g a
0.010
o (/)