Asymmetric Formal [3 + 2]-Cycloaddition of Azomethine Imines with

Oct 24, 2017 - 1,3-Dipolar cycloaddition of azomethine imines 1 with various dipolarophiles, including olefins,(4) alkynes,(5) isocyanides,(6) allenes...
1 downloads 10 Views 615KB Size
Letter Cite This: Org. Lett. 2017, 19, 5826-5829

pubs.acs.org/OrgLett

Asymmetric Formal [3 + 2]-Cycloaddition of Azomethine Imines with Azlactones To Synthesize Bicyclic Pyrazolidinones Qian Zhang, Songsong Guo, Jian Yang, Kunru Yu, Xiaoming Feng, Lili Lin, and Xiaohua Liu* Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China S Supporting Information *

ABSTRACT: An efficient enantioselective formal [3 + 2]cycloaddition of azomethine imines with azlactones has been realized by using a chiral bifunctional bisguanidinium hemisalt as the catalyst. Optically active bicyclic pyrazolidinone compounds were generated under mild reaction conditions in high yields (up to 99%) with good dr (up to 88:12) and excellent ee values (up to 99%). This simple and efficient strategy provides a method to construct biologically important chiral tetrahydropyrazolo[1,2-a]pyrazole-1,7-dione derivatives bearing vicinal aza-quaternary and tertiary carbon centers.

P

organocatalyzed Knoevenagel−aza-Michael cyclocondensation of Meldrum’s acid.8b Very recently, Kerrigan’s group demonstrated the formation of chiral tetrahydropyrazolo[1,2-a]pyrazole-1,7-diones bearing 2,3-disubstituents from 1,3-dipolar cycloaddition of ketenes generated in situ.8c Using lithium ynolates as the dipolarophiles allowed access to similar structures but only in a diastereoselective fashion.9a Despite these reports, the core framework (Figure 1) bearing substituents at both C2 and C3 positions could be obtained from a spontaneous cyclization between azomethine imines with azlactones.10a This reaction occurred efficiently without a catalyst, but it would be difficult to achieve an enantioselective catalytic version. This is also one of the few applications of azlactones acting as dipolarophiles in [3 + 2]-cycloaddition,12 rather than as masked azomethine ylides.13,14 Encouraged by our studies on the asymmetric transformations of azlactones promoted by bifunctional guanidine catalysts,15 we were interested in the challenging asymmetric synthesis of tetrahydropyrazolo[1,2-a]pyrazole-1,7-diones containing vicinal aza-quaternary and tertiary carbon centers. We report a chiral bisguanidinium hemisalt promoted diastereo- and enantioselective formal 1,3-dipolar cycloaddition of azlactones with azomethine imines. The reaction represents a unique approach for the enantioselective construction of 2,2-disubstituted derivatives of compound B. Our initial investigations commenced with a model reaction between azomethine imine 1a and azlactone 2a in Et2O at 25 °C for chiral guanidine catalyst optimization (Table 1). When chiral guanidine-amides G-1 to G-3 were used as the catalyst, the reaction performed smoothly and two diastereomers of the product 3aa were generated almost equally without obvious

yrazolidinones and their analogues represent a group of heterocyclic compounds which exhibit rich biological activities.1 The N,N-bicyclic derivatives, especially tetrahydropyrazolo[1,2-a]pyrazolones, have attracted considerable attention due to the fact that compounds A were investigated as analogues of penicillin and cephalosporin antibiotics,2 and compound B was developed as a potent drug for treatment of cognitive dysfunctions such as Alzheimer’s disease3 (Figure 1).

Figure 1. Selected examples of biologically active tetrahydropyrazolo[1,2-a]pyrazolones.

