Asymmetric construction of 4H-pyrano[3,2-b ... - ACS Publications

(Cebranopadol) functions as an opioid analgesic of the benzenoid class,13 and derivative IV inhibits the RNA polymerase of hepatitis C virus.14 The na...
0 downloads 0 Views 819KB Size
Subscriber access provided by UNIV AUTONOMA DE COAHUILA UADEC

Article

Asymmetric construction of 4H-pyrano[3,2-b]indoles via cinchoninecatalyzed 1,4-addition of 2-ylideneoxindole with malononitrile Jin Zhou, Biao Wang, Xiang-Hong He, Li Liu, Jun Wu, Jing Lu, Cheng Peng, Chao-Long Rao, and Bo Han J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b00430 • Publication Date (Web): 28 Mar 2019 Downloaded from http://pubs.acs.org on March 29, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Asymmetric construction of 4H-pyrano[3,2-b]indoles via cinchonine-catalyzed 1,4-addition of 2-ylideneoxindole with malononitrile Jin Zhou,§ Biao Wang,§ Xiang-Hong He, Li Liu, Jun Wu, Jing Lu, Cheng Peng, Chao-Long Rao* and Bo Han* Key laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy and School of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China. E-mail: [email protected], [email protected]



√ √ √

ABSTRACT: A highly enantioselectivity [4+2] annulation of 2-ylideneoxindole with malononitrile has been accomplished by cinchonine-catalyzed under mild conditions. The corresponding Enantiomerically enriched 4H-pyrano[3,2-b]indoles were generated in moderate to high yields (up to 94%) with excellent enantioselectivities (up to 98% ee). To explain the stereoselectivity of the organocatalytic Michael-ammonization cascade, we also carried out the control experiments and proposed plausible transition-state models for the catalytic cycle based on the observed stereochemistry of the products. In addition, some of the products showed moderate antibacterial activity against S. aureus and S. epidermidis in vitro, which might be considered as a potential clue for the discovery of new antimicrobial agents.

INTRODUCTION Multicyclic scaffolds useful for synthetic chemistry and medicine are attractive in research and industry.1 A particularly attractive scaffold for drug development is the fusion of pyran with indole.2 The indole scaffold, commonly considered a “privileged structure” in drug discovery,3 is a ubiquitous heterocycle in natural products and compounds used to treat cancer,4 type II diabetes,5 and HIV infection.6 Similarly, pyran-bearing skeletons are presented in various natural products and bioinspired synthetic compounds.7 4H-pyran-containing architectures show antibacterial, antiviral and antifungal activities.8 In 2012, Balasubramanian’s group reported a green, one-pot

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 30

approach to synthesize substituted pyrano[2,3-c]pyrazoles in aqueous ethanol under non-catalytic conditions. These compounds showed good activity against Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), showing minimal inhibitory concentrations (MICs) of 1.56-6.25 μg/mL.9 In 2017, Vinay Sunagar and co-workers demonstrated a green approach to transform 4-formylcou-marins into 4-coumarin-4H-pyrans, which showed excellent activity against Gram-positive S. aureus and Gram-negative E. coli with MICs of 0.4-0.8 μg/mL.10 In the same year, Hao’s group synthesized dihydropyran derivatives via a one-pot reaction in ethanol; the products showed excellent antibacterial MICs of 0.125-0.220 μg/mL.11

Figure 1. Examples of bioactive compounds with pyran-fused indole structures.

A popular medicinal synthetic target is the pyran-fused indole framework, which exists in many natural products and pharmaceuticals and which exhibits myriad biological activities (Figure 1). Pyran-fused indole derivatives I and II show antiproliferative activity,12 derivative III (Cebranopadol) functions as an opioid analgesic of the benzenoid class,13 and derivative IV inhibits the RNA polymerase of hepatitis C virus.14 The naturally occurring pyran-fused indole hyrtimomine A (V) is cytotoxic,15 while the naturally occurring pleiomaltinine (VI) can bypass multidrug resistance.16 This suggests that the asymmetric construction of pyran-fused indole compounds may provide leads for drug discovery and for diverse areas of organic synthesis. Most previous efforts to construct pyrano-fused indoles have focused on the synthesis of chiral hydropyrano[2,3-b]indoles (Scheme 1a) via N-heterocyclic carbene (NHC) catalysis, calcium phosphate catalysis, tertiary amine catalysis or N,N’-dioxide/metal catalysis.17 Few methods exist to

transform

chiral

hydropyrano[3,2-b]indoles,

which

are

ACS Paragon Plus Environment

the

isomeric

skeleton

of

Page 3 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

hydropyrano[2,3-b]indoles. In 2014, Ender’s group reported NHC-catalyzed enantioselective [3+3] annulation of indolin-3-ones with bromoenals to furnish 2H-pyrano[3,2-b]indole-2-ones (Scheme 1b).18 Our group reported secondary amine-catalyzed enantioselective [4+2] annulation of (Z)-2-benzylidene-indolin-3-one with aldehyde to form chiral 2H-pyrano[3,2-b]indole derivatives via inverse-electron-demand oxa-Diels-Alder reaction.19 As part of our continuing interest in applying organocatalysis to the construction of hydropyrano[3,2-b]indoles based on a variety of annulation types, we report here the application of cinchonine to catalyse formation of chiral 4H-pyrano[3,2-b]indole derivatives (Scheme 1c).

Scheme 1. Asymmetric synthesis of hydropyran-fused indoles

RESULTS AND DISCUSSION We initially examined cinchona alkaloid-based thiourea, squaramide or chiral bifunctional-urea as potential catalysts.20 This is because the acidic α-H of malononitrile can be deprotonated by a Lewis base, while 2-ylidene-indolin-3-one can be activated by acidic H-bond donors. First, we selected (Z)-2-benzylideneindolin-3-one (1a) and malononitrile (2) in toluene as the model substrates, and quinine (3a) as the catalyst. Incubating them together at -10 oC for 24 h led to smooth [4+2] annulation, affording the desired product 4a in 88% yield with excellent enantioselectivity (Table 1, entry 1). Cinchona alkaloid catalysts 3b-3e promoted formation of the desired products, with catalyst 3c showing the most satisfactory yield of 93% and ee of 95% (entries 2 and 4-5 vs 3). Other chiral bifunctional catalysts (3f-3h) provided similar yield but lower enantio-selectivities (entries 6-8). Choice of solvent affected the reaction (entries 9-12); toluene

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 30

provided 4a in good yield with high enantioselectivity (entries 9-12 vs 3). Reducing the reaction temperature to -20

o

C and extending the reaction time led to slightly lower yield but

enantioselectivity of 98% ee (entry 13).

