6 Asymmetric Hydrosilylation 1
H. B. KAGAN, J. F. PEYRONEL, and T. YAMAGISHI
Downloaded by UNIV OF ARIZONA on June 7, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch006
Laboratoire de Synthèse Asymétrique, (Associé au CNRS LA n° 040255-02), Université Paris-Sud, 91405-Orsay, France A catalyst for asymmetric hydrosilylation of ketones was prepared from [Rh(COD)Cl] and DIOP. The hydrosilyla tion of acetophenone yields 1-phenylethanol after hydrolysis. The optical yield strongly depends on the nature of the silane RR'SiH that was used. Several types of ketones were asymmetrically reduced into chiral alcohols, the highest asymmetric induction being observed from some α-chloro ketones or α-ketoesters. It was remarkable that prochiral benzophenones such as p-OMeC H COC H could be re duced with up to 26% e.e. Mechanism of asymmetric hydrosilylation was discussed in relation with some spin trap experiments. Studies were made on supported rhodium-DIOP catalysts. Some rhodium leaching from support was demonstrated by a three-phase test. 2
2
6
4
6
5
H p h e s t e r e o c o n t r o l l e d synthesis of a g i v e n e n a n t i o m e r is a k e y o p e r a t i o n - " i n m a n y processes. V e r y o f t e n , o n e e n a n t i o m e r r a t h e r t h a n t h e r a c e m i c 1
m i x t u r e is n e e d e d b e c a u s e of its p r o p e r t i e s . I n fragrances, f o o d a d d i t i v e s , or p h a r m a c e u t i c a l d r u g s , m a n y s u c h cases c a n b e f o u n d . F o r e x a m p l e , a - a m i n o a c i d s w h i c h enter as c o m p o n e n t s of p o l y p e p t i d e s o r d r u g s a r e a l w a y s u s e d w i t h a specific a b s o l u t e c o n f i g u r a t i o n . T h e i m p o r t a n c e of c h i r a l substances
is u n d e r s t a n d a b l e i f i t is r e a l i z e d t h a t l i v i n g
are essentially c h i r a l themselves a n d a b l e t o differentiate
systems
enantiomeric
substrates at a c t i v e sites of e n z y m e s o r at b i o l o g i c a l receptors. O n e classic a l p r e p a r a t i o n of a n e n a n t i o m e r
( D ) is t o resolve a r a c e m i c m i x t u r e
( D, L ). T h i s is a t i m e - a n d e n e r g y - c o n s u m i n g process b e c a u s e t h e u n d e sired enantiomer ( L ) must be separated b y chemical a n d p h y s i c a l operations a n d r a c e m i z e d i f p o s s i b l e f o r r e c y c l i n g .
I t is necessary
t o use
s t o i c h i o m e t r i c a m o u n t s of a c h i r a l a u x i l i a r y c o m p o u n d Z * ( F i g u r e 1) Current address: Department of Industrial Chemistry, Tokyo Metropolitan University, Fukazawa, Setagayaku, Tokyo, 158 Japan. 1
0-8412-0429-2/79/33-173-050$05.00/0 © 1979 American Chemical Society
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
Asymmetric
KAGAN ET A L .
51
Hydrosilylation
to o b t a i n t h e r e s o l u t i o n t h r o u g h f o r m a t i o n a n d s e p a r a t i o n of diastereomeric products.
E a c h d i a s t e r e o m e r is t h e n d e s t r o y e d a n d the d e s i r e d
e n a n t i o m e r ( D ) is r e c o v e r e d .
T h e c h i r a l e c o n o m y is o b v i o u s i f Z * c a n
b e a c h i r a l r e a g e n t c o n t r o l l i n g the d i r e c t f o r m a t i o n of D ; the process is n o w a n a s y m m e t r i c synthesis. represents
A f u r t h e r i m p r o v e m e n t occurs w h e n Z *
a c h i r a l catalyst b e c a u s e a s m a l l a m o u n t of Z * s h o u l d b e
a b l e to c o n t r o l d i r e c t p r o d u c t i o n of a l a r g e a m o u n t of the d e s i r e d e n a n t i o m e r . F i g u r e 1 is a s c h e m a t i c c o m p a r i s o n of r e s o l u t i o n a n d a s y m m e t r i c synthesis i n t h e case w h e r e the r e a c t i o n g i v i n g rise to a r a c e m i c m i x t u r e
Downloaded by UNIV OF ARIZONA on June 7, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch006
( D + L ) is t r a n s f o r m e d i n t o a n a s y m m e t r i c c a t a l y t i c process l e a d i n g to D . A s y m m e t r i c catalysis as a s y n t h e t i c t o o l is r e l a t i v e l y n e w ( i f e n z y m a t i c reactions are not c o n s i d e r e d ) ; its d e v e l o p m e n t b e g a n 10 years ago, m a i n l y b e c a u s e of the advances i n c o o r d i n a t i o n c h e m i s t r y . A s y m m e t r i c h y d r o g e n a t i o n started b y m o d i f y i n g the W i l k i n s o n catalyst e a r l y results (2,8,4) a m o u n t of r e s e a r c h
(J).