Substituted tetrahydropyrazolo[1,2-a]pyrazolones are usually chiral compounds; therefore, the development of efficient approaches to construct such molecules in an enantioselective manner is highly desirable for pharmaceutical assay and other fields. 1,3-Dipolar cycloaddition of azomethine imines 1 with various dipolarophiles, including olefins,4 alkynes,5 isocyanides,6 allenes,7 ketenes,8 ynolates,9 azlactones,10 and other types,11 provides a straightforward route for the synthesis of pyrazolidinone-based bicyclic derivatives. However, there are a few examples related to the enantioselective synthesis of the N,N-fused bicyclic five-membered ring system. The Fu group utilized a chiral Cu(I) complex to accelerate the reaction of alkynes to generate 2,3-dihydropyrazolo[1,2-a]pyrazol-1-ones.5a,b Later, Brière and co-workers reported the asymmetric synthesis of tetrahydropyrazolo[1,2-a]pyrazole-1,5-dione via © 2017 American Chemical Society

Received: September 6, 2017 Published: October 24, 2017 5826

DOI: 10.1021/acs.orglett.7b02772 Org. Lett. 2017, 19, 5826−5829

Letter

Organic Letters Table 1. Optimization of the Reaction Conditionsa

Information). Screening of the solvents revealed that other reaction solvents including toluene, THF, and CH2Cl2 reduced the yield and enantioselectivity sharply, along with reverse diastereoselection (Table 1, entries 9−12). In addition, lower temperatures restrained the reaction activity (Table 1, entry 13). Increasing the ratio of azlactone 2a to azomethine imine 1a and reducing the reaction concentration delivered a slight improvement with a 96% yield, 82:18 dr, and 90% ee at 30 °C (Table 1, entry 14). Substrate generality was investigated by changing the aryl group of azomethine imines (Table 2). These, with electronTable 2. Scope of Azomethine Imines 1 in Cycloaddition with Azlactone 2aa

entry

cat.

solvent

yield (%)b

drc

ee (%)c

1 2 3 4 5 6 7 8 9 10 11 12 13d 14e

G-1 G-2 G-3 BG-1 BG-2 BG-3 BG-1·HBArF4 BG-2·HBArF4 BG-3·HBArF4 BG-3·HBArF4 BG-3·HBArF4 BG-3·HBArF4 BG-3·HBArF4 BG-3·HBArF4

Et2O Et2O Et2O Et2O Et2O Et2O Et2O Et2O Et2O toluene THF CH2Cl2 Et2O Et2O

33 26 18 5 42 15 75 30 84 34 27 35 22 96

47:53 53:47 45:55 50:50 50:50 64:36 21:79 30:70 18:82 79:21 68:32 71:29 18:82 17:83

5/3 0/3 0/17 20/30 19/14 14/18 51/57 10/11 66/83 25/28 18/69 30/59 −/85 −/90

a

Unless otherwise noted, the reactions were carried out with guanidine (10 mol %), 1a (0.05 mmol), and 2a (1.0 equiv) in solvent (1.0 mL) at 25 °C. bIsolated yield. cDetermined by HPLC analysis. dAt 0 °C. e 1a (0.10 mmol), and 2a (1.2 equiv) in Et2O (6.0 mL) at 30 °C. HBArF4 = HB[3,5-(CF3)2C6H3]4.

entry

1, R1

3, yield (%)b

drc

ee (%)c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1a; C6H5 1b; 2-FC6H4 1c; 2-ClC6H4 1d; 2-BrC6H4 1e; 2-MeC6H4 1f; 2-MeOC6H4 1g; 2-O2NC6H4 1h; 3-FC6H4 1i; 3-MeOC6H4 1j; 4-FC6H4 1k; 4-MeOC6H4 1l; 4-iPrC6H4 1m; 2-furyl 1n; 2-thienyl 1o; 1-naphthyl

3aa, 96 3ba, 96 3ca, 97 3da, 99 3ea, 96 3fa, 56 3ga, 69 3ha, 76 3ia, 77 3ja, 76 3ka, 73 3la, 86 3ma, 94 3na, 90 3oa, 89

84:16 85:15 85:15 79:21 70:30 84:16 64:36 79:21 75:25 85:15 88:12 84:16 81:19 77:23 81:19

90 98 95 97 95 95 95 81 81 81 86 83 84 86 87

a Unless otherwise noted, the reactions were carried out with BG-3· HBArF4 (10 mol %), 1 (0.10 mmol), and 2 (1.2 equiv) in Et2O (6.0 mL) at 30 °C for 10 h. bIsolated yield of the two diastereomers. c Determined by HPLC analysis.