Table 1. Optimization of asymmetric [4+2] annulation conditions. a

Entry

3

Solvent

yieldb (%)

eec (%)

1

3a

Toluene

88

-93

2

3b

Toluene

90

-92

3

3c

Toluene

96

95

4

3d

Toluene

78

90

5

3e

Toluene

85

94

6

3f

Toluene

83

93

7

3g

Toluene

81

90

8

3h

Toluene

200 oC, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.03 (d, J = 8.4 Hz, 1H), 7.60 (dd, J = 12.4, 7.6 Hz, 3H), 7.52 (d, J = 8.0 Hz, 1H), 7.45 (dd, J = 11.6, 7.6 Hz, 3H), 7.39 (t, J = 7.6 Hz, 1H), 7.34-7.25 (m, 3H), 7.19-7.05 (m, 4H), 5.26 (s, 1H),

13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.3, 143.8,

136.3, 136.0, 134.6, 134.0, 129.6, 128.6, 127.5, 127.1, 126.5, 126.4, 124.8, 120.3, 119.9, 118.5, 117.1, 115.1, 59.1, 54.9, IR (CH2Cl2, cm-1): 3425, 3327, 2201, 1732, 1664, 1637, 1598, 1450, 1398, 1358, 1174, 754, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H17N3O3SNa, 450.0888; Found 450.0889.

(R)-2-amino-4-(2-chlorophenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carbon itrile (4b): white solid, 42 mg, 91% yield, ee 92%, [α]D25 = -89.99 (c 0.1, DCM), m.p. >200 oC, 1

H NMR (400 MHz, DMSO-d6) δ (ppm) 8.05 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.58 (d,

J = 7.2 Hz, 2H), 7.53 (d, J = 7.6 Hz, 1H), 7.51-7.43 (m, 4H), 7.40 (t, J = 7.6 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.12 (s, 2H), 6.98 (d, J = 7.2 Hz, 1H), 5.76 (s, 1H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.7, 140.4, 137.1, 136.2, 134.6, 134.1, 132.3, 129.8, 129.7, 128.7, 127.7, 126.6, 126.2, 124.8, 120.1, 119.4, 117.2, 117.0, 115.0, 57.3, 55.0, IR (CH2Cl2, cm-1): 3422, 3336, 2195, 1658, 1637, 1593, 1450, 1408, 1369, 1169, 749, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N3O3SClNa 484.0499; Found 484.0497. (R)-2-amino-4-(3-chlorophenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carbon

ACS Paragon Plus Environment

Page 16 of 30

Page 17 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

itrile (4c): white solid, 42 mg, 91% yield, ee 91%, [α]D25 = -145.98 (c 0.1, DCM), m.p. 196-198 o

C, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.06 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 7.6 Hz, 2H),

7.62 (d, J = 7.2 Hz, 1H), 7.55-7.44 (m, 4H), 7.43-7.31 (m, 3H), 7.18 (s, 2H), 7.13 (s, 1H), 7.10 (d, J = 7.2 Hz, 1H), 5.31 (s, 1H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.3, 146.2, 136.5, 136.0, 134.7, 134.1, 133.1, 130.6, 129.6, 127.2, 127.1, 126.6, 126.5, 126.2, 124.9, 120.2, 119.7, 117.5, 117.2, 115.1, 58.5, 54.9, IR (CH2Cl2, cm-1): 3419, 3328, 2201, 1732, 1663, 1638, 1593, 1450, 1400, 1361, 1175, 746, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N3O3SClNa 484.0499; Found 484.0498.

(R)-2-amino-4-(4-chlorophenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carbon itrile (4d): white solid, 41 mg, 89% yield, ee 98%, [α]D25 = -299.95 (c 0.1, DCM), m.p. >200 oC, 1

H NMR (400 MHz, DMSO-d6) δ (ppm) 8.05 (d, J = 8.4 Hz, 1H), 7.64 (dd, J = 12.4, 7.6 Hz, 3H),

7.55-7.43 (m, 4H), 7.40 (d, J = 7.6 Hz, 1H), 7.37 (d, J = 8.4 Hz, 2H), 7.22-7.07 (m, 4H), 5.29 (s, 1H),

13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.3, 142.7, 136.5, 136.0, 134.6, 134.1,

131.7, 129.6, 129.3, 128.6, 126.6, 126.4, 124.9, 120.3, 119.8, 117.9, 117.2, 115.1, 58.6, 54.9, IR (CH2Cl2, cm-1): 3412, 3358, 2186, 1658, 1621, 1594, 1449, 1399, 1372, 1170, 725, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N3O3SClNa 484.0499; Found 484.0500.

(R)-2-amino-4-(2-bromophenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carbon itrile (4e): white solid, 47 mg, 93% yield, ee 98%, [α]D25 = -236.96 (c 0.1, DCM), m.p. >200 oC, 1

H NMR (600 MHz, DMSO-d6) δ (ppm) 8.06 (d, J = 12.0 Hz, 1H), 7.63 (t, J = 6.0 Hz, 2H), 7.58

(d, J = 6.0 Hz, 2H), 7.52 (d, J = 6.0 Hz, 1H), 7.50-7.45 (m, 3H), 7.41 (t, J = 9.0 Hz, 1H), 7.25 (s, 1H), 7.21-7.17 (m, 1H), 7.13 (s, 2H), 5.75(s, 1H), 13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm) 159.6, 137.1, 136.3, 134.6, 134.1, 133.1, 129.7, 128.9, 128.2, 126.6, 126.2, 124.8, 122.8, 120.1, 119.3, 117.2, 115.0, 57.4, 54.9, IR (CH2Cl2, cm-1): 3424, 3336, 2194, 1657, 1637, 1593, 1450, 1407, 1369, 1169, 725, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N3O3SBrNa 527.9993; Found 527.9994.

(R)-2-amino-4-(3-bromophenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carbon itrile (4f): white solid, 43 mg, 85% yield, ee 90%, [α]D25 = -204.97 (c 0.1, DCM), m.p. >200 oC,

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1

H NMR (400 MHz, DMSO-d6) δ (ppm) 8.08 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 7.2 Hz, 2H), 7.63 (t,

J = 7.6 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.52-7.44 (m, 4H), 7.41 (t, J = 7.6 Hz, 1H), 7.33-7.26 (m, 2H), 7.19 (s, 2H), 7.15 (d, J = 8.0 Hz, 1H), 5.32 (s, 1H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.4, 146.4, 136.5, 136.0, 134.6, 134.1, 130.8, 130.0, 129.6, 126.6, 126.4, 124.8, 121.8, 120.2, 119.7, 117.5, 117.2, 115.1, 58.6, 54.9, IR (CH2Cl2, cm-1): 3448, 3355, 2190, 1652, 1628, 1588, 1451, 1403, 1370, 1171, 754, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N3O3SBrNa 527.9993; Found 527.9990.