The
w e r e e n c o u r a g i n g e n o u g h to i n i t i a t e a v e r y l a r g e (5,6).
A s y m m e t r i c C - C b o n d formation i n olefin
c o - d i m e r i z a t i o n w a s o b s e r v e d f o r the first t i m e b y W i l k e a n d his cow o r k e r s (7).
Asymmetric hydroformylation (8)
as w e l l as s e v e r a l n e w
a s y m m e t r i c a l k y l a t i o n reactions a p p e a r e d i n the last five years A s y m m e t r i c e p o x i d a t i o n s w e r e d e s c r i b e d i n 1977
( C h i r a l a u x i l i a r y compound)
Z 1 eq . { D , L }
A
+
Z 0.5 e q J 0
^
Racemization 1 eq.
(9,10).
(11,12).
0.5 eq. L
(Prochiral) RESOLUTION
Reagent
Z
(Chiral Catalyst)
ASYMMETRIC SYNTHESIS
leq.
Figure 1.
Asymmetric
0
synthesis vs. resolution, an "energy saving" process
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
52
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
H
I n p r i n c i p l e , a n y c a t a l y z e d r e a c t i o n w h e r e t h e l i g a n d s of t h e c o m p l e x are easily m o d i f i e d c o u l d b e i n v e s t i g a t e d f o r a s y m m e t r i c catalysis. T o date, enantioselectivities h i g h e r t h a n 9 5 % h a v e b e e n a t t a i n e d i n a f e w cases (13,14),
g i v i n g h o p e that f u r t h e r studies s h o u l d define a v a r i e t y
of specific c h i r a l catalysts f o r t h e p r o d u c t i o n o f v a r i o u s c h i r a l c o m p o u n d s . T h e c r e a t i o n o f a n a s y m m e t r i c center b y C - H b o n d f o r m a t i o n is a very
c o m m o n process
Hydrogenation
which
c a n i n v o l v e several t y p e s
of p r o c h i r a l olefins is o f t e n
used w i t h
of reactions. the rhodium
catalysts of t h e W i l k i n s o n t y p e ( 5 ) . T h e s e catalysts w e r e s h o w n t o b e
Downloaded by UNIV OF ARIZONA on June 7, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch006
i n a c t i v e f o r k e t o n e o r i m i n e r e d u c t i o n e x c e p t i n some cases (15).
It was
t h e n i n t e r e s t i n g to d e v e l o p a n alternate m e t h o d f o r a s y m m e t r i c synthesis of c h i r a l alcohols o r amines.
S i n c e i t w a s f o u n d that R h C l ( P P h ) 3
a b l e t o c a t a l y z e silane a d d i t i o n s t o ketones
(16,17)
or imines
3
was (18),
p r e p a r a t i o n of c h i r a l alcohols o r amines b y a s y m m e t r i c h y d r o s i l y l a t i o n c o u l d b e e n v i s a g e d ( F i g u r e 2 ) . T h e 1 , 4 - a d d i t i o n of silanes to c o n j u g a t e d
R
R R -V-CH R H 1
1
C = C
2
H
R
3
2
R 2 ^ * R-C-OH 1
1
C = o
H O/H* 2
R
1
=SiH
R
R -C-OSi= H 2
R;
1
= SiH
C =N-R
R -V-N: s
C=CH-C-R
3
R
=SiH R
Examples
2
Si =
R —jCf—NHR H 2
R
1
O *-CH=:C-R C
H Figure 2.
H O/H*
2
tliOAll
3
OSi =
of creation of an asymmetric tion
3
1
R^-^-CHXR
H
center by C-H bond forma-
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3
6.
KAGAN
Asymmetric
ET AL.
esters or ketones (19)
53
Hydrosilylation
is another p o s s i b i l i t y f o r a s y m m e t r i c h y d r o s i l y l a -
t i o n a n d c r e a t i o n of a n a s y m m e t r i c center i n the /? p o s i t i o n r e l a t i v e to a carbonyl group. W e chose to s t u d y a s y m m e t r i c h y d r o s i l y l a t i o n f o r t h e of alcohols (20)
a n d amines (18)
preparation
because the system p e r m i t s s t r u c t u r a l
m o d i f i c a t i o n s of b o t h the c h i r a l l i g a n d s a n d the silane.