enantioselection (Table 1, entries 1−3). In view of the fact that the structure and counterion of guanidine catalysts are critical for both the reactivity and enantioselectivity in our previous study,15,16 we next examined the performance of several C2symmetric bisguanidine catalysts and the corresponding hemisalts. It was disappointing that when BG-1−BG-3 were used, no satisfactory results were obtained in terms of yield and stereoselectivity (Table 1, entries 4−6). BG-1, which was useful for a formal [4 + 2]-cycloaddition of azlactones with chalcone,15a resulted in an extremely low yield (Table 1, entry 4). (S)-Tetrahydroisoquinoline-3-carboxylic acid derived bisguanidines BG-2 and BG-3 containing benzene-1,3-diamine and benzene-1,2-diamine linkage showed a difference in reactivity, resulting in 42% and 15% yields, respectively (Table 1, entry 6 vs 5). This indicates that the linkage changes the catalytic environment remarkably. Furthermore, the use of bisguanidinium hemisalts instead changed both the reactivity and stereoselectivity significantly, especially for the related salts of BG-1 and BG-3 (Table 1, entries 7−9). Catalyst BG-3· HBArF4 led to a striking result, and product 3aa could be isolated in 84% yield with good diastereo- and enantioselectivities (dr = 82:18 and ee = 83% for the major diastereomer) (Table 1, entry 9). Sterically hindered acid with stronger acidity afforded a higher yield and ee value (see Supporting

rich and -deficient substituents on the aromatic ring, reacted smoothly with azlactone 2a, generating the desired tetrahydropyrazolo[1,2-a]pyrazole-1,7-diones 3aa−3oa in moderate to good yields (56−99%) with good to excellent enantioselectivities (ee = 81−98%) and good diastereoselectivities (Table 2, entries 1−12). Higher enantioselectivities were achieved with substituents at the ortho-position of the aryl group than at the meta- and para-positions (Table 2, entries 1−7 vs 8−12). Heteroaromatic and 1-naphthyl substituted azomethine imines were also tolerable in the current system. The products 3ma− 3oa were given in high yields (89−94%) with satisfactory stereoselectivity (ee = 84−87%, dr = 81:19−78:22) (Table 2, entries 13−15). Next, the substrate scope was probed through azlactones with varied substituents at the C2 and C4 positions (Table 3). Azomethine imine 1b was selected as the dipole. Azlactones 2b−2d synthesized from alanine, 2-aminobutanoic acid, and leucine were tolerated under optimized reaction conditions, providing methyl, ethyl, or isobutyl substitution on to the core scaffold in moderate to good yields with good enantioselectivities (ee = 88−89%) (3bb−3bd). High enantioselectivity (ee = 99%) was achieved for one diastereomer with an indolylmethyl group albeit with a lower 45% yield and diastereoselectivity of 5827

DOI: 10.1021/acs.orglett.7b02772 Org. Lett. 2017, 19, 5826−5829

Letter

Organic Letters

intermediate. Subsequent lactonization leads to the formation of the 2-alkyl-2-amino-3-aryl substituted tetrahydropyrazolo[1,2-a]pyrazo-le-1,7-dione product. In conclusion, an organocatalyzed asymmetric formal [3 + 2]-cycloaddition of N,N-cyclic azomethine imines with azlactones has been developed. A new bisguanidinium hemisalt was selected as a bifunctional catalyst to promote the reaction in good to excellent yields and enantioselectivity. It provided easy access to tetrahydropyrazolo[1,2-a]pyrazole-1,7-dione derivatives with vicinal aza-quaternary and tertiary carbon centers that represent scaffolds with potential bioactivity. We anticipate that chiral guanidine and guanidinium may find utility in other reactions for the synthesis of biologically intriguing small molecules.

Table 3. Scope of Azlactones 2 in Cycloaddition with Azomethine Imines 1ba



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b02772. Crystallographic data for 3da (CIF) Experimental details, analytic data (NMR, HPLC, ESIHRMS, and X-ray) (PDF)

a



Same as in Table 2.

AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected].