(R)-2-amino-4-(4-bromophenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carbon itrile (4g): white solid, 45 mg, 89% yield, ee 97%, [α]D25 = -120.98 (c 0.1, DCM), m.p. >200 oC, 1

H NMR (400 MHz, DMSO-d6) δ (ppm) 8.05 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 8.4 Hz, 3H),

7.51-7.45 (m, 6H), 7.39 (t, J = 7.6 Hz, 1H), 7.16 (s, 2H), 7.08 (d, J = 8.4 Hz, 2H), 5.27 (s, 1H), 13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.2, 143.1, 136.4, 136.0, 134.6, 134.1, 131.5,

129.7, 129.6, 126.6, 126.4, 124.9, 120.2, 120.2, 119.8, 117.8, 117.2, 115.1, 58.6, 55.1, IR (CH2Cl2, cm-1): 3409, 3326, 2193, 1659, 1635, 1595, 1447, 1398, 1370, 1171, 724, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N3O3SBrNa 527.9993; Found 527.9991.

(R)-2-amino-4-(4-fluorophenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carbon itrile (4h): white solid, 38 mg, 85% yield, ee 96%, [α]D25 = -272.96 (c 0.1, DCM), m.p. >200 oC, 1

H NMR (600 MHz, DMSO-d6) δ (ppm) 8.03 (d, J = 12.0 Hz, 1H), 7.64 (d, J = 12.0 Hz, 2H), 7.61

(t, J = 12.0 Hz, 1H), 7.51 (d, J = 6.0 Hz, 1H), 7.45 (t, J = 12.0 Hz, 3H), 7.38 (t, J = 6.0 Hz, 1H), 7.17-7.10 (m, 6H), 5.28 (s, 1H),

13

C{1H} NMR (150 MHz, DMSO-d6) δ (ppm) 161.7 (d, JCF =

241.8 Hz), 159.3, 140.0, 136.4, 136.0, 134.7, 134.2, 129.6, 129.5 (d, JCF = 8.1 Hz) ,126.6, 126.5, 124.9, 120.4, 119.9, 118.3, 117.2, 115.4(d, JCF = 21.5 Hz), 115.1, 59.0, 54.9, IR (CH2Cl2, cm-1): 3431, 3319, 2194, 1659, 1601, 1506, 1446, 1396, 1357, 1169, 1151, 722, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N3O3SFNa 468.0794; Found 468.0798.

(R)-2-amino-4-(2,4-dichlorophenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-car bonitrile (4i): white solid, 40 mg, 81% yield, ee 80%, [α]D25 = -227.96 (c 0.1, DCM), m.p. >200 o

C, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.01 (d, J = 8.4 Hz, 1H), 7.62-7.54 (m, 3H), 7.53 (d,

ACS Paragon Plus Environment

Page 18 of 30

Page 19 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

J = 2.0 Hz, 1H), 7.50-7.39 (m, 4H), 7.35 (t, J = 7.6 Hz, 1H), 7.20 (dd, J = 8.4, 2.0 Hz, 1H), 7.12 (s, 2H), 6.94 (d, J = 7.2 Hz, 1H), 5.69 (s, 1H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.7, 139.4, 137.2, 136.3, 134.6, 134.2, 133.2, 132.4, 131.6, 129.7, 129.1, 127.8, 126.7, 126.1, 124.8, 120.0, 119.3, 117.2, 116.4, 115.0, 56.8, 54.9, IR (CH2Cl2, cm-1): 3427, 3361, 2183, 1653, 1611, 1583, 1448, 1381, 1170, 724, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H15N3O3SCl2Na 518.0109; Found 518.0110.

(R)-2-amino-4-(4-nitrophenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carbonit rile (4j): white solid, 24 mg, 51% yield, ee 64%, [α]D25 = -254.96 (c 0.1, DCM), m.p. >200 oC, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.18 (d, J = 8.8 Hz, 2H), 8.06 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 7.6 Hz, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.52-7.45 (m, 3H), 7.41 (t, J = 8.0 Hz, 3H), 7.25 (s, 2H), 5.48 (s, 1H),

13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.4,

150.9, 146.5, 136.7, 136.0, 134.7, 134.2, 129.7, 128.7, 126.8, 126.5, 125.0, 123.9, 120.2, 119.5, 117.3, 116.9, 115.1, 99.5, 57.8, IR (CH2Cl2, cm-1): 3419, 3322, 2204, 1661, 1635, 1592, 1520, 1448, 1404, 1345, 1170, 747, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N4O5SNa 495.0739; Found 495.0741.

(R)-2-amino-4-(2-methoxyphenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carb onitrile (4k): white solid, 39 mg, 85% yield, ee 82%, [α]D25 = -38.99 (c 0.1, DCM), m.p. >200 oC, 1

H NMR (400 MHz, DMSO-d6) δ (ppm) 8.04 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.51 (d,

J =7.6 Hz, 3H), 7.44 (t, J = 7.6 Hz, 3H), 7.38 (t, J = 7.6 Hz, 1H), 7.27-7.21 (m, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.95 (s, 2H), 6.85-6.78 (m, 2H), 5.60 (s, 1H), 3.72 (s, 3H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 160.0, 156.8, 136.7, 136.3, 134.5, 133.9, 131.4, 129.6, 128.7, 128.4, 126.2, 126.1, 124.6, 120.6, 120.3, 12.0.0, 118.1, 116.9, 114.9, 112.0, 58.0, 55.9, 55.0, IR (CH2Cl2, cm-1): 3430, 3325, 2198, 1661, 1638, 1597, 1491, 1451, 1400, 1358, 1173, 757, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C25H19N3O4SNa 480.0994; Found 480.0996.

(R)-2-amino-4-(4-methoxyphenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carb onitrile (4l): white solid, 41 mg, 90% yield, ee 92%, [α]D25 = -302.95 (c 0.1, DCM), m.p. >200 oC, 1

H NMR (600 MHz, DMSO-d6) δ (ppm) 8.02 (d, J = 8.4 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.58 (d,

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

J = 7.8 Hz, 2H), 7.49 (d, J = 7.8 Hz, 1H), 7.44 (dd, J = 15.6, 7.8 Hz, 3H), 7.38 (t, J = 7.8 Hz, 1H), 7.05 (s, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.19 (s, 1H), 3.74 (s, 3H), 13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm) 159.1, 158.3, 136.1, 136.1, 135.9, 134.5, 134.0, 129.5, 128.5, 126.4, 126.3, 124.7, 120.3, 112.0, 119.0, 117.0, 115.0, 113.9, 59.4, 55.1, IR (CH2Cl2, cm-1): 3424, 3301, 2196, 1656, 1632, 1591, 1507, 1444, 1404, 1359, 1168, 743, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C25H19N3O4SNa 480.0994; Found 480.0996.