T h e possibility
arose of a g o o d m a t c h i n g w i t h the substrate, l e a d i n g to h i g h stereoselect i v i t y i n the f o r m a t i o n of the c h i r a l p r o d u c t . W e w i l l o n l y c o n s i d e r h e r e
Downloaded by UNIV OF ARIZONA on June 7, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch006
the a s y m m e t r i c synthesis of alcohols. Synthesis of Chiral
Ligands
P h o s p h i n e s are the u s u a l l i g a n d s of r h o d i u m catalysts
for hydro-
s i l y l a t i o n . A classification of c h i r a l p h o s p h i n e s a c c o r d i n g to their struct u r e is p r e s e n t e d i n T a b l e I. V e r y e a r l y w e e x a m i n e d the synthesis a n d b e h a v i o r of p h o s p h i n e s R*-PPh i n 1971
2
easily p r e p a r e d f r o m n a t u r a l p r o d u c t s (21).
W e then introduced,
the use of c h i r a l c h e l a t i n g d i p h o s p h i n e s
(4),
Table I.
A Structural Classification of Chiral
(phosphines
Phosphines ' a
of
b
Ri Type
I:
R
2
Type II:
~ ^ P
R — P P h
2
Rs * ^ Type
III:
PPh
2
Type I V :
^ R
(CH ) * 2
* ^.Ri
PPh,
R
* \
*
R
2
2
n
R
TypeV:
i
R
*R
Type V I :
p
R* "
2
Ri
*/ P
R
X
V
v
2
R
4
• This classification gives only the main types of chiral mono- and diphosphines. Many other structures are also possible, allowing, in principle, the synthesis of a large number of new ligands. R* and P* symbolize chiral groups. * For reviews on chiral phosphines prepared for homogeneous asymmetric catalysis, see Ret. 5, 6, and 26.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on June 7, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch006
54
INORGANIC COMPOUNDS W I T H UNUSUAL PROPERTIES
II
T y p e I I I ) . Since g o o d results i n a s y m m e t r i c h y d r o g e n a t i o n w e r e o b t a i n e d (22) w i t h D I O P 1, i t w a s t h e n u s e d i n a s y m m e t r i c h y d r o s i l y l a t i o n
(20).
R e s u l t s w i t h D I O P a n d some other d i p h o s p h i n e s w i l l b e p r e s e n t e d here. Influence of the Structure
of Silanes upon Optical
Yield
T h e s t a n d a r d p r o c e d u r e that w a s a d o p t e d f o r a s y m m e t r i c h y d r o s i l y l a t i o n of ketones w a s t h e f o l l o w i n g . A s o l u t i o n of 1 m m o l o f k e t o n e a n d 1.1 m m o l of silane i n 3 m L b e n z e n e i n p r e s e n c e of R h C l ( D I O P ) (0.2% hours. DIOP
w i t h respect to t h e k e t o n e ) w a s s t i r r e d u n d e r n i t r o g e n f o r a f e w T h e catalyst i n benzene
was preformed b y mixing [ R h ( C O D ) C l ]
a n d s t i r r i n g 15 m i n u n d e r n i t r o g e n .
and
2
A l l o f these
operations w e r e p e r f o r m e d at 2 0 ° C . T h e c o m p l e x [ R h ( C O D ) ( D I O P ) ] C 1 0 " w h i c h c a n b e i s o l a t e d gives +
4
n o better results t h a n t h e n e u t r a l catalyst p r e p a r e d i n s i t u . A f t e r r e a c t i o n the solvent w a s e v a p o r a t e d a n d t h e r e s i d u e h y d r o l y z e d u n d e r
acidic
c o n d i t i o n s . T h e p r o d u c t was r e c o v e r e d b y d i s t i l l a t i o n o r c h r o m a t o g r a p h y . I n g e n e r a l , y i e l d s w e r e excellent Dihydrosilanes R R ' S i H
2
(90-100%).
w e r e selected
i n almost
a l l of o u r w o r k
b e c a u s e of t h e i r g o o d r e a c t i v i t y . I n T a b l e I I some representative drosilanes a n d t h e i r efficiencies i n t h e h y d r o s i l y l a t i o n o f are i n d i c a t e d .
dihy-
acetophenone
T h e r e are v a r i a t i o n s i n o p t i c a l y i e l d s a c c o r d i n g to t h e
s t r u c t u r e of d i h y d r o s i l a n e s . Steric considerations d o n o t seem to b e a b l e to g i v e a s i m p l e e x p l a n a t i o n . F o r e x a m p l e , P h ( c y c l o h e x y l ) S i H is m o r e 2
efficient t h a n P h S i H , b u t ( c y c l o h e x y l ) S i H is a p o o r reagent. S i m i l a r l y , 2
(a-naphthyl)PhSiH
2
2
2
is b e t t e r t h a n P h S i H 2
2
2
b u t n o t different f r o m
(a-
naphthyl) SiH . 2
2
U s e of a c h i r a l c o m p l e x i n h y d r o s i l y l a t i o n of a k e t o n e c a n p r o v i d e a r o u t e t o c h i r a l silanes.