3be. Further investigation suggested that the position and its electronic property of the substituent at the C2-aryl group of azlactones had a significant impact on yields and diastereo- and enantioselectivities. 4-Halo-substituted ones gave higher yields than the electron-donating substituted ones, and the corresponding cyclization products of 3bf−3bj were afforded in good to excellent yields (68−99%) and stereoselectivities (ee = 77−90%, dr = 71:29−80:20). To demonstrate the scalability and the practicality of this protocol, we conducted a gram-scale reaction with 1d (2.30 mmol) and 2a (2.76 mmol) in the presence of 10 mol % of BG-3·HBArF4 in Et2O at 30 °C (Scheme 1). Gratifyingly, the

ORCID

Xiaoming Feng: 0000-0003-4507-0478 Xiaohua Liu: 0000-0001-9555-0555 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We thank the National Natural Science Foundation of China (Nos. 21625205, 21332003, 21290182), and National Program for Support of Top-notch Young Professionals for financial support.



Scheme 1. Scale-up Version of the Reaction and X-ray Crystal Structure of the Product 3da

REFERENCES

(1) For selected examples, see: (a) Hassall, C. H.; Kröhn, A.; Moody, C. J.; Thomas, W. A. FEBS Lett. 1982, 147, 175. (b) Novak, A.; Testen, A.; Bezenšek, J.; Grošelj, U.; Hrast, M.; Kasunič, M.; Gobec, S.; Stanovnik, B.; Svete, J. Tetrahedron 2013, 69, 6648. (c) Muehlebach, M.; Boeger, M.; Cederbaum, F.; Cornes, D.; Friedmann, A. A.; Glock, J.; Niderman, T.; Stoller, A.; Wagner, T. Bioorg. Med. Chem. 2009, 17, 4241. (2) For selected examples, see: (a) Jungheim, L. N.; Sigmund, S. K. J. Org. Chem. 1987, 52, 4007. (b) Indelicato, J. M.; Pasini, C. E. J. Med. Chem. 1988, 31, 1227. (c) Ternansky, R. J.; Draheim, S. E.; Pike, A. J.; Counter, F. T.; Eudaly, J. A.; Kasher, J. S. J. Med. Chem. 1993, 36, 3224. (3) Winterton, S. E.; Ready, J. M. Org. Lett. 2016, 18, 2608. (4) For selected examples, see: (a) Chen, W.; Du, W.; Duan, Y. Z.; Wu, Y.; Yang, S. Y.; Chen, Y. C. Angew. Chem., Int. Ed. 2007, 46, 7667. (b) Li, J. T.; Lian, X. J.; Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. - Eur. J. 2013, 19, 5134. (c) Gan, W.; Moon, P. J.; Clavette, C.; Neves, N. D.; Markiewicz, T.; Toderian, A. B.; Beauchemin, A. M. Org. Lett. 2013, 15, 1890. (d) Wang, D.; Deng, H. P.; Wei, Y.; Xu, Q.; Shi, M. Eur. J. Org. Chem. 2013, 2013, 401. (e) Li, Z.; Yu, H.; Liu, H. L.; Zhang, L.; Jiang, H.; Wang, B.; Guo, H. C. Chem. - Eur. J. 2014, 20, 1731. (f) Yin, C. K.; Lin, L. L.; Zhang, D.; Feng, J. H.; Liu, X. H.; Feng, X. M. J. Org.

reaction proceeded smoothly, and 3da was isolated with high yield and excellent selectivity. The absolute configuration of the major enantiomer of the product 3da was determined to be (2S, 3S) by X-ray crystallographic analysis.17 Mechanistically, the bisguanidinium hemisalt was proposed to work as a bifunctional catalyst for this cycloaddition reaction. One guanidine unit of the catalyst acts as a base to form the enolate intermediate from the azlactone. On the other hand, the guanidinium salt interacts with the N−CO portion of the dipole to activate the azomethine imine via hydrogen bonding. The nucleophilic addition occurs preferably between the Reface of azomethine imine and the Si-face of the azlactone 5828