(R)-2-amino-5-(phenylsulfonyl)-4-(o-tolyl)-4,5-dihydropyrano[3,2-b]indole-3-carbonitrile (4m): white solid, 35 mg, 79% yield, ee 83%, [α]D25 = -30.95 (c 0.1, DCM), m.p. >200 oC, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.03 (d, J = 8.4 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.51-7.36 (m, 6H), 7.24 (d, J = 7.2 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 7.05 (s, 2H), 7.02 (d, J = 7.6 Hz, 1H), 6.69 (d, J = 7.6 Hz, 1H), 5.61 (s, 1H), 2.58 (s, 3H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.3, 142.2, 136.6, 136.2, 135.1, 134.6, 133.8, 130.6, 129.6, 127.7, 126.8, 126.7, 126.5, 126.3, 124.7, 120.1, 120.1, 118.7, 117.0, 114.9, 58.6, 54.9, 18.8, IR (CH2Cl2, cm-1): 3427, 3307, 2190, 1656, 1626, 1594, 1490, 1449, 1398, 1362, 1168, 723, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C25H19N3O3SNa 464.1045; Found 464.1046.

(R)-2-amino-5-(phenylsulfonyl)-4-(p-tolyl)-4,5-dihydropyrano[3,2-b]indole-3-carbonitrile (4n): white solid, 38 mg, 86% yield, ee 87%, [α]D25 = -305.95 (c 0.1, DCM), m.p. >200 oC, 1H NMR (600 MHz, DMSO-d6) δ (ppm) 8.03 (d, J = 18.0 Hz, 1H), 7.70-7.30 (m, 9H), 7.16-7.05 (m, 4H), 6.99 (s, 2H), 5.20 (s, 1H), 2.29 (s, 3H), 13C{1H} NMR (150 MHz, DMSO-d6) δ (ppm) 159.2, 140.8, 136.3, 136.1, 134.5, 134.0, 129.5, 129.1, 127.3, 126.4, 126.3, 124.7, 120.3, 119.9, 118.7, 117.0, 115.0, 59.2, 20.63, IR (CH2Cl2, cm-1): 3410, 3324, 2193, 1659, 1634, 1596, 1447, 1508, 1447, 1400, 1371, 1174, 763, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C25H19N3O3SNa 464.1045; Found 464.1044.

(R)-2-amino-4-(4-isopropylphenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-car bonitrile (4o): white solid, 41 mg, 87% yield, ee 85%, [α]D25 = -245.96 (c 0.1, DCM), m.p. >200 o

C, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.03 (d, J = 8.0 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H),

7.56-7.51 (m, 3H), 7.48-7.36 (m, 4H), 7.19 (d, J = 8.4 Hz, 2H), 7.08 (s, 2H), 7.04 (d, J = 8.0 Hz,

ACS Paragon Plus Environment

Page 20 of 30

Page 21 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

2H), 5.22 (s, 1H), 2.92-2.81 (m, 1H), 1.21 (d, J = 6.8 Hz, 6H),

13

C{1H} NMR (100 MHz,

DMSO-d6) δ (ppm) 159.4, 147.2, 141.2, 136.1, 134.6, 133.9, 129.5, 127.3, 126.5, 126.5, 126.3, 124.7, 120.3, 120.0, 118.8, 117.1, 115.0, 99.5, 59.3, 33.05, 23.86, IR (CH2Cl2, cm-1): 3457, 3353, 2190, 1654, 1621, 1586, 1450, 1404, 1365, 1167, 749, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C27H23N3O3SNa 492.1358; Found 492.1361.

(R)-2-amino-4-(3,4-dimethoxyphenyl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-c arbonitrile (4p): white solid, 39 mg, 80% yield, ee 94%, [α]D25 = -158.97 (c 0.1, DCM), m.p. >200 oC, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.06 (d, J = 8.4 Hz, 1H), 7.63-7.54 (m, 3H), 7.51 (d, J = 7.6 Hz, 1H), 7.48-7.36 (m, 4H), 7.04 (s, 2H), 6.87 (d, J = 8.4 Hz, 1H), 6.67 (d, J = 2.0 Hz, 1H), 6.59 (dd, J = 8.4, 2.0 Hz, 1H), 5.19 (s, 1H), 3.74 (s, 3H), 3.61 (s, 3H),

13

C{1H}

NMR (100 MHz, DMSO-d6) δ (ppm) 159.2, 148.5, 148.0, 136.2, 136.0, 134.5, 134.1, 129.4, 126.3, 124.7, 120.2, 112.0, 119.6, 118.8, 117.1, 115.0, 112.0, 111.5, 59.3, 55.5, 55.4, IR (CH2Cl2, cm-1): 3419, 3354, 2190, 1646, 1611, 1591, 1513, 1448, 1400, 1366, 1169, 718, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C26H21N3O5SNa 510.1100; Found 510.1102.

(R)-2-amino-4-(furan-2-yl)-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carbonitrile (4q): white solid, 34 mg, 81% yield, ee 89%, [α]D25 = -127.98 (c 0.1, DCM), m.p. >200 oC, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.03 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 7.6 Hz, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.54-7.43 (m, 5H), 7.38 (t, J = 7.6 Hz, 1H), 7.21 (s, 2H), 6.42 (dd, J = 2.8, 2.0 Hz, 1H), 6.27 (d, J = 3.2 Hz, 1H), 5.46 (s, 1H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 160.3, 154.3, 142.4, 136.5, 136.0, 134.7, 134.0, 129.7, 126.5, 126.5, 124.8, 120.3, 119.8, 1171, 116.1, 115.1, 110.7, 106.6, 56.0, 33.1, IR (CH2Cl2, cm-1): 3458, 3356, 2187, 1649, 1610, 1591, 1455, 1403, 1368, 1169, 744, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C22H15N3O4SNa 440.0681; Found 440.0682.

(R)-2-amino-5-(phenylsulfonyl)-4-(thiophen-2-yl)-4,5-dihydropyrano[3,2-b]indole-3-carbonit rile (4r): white solid, 36 mg, 83% yield, ee 95%, [α]D25 = -147.98 (c 0.1, DCM), m.p. >200 oC, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.06 (d, J = 8.4 Hz, 1H), 7.66-7.61 (m, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.49-7.45 (m, 3H), 7.40 (t, J = 7.6 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.26 (t, J = 2.0 Hz,

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 30

1H), 7.16 (s, 2H), 7.13 (d, J = 7.6 Hz, 1H), 5.29 (s, 1H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.3, 146.4, 136.5, 136.0, 134.7, 134.1, 130.9, 130.0, 129.6, 126.6, 126.4, 124.9, 121.7, 120.2, 119.7, 117.5, 117.2, 115.1, 58.5, 38.7, IR (CH2Cl2, cm-1): 3426, 3323, 2193, 1658, 1635, 1593, 1449, 1410, 1372, 1170, 747, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C22H15N3O3S2Na 456.0453; Found 456.0451.

(R)-2-amino-8-chloro-4-phenyl-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carboni trile (4s): white solid, 35 mg, 76% yield, ee 86%, [α]D25 = +59.99 (c 0.1, DCM), m.p. >200 oC, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.05 (d, J = 9.2 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.58 (dd, J = 8.8, 1.2 Hz, 2H), 7.52-7.41 (m, 4H), 7.35-7.25 (m, 3H), 7.13-7.09 (m, 4H), 5.24 (s, 1H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.1, 143.5, 135.9, 135.3, 134.8, 132.4, 129.7, 129.3, 128.6, 127.5, 127.2, 126.5, 126.3, 121.5, 120.3, 119.7, 116.7, 116.5, 59.1, 54.9, IR (CH2Cl2, cm-1): 3431, 3326, 2203, 1731, 1661, 1635, 1598, 1448, 1407, 1366, 1173, 714, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N3O3SClNa 484.0499; Found 484.0498.