T h i s m e t h o d w i t h R h C l ( D I O P ) as catalyst w a s
i n v e s t i g a t e d b y C o r r i u et a l . (26,31).
A p r o c h i r a l silane s u c h as ( a - N p ) -
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6.
KAGAN
Asymmetric
ET AL.
55
Hydrosilylation
Table II. Hydrosilylation of P h - C O - C H by R R ' S i H Catalyzed by R h C l ( - ) D I O P (23,24) 3
2
PhCHOHCHs
Downloaded by UNIV OF ARIZONA on June 7, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch006
Silane" R
R'
Cyclohexyl Ph Ph Ph m-Me-Ph a-Naphthyl Ph Ph a-Naphthyl Ph
cyclohexyl mesityl CH Ph m-Me-Ph cyclohexyl o-Me-Ph cyclohexyl a-naphthyl a-naphthyl
Optical Yield (%)
Absolute Configuration
V 6* 13 24 30 32 35 49 50 52
S R R R R R R R R R
3
° See "Influence of the Structure of Silanes upon Optical Y i e l d " for experimental details. The enol silylether of acetophenone is simultaneously formed in approximately equal amounts as the silylether of 1-phenylethanol. b
P h S i H , a f t e r r e a c t i o n o n a s y m m e t r i c a l ketone, is t r a n s f o r m e d i n t o ( a 2
H N p ) P h S i - ( O R ) , i n w h i c h t h e s i l i c o n a t o m is t h e o n l y source of c h i r a l i t y . O p t i c a l y i e l d s i n t h e r a n g e of 5 0 % w e r e Relation
between Optical
observed.
Yield and Structure
of the
Substrates
O f t e n a c e t o p h e n o n e is t h e p r o c h i r a l k e t o n e w h i c h is first tested w h e n a n e w a s y m m e t r i c r e d u c i n g agent has to b e e v a l u a t e d . d o n e i n a s y m m e t r i c h y d r o s i l y l a t i o n b y us (20)
This was
a n d others (26).
For-
t u n a t e l y , c a t a l y t i c h y d r o s i l y l a t i o n is n o t l i m i t e d t o this case. I n T a b l e I I I , some representative results w i t h a - n a p h t h y l p h e n y l silane are
summarized.
Substitution
(a-NpPhSiH ) 2
o n t h e m e t h y l g r o u p of a c e t o p h e n o n e
strongly influences t h e stereospecificity.
W h e n there is a free O H g r o u p ,
it is first s i l y l a t e d , f o l l o w e d b y a n i n t e r n a l h y d r o s i l y l a t i o n l e a d i n g to a c y c l i c s i l y l diether.
H y d r o l y s i s gives
the p h e n y l glycol
(Figure
3).
C o n t r a r y to expectation, this i n t r a m o l e c u l a r process decreases the enantiospecificity. a - C h l o r o o r b r o m o ketones w e r e s m o o t h l y h y d r o s i l y l a t e d w i t h g o o d o p t i c a l y i e l d s ( w i t h respect to t h e u n s u b s t i t u t e d k e t o n e ) .
Basic hydrol-
ysis of t h e h a l o g e n o s i l y l ether gave d i r e c t l y a c h i r a l e p o x i d e . a-Ketoesters g a v e a-hydroxyesters of h i g h o p t i c a l p u r i t y w h e n R h C l ( D I O P ) w a s u s e d as catalyst. O j i m a (27)
o b t a i n e d p r o p y l lactate w i t h 8 5 % e.e. b y r e d u c -
i n g p r o p y l p y r u v a t e i n presence of R h C l ( D I O P ) a n d also o b s e r v e d h i g h
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
56
INORGANIC COMPOUNDS W I T H UNUSUAL PROPERTIES
H 0/H *~ P h — C H — C H +
2
Ph_CO—CH
+ «NpPhSiH -^ Ph—CH—CH
3
2
8
.Ph OSiH^
2
Downloaded by UNIV OF ARIZONA on June 7, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch006
^
Ph—C=CH
+
Ph—CO—CH
2
2
O S i H ^
3
H 0/H »
H 2
P
8
O H
«Np
"
II
3
h
aNp
- H P h — C O — C H O H + «NpPhSiH 2
Ph—CH—CH 0
Ph
Figure 3. asymmetric
.Ph • P h — C O — C H O S i H