DOI: 10.1021/acs.orglett.7b02772 Org. Lett. 2017, 19, 5826−5829

Letter

Organic Letters Chem. 2015, 80, 9691. (g) Bongers, A.; Ranasinghe, I.; Lemire, P.; Perozzo, A.; Vincent-Rocan, J. F.; Beauchemin, A. Org. Lett. 2016, 18, 3778. (h) Wang, X.; Wu, L.; Yang, P.; Song, X. J.; Ren, H. X.; Peng, L.; Wang, L. X. Org. Lett. 2017, 19, 3051. (5) For selected examples, see: (a) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778. (b) Suárez, A.; Downey, C. W.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11244. (c) Imaizumi, T.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2012, 134, 20049. (d) Hori, M.; Sakakura, A.; Ishihara, K. J. Am. Chem. Soc. 2014, 136, 13198. (6) For selected examples, see: (a) Hashimoto, T.; Kimura, H.; Kawamata, Y.; Maruoka, K. Angew. Chem., Int. Ed. 2012, 51, 7279. (b) Du, J.; Xu, X. X.; Li, Y. F.; Pan, L.; Liu, Q. Org. Lett. 2014, 16, 4004. (7) For selected examples, see: (a) Dondas, H. A.; Fishwick, C. W. G.; Gai, X. J.; Grigg, R.; Kilner, C.; Dumrongchai, N.; Kongkathip, B.; Kongkathip, N.; Polysuk, C.; Sridharan, V. Angew. Chem., Int. Ed. 2005, 44, 7570. (b) Na, R. S.; Jing, C. F.; Xu, Q. H.; Jiang, H.; Wu, X.; Shi, J. Y.; Zhong, J. C.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Guo, H. C.; Kwon, O. J. Am. Chem. Soc. 2011, 133, 13337. (c) Jing, C. F.; Na, R. S.; Wang, B.; Liu, H. L.; Zhang, L.; Liu, J.; Wang, M.; Zhong, J. C.; Kwon, O.; Guo, H. C. Adv. Synth. Catal. 2012, 354, 1023. (d) Zhou, W.; Li, X. X.; Li, G. H.; Wu, Y.; Chen, Z. L. Chem. Commun. 2013, 49, 3552. (e) Wang, D.; Lei, Y.; Wei, Y.; Shi, M. Chem. - Eur. J. 2014, 20, 15325. (f) Yuan, C. H.; Zhou, L. J.; Xia, M. R.; Sun, Z. H.; Wang, D. Q.; Guo, H. C. Org. Lett. 2016, 18, 5644. (8) For selected examples, see: (a) Presset, M.; Mohanan, K.; Hamann, M.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2011, 13, 4124. (b) Pair, E.; Berini, C.; Noël, R.; Sanselme, M.; Levacher, V.; Brière, J. F. Chem. Commun. 2014, 50, 10218. (c) Gao, Z. H.; Chen, X. Y.; Cheng, J. T.; Liao, W. L.; Ye, S. Chem. Commun. 2015, 51, 9328. (d) Mondal, M.; Wheeler, K. A.; Kerrigan, N. J. Org. Lett. 2016, 18, 4108. (9) For selected examples, see: (a) Winterton, S. E.; Ready, J. M. Org. Lett. 2016, 18, 2608. (b) Li, Z.; Yu, H.; Liu, Y.; Zhou, L. J.; Sun, Z. H.; Guo, H. C. Adv. Synth. Catal. 2016, 358, 1880. (10) For selected examples, see: (a) Liu, W. J.; Xu, Y.; Sun, X. X.; Lu, D. P.; Guo, L. J. Synlett 2014, 25, 1093. (b) Liu, X. H.; Wang, Y. J.; Yang, D. X.; Zhang, J. L.; Liu, D. S.; Su, W. Angew. Chem., Int. Ed. 2016, 55, 8100. (11) For selected examples, see: (a) Fang, X.; Li, J.; Tao, H. Y.; Wang, C. J. Org. Lett. 2013, 15, 5554. (b) Wei, L.; Wang, Z. F.; Yao, L.; Qiu, G. F.; Tao, H. Y.; Li, H.; Wang, C. J. Adv. Synth. Catal. 2016, 358, 3955. (12) For selected examples, see: (a) Peddibhotla, S.; Tepe, J. J. J. Am. Chem. Soc. 2004, 126, 12776. (b) Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638. (c) Kim, Y.; Kim, J.; Park, S. B. Org. Lett. 2009, 11, 17. (d) Melhado, A. D.; Amarante, G. W.; Wang, Z. J.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 3517. (e) Sun, W. S.; Zhu, G. M.; Wu, C. Y.; Li, G. F.; Hong, L.; Wang, R. Angew. Chem., Int. Ed. 2013, 52, 8633. (f) Marco-Martínez, J. M.; Reboredo, S.; Izquierdo, M.; Marcos, V.; López, J. L.; Filippone, S.; Martín, N. J. Am. Chem. Soc. 2014, 136, 2897. (g) Zhang, Z. H.; Sun, W. S.; Zhu, G. M.; Yang, J. X.; Zhang, M.; Hong, L.; Wang, R. Chem. Commun. 2016, 52, 1377. (13) For selected examples, see: (a) Peddibhotla, S.; Jayakumar, S.; Tepe, J. J. Org. Lett. 2002, 4, 3533. (b) Sharma, V.; Tepe, J. J. Org. Lett. 2005, 7, 5091. (c) Kahlon, D. K.; Lansdell, T. A.; Fisk, J. S.; Tepe, J. J. Bioorg. Med. Chem. 2009, 17, 3093. (d) Azevedo, L. M.; Lansdell, T. A.; Ludwig, J. R.; Mosey, R. A.; Woloch, D. K.; Cogan, D. P.; Patten, G. P.; Kuszpit, M. R.; Fisk, J. S.; Tepe, J. J. J. Med. Chem. 2013, 56, 5974. (14) For reviews of asymmetric 1,3-dipolar cycloadditions of azomethine ylides, see: (a) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863. (b) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. (c) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (d) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887. (e) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784. (f) Narayan, R.; Potowski, M.; Jia, Z. J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res. 2014, 47, 1296. (g) Adrio, J.; Carretero, J. C. Chem.