(R)-2-amino-7-bromo-4-phenyl-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-carboni trile (4t): white solid, 39 mg , 77% yield, ee 80%, [α]D25 = +130.98 (c 0.1, DCM), m.p. >200 oC, 1

H NMR (400 MHz, DMSO-d6) δ (ppm) 8.13 (s, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.59 (d, J = 7.2 Hz

3H), 7.48 (t, J = 8.4 Hz, 3H), 7.34-7.23 (m, 3H), 7.11 (d, J = 8.0 Hz, 4H), 5.21 (s, 1H), 13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.1, 143.5, 135.9, 135.9, 134.9, 134.6, 129.8, 128.6, 127.9, 127.4, 127.2, 126.4, 119.8, 119.4, 119.3, 119.0, 118.9, 117.4, 59.1, 58.0, IR (CH2Cl2, cm-1): 3428, 3328, 2204, 1731, 1662, 1599, 1449, 1401, 1361, 1170, 720, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C24H16N3O3SBrNa 527.9993; Found 527.9992.

(R)-2-amino-8-(benzyloxy)-4-phenyl-5-(phenylsulfonyl)-4,5-dihydropyrano[3,2-b]indole-3-ca rbonitrile (4u): white solid, 42 mg , 79% yield, ee 93%, [α]D25 = +56.99 (c 0.1, DCM), m.p. >200 o

C, 1H NMR (400 MHz, DMSO-d6) δ (ppm) 7.94 (d, J = 9.2 Hz, 1H), 7.65-7.55 (m, 3H),

7.49-7.43 (m, 4H), 7.40 (t, J = 7.6 Hz, 2H), 7.36-7.29 (m, 3H), 7.26 (t, J = 7.2 Hz, 1H), 7.17-7.10 (m, 3H), 7.08 (s, 2H), 7.01 (d, J = 2.4 Hz, 1H), 5.23 (s, 1H), 5.15 (s, 2H),

13

C{1H} NMR (100

MHz, DMSO-d6) δ (ppm) 159.3, 155.9, 143.8, 136.8, 136.5, 135.9, 134.5, 129.6, 128.6, 128.5,

ACS Paragon Plus Environment

Page 23 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

127.9, 127.6, 127.4, 127.1, 126.4, 121.4, 119.9, 119.3, 116.4, 115.9, 100.4, 69.7, 59.1, 54.9, IR (CH2Cl2, cm-1): 3424, 3330, 2198, 1660, 1637, 1595, 1487, 1450, 1411, 1360, 1155, 698, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C31H23N3O4SNa 556.1307; Found 556.1309.

(R)-2-amino-5-(methylsulfonyl)-4-phenyl-4,5-dihydropyrano[3,2-b]indole-3-carbonitrile (4v): white solid, 32 mg , 88% yield, ee 80%, m.p. >200 oC, [α]D25 = +42.99 (c 0.1, DCM), 1H NMR (400 MHz, DMSO-d6) δ (ppm) 7.88 (dd, J = 6.4, 2.0 Hz, 1H), 7.66-7.61 (m, 1H), 7.48-7.41 (m, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.26 (dt, J = 7.2, 1.2 Hz,1H), 7.15-7.04 (m, 4H), 5.07 (s, 1H), 2.81 (s, 3H),

13

C{1H} NMR (100 MHz, DMSO-d6) δ (ppm) 159.4, 143.5, 134.6, 133.7, 128.6, 127.6,

127.2, 126.0, 124.2, 120.0, 119.6, 118.6, 116.9, 114.2, 59.1, 39.8, 38.8, IR (CH2Cl2, cm-1): 3421, 3328, 2194, 1729, 1660, 1638, 1595, 1489, 1451, 1407, 1364, 1166, 749, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C19H15N3O3SNa 388.0732; Found 388.0733.

(R)-5-acetyl-2-amino-4-phenyl-4,5-dihydropyrano[3,2-b]indole-3-carbonitrile

(4w):

white

solid, 21 mg , 64% yield, ee 96%, [α]D25 = +121.98 (c 0.1, DCM), m.p. >200 oC, 1H NMR (600 MHz, DMSO-d6) δ (ppm) 8.07 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 7.2 Hz, 1H), 7.45-7.42 (m, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.31 (t, J = 7.8 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 7.04 (d, J = 7.2 Hz, 4H), 5.29 (s, 1H), 3.34 (s, 3H),

13

C{1H} NMR (150 MHz, DMSO-d6) δ (ppm) 169.4, 159.4, 143.6,

135.3, 133.4, 128.8, 127.0, 125.9, 123.7, 120.2, 119.4, 117.8, 116.5, 116.0, 59.0, 55.0, 26.5, IR (CH2Cl2, cm-1): 3374, 3209, 2201, 1695, 1662, 1600, 1455, 1401, 1373, 699, HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C20H15N3O2Na 352.1062; Found 352.1065.

Ethyl 2-amino-3-cyano-5-(phenylsulfonyl)-4,5-dihydropyrano [3,2-b]indole- 4-carboxylate (4x): white solid, 30 mg, 71% yield, ee 0%, m.p. 178-180 oC,1H NMR (400 MHz, CDCl3) δ (ppm) 8.00 (d, J = 8.4, 1H), 7.82 (d, J = 7.6, 2H), 7.55 (t, J = 7.6, 1H), 7.45 (q, J = 8.0, 3H), 7.36 (t, J = 7.6, 1H), 7.27 (t, J = 7.6, 1H), 4.94 (s, 2H), 4.91 (s, 1H), 4.37-4.25 (m, 2H), 1.36 (t, J = 7.2, 3H), 13

C{1H} NMR (100 MHz, CDCl3) δ (ppm) 170.1, 160.7, 138.0, 136.4, 134.2, 134.2, 129.4, 126.8,

126.4, 124.2, 120.0, 118.6, 117.48, 114.5, 113.8, 62.2, 55.9, 39.6, 14.2, IR (CH2Cl2, cm-1): 3476, 3342, 2195, 1733, 1663, 1625, 1583, 1452, 1412, 1364, 1181, 746, HRMS (ESI-TOF) m/z: [M + Na]+ Cacld for C21H17N3O5SNa 446.0787; Found 446.0784.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ASSOCIATED CONTENT Supporting information The Supporting Information is available free of charge on the ACS Publications website at http://pubs.acs.org. Antibacterial activity of compound 4; Assignment of the absolute configuration of compound 4a by TD-DFT calculation; NMR spectra of substrate 1; NMR spectra, HPLC chromatograms and IR spectra for products 4.

AUTHOR INFORMATION Corresponding Authors *E-mail: [email protected]. *E-mail: [email protected]. ORCID Bo Han: 0000-0003-3200-4682 Author Contributions §

J. Z. and B. W. contributed equally to this work.

Notes The authors declare no competing financial interest

ACKNOWLEGEMENTS We are grateful for financial support from the National Natural Science Foundation of China (81573588, 81773889, 81630101), the Science & Technology Department of Sichuan Province (2017JZYD0001, 2017JY0323, 2018JY0255).

REFERENCES (1) (a) O' Connor, C. J.; Beckmann, H. S. G.; Spring, D. R. Diversity-oriented synthesis: producing chemical tools for dissecting biology. Chem. Soc. Rev. 2012, 41, 4444-4456. (b) Han, B.; Huang, W.; Ren, W.; He, G.; Wang, J.-h.; Peng, C. Asymmetric Synthesis of Cyclohexane-Fused Drug-Like Spirocyclic Scaffolds Containing Six Contiguous Stereogenic Centers via

ACS Paragon Plus Environment

Page 24 of 30

Page 25 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Organocatalytic Cascade Reactions. Adv. Synth. Catal. 2015, 357, 561-568. (c) Garcia-Castro, M.; Zimmermann, S.; Sankar, M. G.; Kumar, K. Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. Angew. Chem., Int. Ed. 2016, 55, 7586-7605. (d) Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531-541. (e) Xie, X.; Huang, W.; Peng, C.; Han, B. Organocatalytic Asymmetric Synthesis of Six-Membered Carbocycle-Based Spiro Compounds. Adv. Synth. Catal. 2018, 360, 194-228. (2)

(a)

Demerson,

C.

A.;

Santroch,

G.;

Humber,

L.

G.;

Charest,

M.

P.

3,4-Dihydro-1H-1,4-oxazino[4,3-a]indoles as potential antidepressants. J. Med. Chem. 1975, 18, 577-580. (b) Demerson, C. A.; Humber, L. G.; Philipp, A. H.; Martel, R. R. Etodolic acid and related compounds. Chemistry and antiinflammatory actions of some potent di- and trisubstituted 1,3,4,9-tetrahydropyrano[3,4-b]indole-1-acetic acids. J. Med. Chem. 1976, 19, 391-395. (c) Jackson, R. W.; LaPorte, M. G.; Herbertz, T.; Draper, T. L.; Gaboury, J. A.; Rippin, S. R.; Patel, R.; Chunduru, S. K.; Benetatos, C. A.; Young, D. C.; Burns, C. J.; Condon, S. M. The discovery and structure-activity relationships of pyrano[3,4-b]indole-based inhibitors of hepatitis C virus NS5B polymerase. Bioorg. Med. Chem. Lett. 2011, 21, 3227-3231. (d) Medeiros, M. R.; Schaus, S. E.; Porco, J. A. A Cycloisomerization/Friedel-Crafts Alkylation Strategy for the Synthesis of Pyrano[3,4-b]indoles. Org. Lett. 2011, 13, 4012-4015. (e) Gharpure, S. J.; Prasath, V. Stereoselective

synthesis

of

C-fused

pyranoindoles,

pyranobenzofurans

and

pyranobenzothiophene scaffolds using oxa-Pictet-Spengler type reaction of vinylogous carbonates. Org. Biomol. Chem. 2014, 12, 7397-7409. (f) Praveen, C.; Ananth, D. B. Design, synthesis and cytotoxicity of pyrano[4,3-b]indol-1(5H)-ones: A hybrid pharmacophore approach via gold catalyzed cyclization. Bioorg. Med. Chem. Lett. 2016, 26, 2507-2512. (3) (a) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep. 2015, 32, 1389-1471. (b) Walton, K.; Berry, J. P. Indole Alkaloids of the Stigonematales (Cyanophyta): Chemical Diversity, Biosynthesis and Biological Activity. Mar. Drugs. 2016, 14, 73. (c) Sibel, S. Recent Studies and Biological Aspects of Substantial Indole Derivatives with Anti-cancer Activity. Curr. Org. Chem. 2017, 21, 2068-2076. (d) Thokchom Prasanta, S.; Okram Mukherjee, S. Recent Progress in Biological Activities of Indole and Indole Alkaloids. Mini-Rev. Med. Chem. 2018, 18, 9-25. (e) Ji, Y.; He, X.; Peng, C.; Huang, W. Recent Advances in the Synthesis of C2-spiropseudoindoxyls. Org. Biomol.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chem. 2019, 17, 2850-2864. (4) (a) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. Structure-Based Design of Spiro-oxindoles as Potent, Specific Small-Molecule Inhibitors of the MDM2-p53 Interaction. J. Med. Chem. 2006, 49, 3432-3435. (b) Galliford, C. V.; Scheidt, K. A. Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angew. Chem., Int. Ed. 2007, 46, 8748-8758. (c) Sherer, C.; Snape, T. J. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur. J. Med. Chem. 2015, 97, 552-560. (d) Yu, B.; Yu, D.-Q.; Liu, H.-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem. 2015, 97, 673-698. (e) Gupta, A. K.; Bharadwaj, M.; Kumar, A.; Mehrotra, R. Spiro-oxindoles as a Promising Class of Small Molecule Inhibitors of p53-MDM2 Interaction Useful in Targeted Cancer Therapy. Top. Curr. Chem. 2016, 375, 3. (f) Lemos, A.; Leão, M.; Soares, J.; Palmeira, A.; Pinto, M.; Saraiva, L.; Sousa, M. E. Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. Med. Res. Rev. 2016, 36, 789-844. (g) Yang, M.-C.; Peng, C.; Huang, H.; Yang, L.; He, X.-H.; Huang, W.; Cui, H.-L.; He, G.; Han, B. Organocatalytic Asymmetric Synthesis of Spiro-oxindole Piperidine Derivatives That Reduce Cancer Cell Proliferation by Inhibiting MDM2-p53 Interaction. Org. Lett. 2017, 19, 6752-6755. (h) Zhao, Q.; Peng, C.; Huang, H.; Liu, S.-J.; Zhong, Y.-J.; Huang, W.; He, G.; Han, B. Asymmetric synthesis of tetrahydroisoquinoline-fused spirooxindoles as Ras-GTP inhibitors that inhibit colon adenocarcinoma cell proliferation and invasion. Chem. Commun. 2018, 54, 8359-8362. (5) Kuhn, B.; Hilpert, H.; Benz, J.; Binggeli, A.; Grether, U.; Humm, R.; Märki, H. P.; Meyer, M.; Mohr, P. Structure-based design of indole propionic acids as novel PPARα/γ co-agonists. Bioorg. Med. Chem. Lett. 2006, 16, 4016-4020. (6) Zhou, G.; Wu, D.; Snyder, B.; Ptak, R. G.; Kaur, H.; Gochin, M. Development of Indole Compounds as Small Molecule Fusion Inhibitors Targeting HIV-1 Glycoprotein-41. J. Med. Chem. 2011, 54, 7220-7231. (7) (a) Donner, C. D. Naphthopyranones-isolation, bioactivity, biosynthesis and synthesis. Nat. Prod. Rep. 2015, 32, 578-604. (b) McDonald, B. R.; Scheidt, K. A. Pyranone Natural Products as Inspirations for Catalytic Reaction Discovery and Development. Acc. Chem. Res. 2015, 48,