Commun. 2014, 50, 12434. (h) Bdiri, B.; Zhao, B. J.; Zhou, Z. M. Tetrahedron: Asymmetry 2017, 28, 876. (i) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366. (15) Our previous study relating to guanidine-amide promoted reactions with azlactones, see: (a) Dong, S. X.; Liu, X. H.; Chen, X. H.; Mei, F.; Zhang, Y. L.; Gao, B.; Lin, L. L.; Feng, X. M. J. Am. Chem. Soc. 2010, 132, 10650. (b) Dong, S. X.; Liu, X. H.; Zhang, Y. L.; Lin, L. L.; Feng, X. M. Org. Lett. 2011, 13, 5060. (c) Yu, K. R.; Liu, X. H.; Lin, X. B.; Lin, L. L.; Feng, X. M. Chem. Commun. 2015, 51, 14897. (16) Our previous study relating to guanidine-amide promoted reactions, see: (a) Yu, Z. P.; Liu, X. H.; Zhou, L.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2009, 48, 5195. (b) Chen, X. H.; Dong, S. X.; Qiao, Z.; Zhu, Y.; Xie, M. S.; Lin, L. L.; Liu, X. H.; Feng, X. M. Chem. - Eur. J. 2011, 17, 2583. (c) Yang, Y.; Dong, S. X.; Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. Commun. 2012, 48, 5040. (d) Xiao, X.; Liu, X. H.; Dong, S. X.; Cai, Y. F.; Lin, L. L.; Feng, X. M. Chem. - Eur. J. 2012, 18, 15922. (e) Fang, B.; Liu, X. H.; Zhao, J. N.; Tang, Y.; Lin, L. L.; Feng, X. M. J. Org. Chem. 2015, 80, 3332. (f) Tang, Y.; Chen, Q. G.; Liu, X. H.; Wang, G.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2015, 54, 9512. (g) Chen, Q. G.; Tang, Y.; Huang, T. Y.; Liu, X. H.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2016, 55, 5286. (h) Lin, X. B.; Ruan, S.; Yao, Q.; Yin, C. K.; Lin, L. L.; Feng, X. M.; Liu, X. H. Org. Lett. 2016, 18, 3602. (i) Guo, S. S.; Liu, X. H.; Shen, B.; Lin, L. L.; Feng, X. M. Org. Lett. 2016, 18, 5070. (17) CCDC 1548450 (3da).

5829

DOI: 10.1021/acs.orglett.7b02772 Org. Lett. 2017, 19, 5826−5829