ACS Paragon Plus Environment

Page 26 of 30

Page 27 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

1172-1183. (c) Jacques, R.; Pal, R.; Parker, N. A.; Sear, C. E.; Smith, P. W.; Ribaucourt, A.; Hodgson, D. M. Recent applications in natural product synthesis of dihydrofuran and -pyran formation by ring-closing alkene metathesis. Org. Biomol. Chem. 2016, 14, 5875-5893. (d) Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G. K.; Jain, S. K.; Ntie-Kang, F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Adv. 2017, 7, 36977-36999. (e) Naysmith, B. J.; Hume, P. A.; Sperry, J.; Brimble, M. A. Pyranonaphthoquinones-isolation, biology and synthesis: an update. Nat. Prod. Rep. 2017, 34, 25-61. (f) Singh, P. K.; Silakari, O. The Current Status of O-Heterocycles: A Synthetic and Medicinal Overview. ChemMedChem 2018, 13, 1071-1087. (8) (a) Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Zhao, J.; Crogan-Grundy, C.; Xu, L.; Lamothe, S.; Gourdeau, H.; Denis, R.; Tseng, B.; Kasibhatla, S.; Cai, S. X. Discovery of 4-Aryl-4H-chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High-Throughput Screening Assay. 3. Structure-Activity Relationships of Fused Rings at the 7,8-Positions. J. Med. Chem. 2007, 50, 2858-2864. (b) Sabry, N. M.; Mohamed, H. M.; Khattab, E. S. A. E. H.; Motlaq, S. S.; El-Agrody, A. M. Synthesis of 4H-chromene, coumarin, 12H-chromeno[2,3-d]pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities. Eur. J. Med. Chem. 2011, 46, 765-772. (c) Sakhuja, R.; Panda, S. S.; Khanna, L.; Khurana, S.; Jain, S. C. Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents. Bioorg. Med. Chem. Lett. 2011, 21, 5465-5469. (d) Huynh, T. H. V.; Shim, I.; Bohr, H.; Abrahamsen, B.; Nielsen, B.; Jensen, A. A.; Bunch, L. Structure Activity Relationship Study of Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitor 2-Amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-car bonitrile (UCPH-101) and Absolute Configurational Assignment Using Infrared and Vibrational Circular Dichroism Spectroscopy in Combination with ab Initio Hartree–Fock Calculations. J. Med. Chem. 2012, 55, 5403-5412. (e) Reddy, T. N.; Ravinder, M.; Bikshapathi, R.; Sujitha, P.; Kumar, C. G.; Rao, V. J. Design, synthesis, and biological evaluation of 4H pyran derivatives as antimicrobial and anticancer agents. Med. Chem. Res. 2017, 26, 2832-2844. (9) Mandha, S. R.; Siliveri, S.; Alla, M.; Bommena, V. R.; Bommineni, M. R.; Balasubramanian, S. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorg. Med. Chem. Lett. 2012, 22, 5272-5278.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 30

(10) Shastri, L.; Sunagar, V. Green approach for the synthesis of 4-coumarin-4H-pyrans from 4-formylcoumarins and their antibacterial study AU - Saxena, Alpana. Synth. Commun. 2017, 47, 1570-1576. (11) Hao, W.-J.; Xu, X.-Y.; Zhang, D.-Z.; Han, R. Synthesis of Dihydropyran Derivatives and Evaluation of their Antibacterial Activity. J. Sci. Ind. Res. 2017, 76, 299-302. (12) (a) Lacassagne, A.; Buu-Hoi, N. P.; Zajdela, F.; Jacquigmon, P.; Mangane, M. 5-Oxo-5H-benzo[e]isochromeno-[4,3-b] indole, a New Type of Highly Sarcomagenic Lactone. Science 1967, 158, 387-388. (b) Peng, W.; Świtalska, M.; Wang, L.; Mei, Z.-W.; Edazawa, Y.; Pang, C.-Q.; El-Tantawy El-Sayed, I.; Wietrzyk, J.; Inokuchi, T. Synthesis and in vitro antiproliferative activity of new 11-aminoalkylamino-substituted chromeno[2,3-b]indoles. Eur. J. Med. Chem. 2012, 58, 441-451. (13) Schunk, S.; Linz, K.; Hinze, C.; Frormann, S.; Oberbörsch, S.; Sundermann, B.; Zemolka, S.; Englberger, W.; Germann, T.; Christoph, T.; Kögel, B.-Y.; Schröder, W.; Harlfinger, S.; Saunders, D.; Kless, A.; Schick, H.; Sonnenschein, H. Discovery of a Potent Analgesic NOP and Opioid Receptor Agonist: Cebranopadol. ACS Med. Chem. Lett. 2014, 5, 857-862. (14) Gopalsamy, A.; Lim, K.; Ciszewski, G.; Park, K.; Ellingboe, J. W.; Bloom, J.; Insaf, S.; Upeslacis, J.; Mansour, T. S.; Krishnamurthy, G.; Damarla, M.; Pyatski, Y.; Ho, D.; Howe, A. Y. M.; Orlowski, M.; Feld, B.; O'Connell, J. Discovery of Pyrano[3,4-b]indoles as Potent and Selective HCV NS5B Polymerase Inhibitors. J. Med. Chem. 2004, 47, 6603-6608. (15) Momose, R.; Tanaka, N.; Fromont, J.; Kobayashi, J. i. Hyrtimomines A-C, New Heteroaromatic Alkaloids from a Sponge Hyrtios sp. Org. Lett. 2013, 15, 2010-2013. (16) Tan, S.-J.; Choo, Y.-M.; Thomas, N. F.; Robinson, W. T.; Komiyama, K.; Kam, T.-S. Unusual indole alkaloid-pyrrole, -pyrone, and -carbamic acid adducts from Alstonia angustifolia. Tetrahedron 2010, 66, 7799-7806. (17) (a) Lv, H.; Chen, X.-Y.; Sun, L.-h.; Ye, S. Enantioselective Synthesis of Indole-Fused Dihydropyranones via Catalytic Cycloaddition of Ketenes and 3-Alkylenyloxindoles. J. Org. Chem. 2010, 75, 6973-6976. (b) Yang, L.; Wang, F.; Chua, P. J.; Lv, Y.; Zhong, L.-J.; Zhong, G. N-Heterocyclic

Carbene

(NHC)-Catalyzed

Highly

Diastereo-

and

Enantioselective

Oxo-Diels-Alder Reactions for Synthesis of Fused Pyrano[2,3-b]indoles. Org. Lett. 2012, 14, 2894-2897. (c) Mao, Z.; Li, W.; Shi, Y.; Mao, H.; Lin, A.; Zhu, C.; Cheng, Y. Enantioselective

ACS Paragon Plus Environment

Page 29 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Construction of Dihydropyran-Fused Indoles through Chiral Calcium Phosphate Catalyzed Oxo-Hetero-Diels-Alder Reactions by Using 2-Oxoindolin-3-ylidenes as Heterodienes. Chem. -Eur. J. 2013, 19, 9754-9759. (d) Hao, X.; Lin, L.; Tan, F.; Yin, C.; Liu, X.; Feng, X. Ligand Control of Diastereodivergency in Asymmetric Inverse Electron Demand Diels-Alder Reaction. ACS Catal. 2015, 5, 6052-6056. (e) Wang, F.; Li, Z.; Wang, J.; Li, X.; Cheng, J.-P. Enantioselective Synthesis of Dihydropyran-Fused Indoles through [4+2] Cycloaddition between Allenoates and 3-Olefinic Oxindoles. J. Org. Chem. 2015, 80, 5279-5286. (f) Zhou, Y.; Lin, L.; Yin, C.; Wang, Z.; Liu, X.; Feng, X. The N,N′-dioxide/Ni(ii)-catalyzed asymmetric inverse-electron-demand

hetero-Diels-Alder

reaction

of

methyleneindolinones

with

hetero-substituted alkenes. Chem. Commun. 2015, 51, 11689-11692. (18) Ni, Q.; Song, X.; Raabe, G.; Enders, D. N-Heterocyclic Carbene-Catalyzed Enantioselective Annulation of Indolin-3-ones with Bromoenals. Chem. Asian. J. 2014, 9, 1535-1538. (19) Yang, L.; Huang, W.; He, X.-H.; Yang, M.-C.; Li, X.; He, G.; Peng, C.; Han, B. Stereoselective Synthesis of Hydropyrano[3,2-b]indoles via Organocatalytic Asymmetric Inverse-Electron-Demand Oxa-Diels-Alder Reaction. Adv. Synth. Catal. 2016, 358, 2970-2975. (20) (a) Huang, W.; Peng, C.; Guo, L.; Hu, R.; Han, B. Enantio- and Diastereoselective Nitro-Mannich Reactions with in situ Generated N-Boc-imines Catalyzed by a Bifunctional Thiourea-Guanidine Catalyst. Synlett 2011, 2011, 2981-2984. (b) Hu, K.; Lu, A.; Wang, Y.; Zhou, Z.; Tang, C. Chiral bifunctional squaramide catalyzed asymmetric tandem Michael-cyclization reaction: efficient synthesis of optically active 2-amino-4H-chromene-3-carbonitrile derivatives. Tetrahedron: Asymmetry 2013, 24, 953-957. (c) Gao, Y.; Du, D.-M. Asymmetric Michael Addition/Intramolecular Cyclization Catalyzed by Bifunctional Tertiary Amine–Squaramides: Construction of Chiral 2-Amino-4H-chromene-3-Carbonitrile Derivatives. Chem. Asian. J. 2014, 9, 2970-2974. (d) Adili, A.; Tao, Z.-L.; Chen, D.-F.; Han, Z.-Y. Quinine-catalyzed highly enantioselective cycloannulation of o-quinone methides with malononitrile. Org. Biomol. Chem. 2015, 13, 2247-2250. (e) Gu, B.-Q.; Yang, W.-L.; Wu, S.-X.; Wang, Y.-B.; Deng, W.-P. Organocatalytic asymmetric synthesis of tetrahydrocarbazoles via an inverse-electron-demand Diels-Alder reaction of 2,3-indole-dienes with enals. Org. Chem. Front. 2018, 5, 3430-3434. (f) Li, Q.; Zhou, L.; Shen, X.-D.; Yang, K.-C.; Zhang, X.; Dai, Q.-S.; Leng, H.-J.; Li, Q.-Z.; Li, J.-L.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Stereoselective Construction of Halogenated Quaternary Carbon Centers by Brønsted Base Catalyzed [4+2] Cycloaddition of α-Haloaldehydes. Angew. Chem., Int. Ed. 2018, 57, 1913-1917. (21) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592. (22) (a) Kassab, S. E.; Hegazy, G. H.; Eid, N. M.; Amin, K. M.; El-Gendy, A. A. Synthesis of New 9-glycosyl-4,9-dihydropyrano [3,4-b]indole-1(3H)-ones as Antibacterial Agents. Nucleos. Nucleot. Nucl. 2011, 30, 991-998. (b) Tanaka, N.; Momose, R.; Takahashi-Nakaguchi, A.; Gonoi, T.; Fromont, J.; Kobayashi, J. i. Hyrtimomines, indole alkaloids from Okinawan marine sponges Hyrtios spp. Tetrahedron 2014, 70, 832-837. (c) Hajiabbasi, P.; Mohammadi Ziarani, G.; Badiei, A.; Abolhasani Soorki, A. Application of SBA-Pr-NH2 in one-pot three-component reaction of methylene-carbonyl compounds, acenaphthenequinone, malononitriles and exploration of its antimicrobial activity. Journal of the Iranian Chemical Society 2015, 12, 57-65. (23) Li, J.; Hou, Z.; Chen, G.-H.; Li, F.; Zhou, Y.; Xue, X.-Y.; Li, Z.-P.; Jia, M.; Zhang, Z.-D.; Li, M.-K.; Luo, X.-X. Synthesis, antibacterial activities, and theoretical studies of dicoumarols. Org. Biomol. Chem. 2014, 12, 5528-5535. (24) (a) Conway, S. C.; Gribble, G. W. Synthesis of 1-(Phenylsulfonyl)indol-3-yl Trifluoromethanesulfonate. Heterocycles 1990, 30, 627-633. (b) Noguchi-Yachide, T.; Tetsuhashi, M.; Aoyama, H.; Hashimoto, Y. Enhancement of Chemically-Induced HL-60 Cell Differentiation by 3,3′-Diindolylmethane Derivatives. Chem. Pharm. Bull. 2009, 57, 536-540. (c) Guo, C.; Schedler, M.; Daniliuc, C. G.; Glorius, F. N-Heterocyclic Carbene Catalyzed Formal [3+2] Annulation Reaction of Enals: An Efficient Enantioselective Access to Spiro-Heterocycles. Angew. Chem., Int. Ed. 2014, 53, 10232-10236. (d) Tang, X.; Zhu, H.-P.; Zhou, J.; Chen, Y.; Pan, X.-L.; Guo, L.; Li, J.-L.; Peng, C.; Huang, W. Highly diastereoselective synthesis of cyclopropane-fused spiro-pseudoindoxyl derivatives through [2+1] annulation of 2-ylideneoxindoles and sulfonium bromides. Org. Biomol. Chem. 2018, 16, 8169-8174.

ACS Paragon Plus Environment

Page 30 of 30