Chapter 16
Asymmetric Reactions Toward the Synthesis of Carbohydrates Koichi Narasaka
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
Department of Chemistry, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan
By the use of chiral oxazolidines derived from a chiral norephedrine and methyl ketones, an asymmetric aldol reaction proceeds in a highly enantioselective manner. In the case of ethyl or α-methoxy ketones, the corresponding anti aldol products were obtained with high diastereo- and enantioselectivities. A chiral titanium reagent, generated from dichlorodiisopropoxytitanium and a chiral 1,4-diol, prepared from dimethyl tartrate, is found to be an effective catalyst for asymmetric Diels-Alder reactions. 1,3-Oxazolidin-2-one derivatives of α,β-unsaturated carboxylic acids react with dienes in the presence of a 10% molar equivalents of the chiral titanium reagent, giving the adducts in high optical purity. The chiral titanium reagent is also applied to the hydrocyanation of aldehydes successfully.
Asymmetric Aldol Reaction The development of enantioselective aldol reactions has been widely studied in conjunction with the synthesis of natural products. Highly enantioselective aldol reactions have been achieved by employing chiral enolates of ethyl ketones and propionic acid derivatives.(1) On the other hand, achieving high asymmetric induction in the asymmetric aldol reaction of methyl ketones is still a problem.(2) W i t h this in mind, t h e asymmetric aldol r e a c t i o n o f chiral o x a z o l i d i n e s 1, p r e p a r e d from chiral n o r e p h e d r i n e and methyl ketones was i n v e s t i g a t e d . The g e n e r a l pathway o f this asymmetric aldol r e a c t i o n is outlined in t h e f o l l o w i n g scheme. I t would be e x p e c t e d t h a t t h e t r e a t m e n t o f a chiral o x a z o l i d i n e w i t h 2 molar amounts o f lithium d i i s o p r o p y l a m i d e (LDA) would g e n e r a t e a lithiated enamine, which would be c o n v e r t e d t o t h e cyclic m e t a l l o enamine 2_ by t h e a d d i t i o n o f a m e t a l s a l t . As a r i g i d 5-membered c h e l a t e i s formed i n t h e c y c l i c m e t a l l o - e n a m i n e 2_, h i g h asymmetric i n d u c t i o n would be e x p e c t e d i n t h e s u c c e s s i v e r e a c t i o n w i t h an a l d e h y d e t h r o u g h a [ 4 . 3 . 0 ] - b i c y c l i c t r a n s i t i o n s t a t e 2· Removal o f t h e c h i r a l a u x i l i a r y from t h e adduct 4_, p e r f o r m e d by a c i d treatment, w i l l g i v e a corresponding a l d o l product
c
0097-6156/89/0386-0290$06.00/0 1989 American Chemical Society
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Asymmetric Reactions Toward Carbohydrate Synthesis
16. NARASAKA
Ph
W
0
R
2
NH
X
u
Γ Ph
Me LDA
Li
0
Me 1
R
R'CHO
Λ
η-2
2
Ph
Me
0
N^M^'^L
OH
R>0
Η .
R ^ V
Phl^O
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
Me
M
MXn
J M ^ U
1 Me
Ph
Me
5
Based on t h i s assumption, t h e asymmetric a l d o l r e a c t i o n o f c h i r a l 1 , 3 - o x a z o l i d i n e s 1^ o f methyl ketones was examined. I t was found t h a t t h e c o r r e s p o n d i n g a l d o l p r o d u c t s were o b t a i n e d i n good o p t i c a l p u r i t y when d i v a l e n t t i n c h l o r i d e was used as an a d d i t i v e metal s a l t . The t y p i c a l e x p e r i m e n t a l p r o c e d u r e i s as f o l l o w s : The o x a z o l i d i n e 1^ was p r e p a r e d from ( + ) - n o r e p h e d r i n e and acetone, and p u r i f i e d by d i s t i l l a t i o n . To a THF (2 mL) s o l u t i o n o f LDA (2.1 mmol) was added a THF s o l u t i o n o f l a (1 mmol) a t 0 °C and t h e m i x t u r e was s t i r r e d f o r 2 h r . Then a THF (4 mL) s o l u t i o n o f SnCl (1.05 mmol) was added a t 0 °C and s t i r r e d f o r 30 min. To t h i s m i x t u r e was added a THF (2 mL) s o l u t i o n o f 2 , 2 - d i m e t h y l p r o p a n a l ( 1 . 2 mmol). A f t e r s t i r r i n g f o r 20 min a t 0 °C, t h e m i x t u r e was quenched w i t h aq. 4% NaHCO^. The crude r e a c t i o n m i x t u r e was t r e a t e d w i t h a c e t o n e i n t h e p r e s e n c e o f a c a t a l y t i c amount o f BF^ t ^ t o remove t h e c h i r a l a u x i l i a r y . The crude p r o d u c t s were p u r i f i e d by c h r o m a t o g r a p h i c p r o c e d u r e t o g i v e t h e corresponding 3-hydroxy ketone 5a w i t h 86% ee. 2
0
E
Ph Me V-(
°
ΝΗ
Χ
Me Me
1) 2LDA
ιττ^Γ
3) ~)
'BuCTO
0 OH Bu
H 0* 3
5a
86°/ ee 0
1a In T a b l e 1, t h e y i e l d s and t h e o p t i c a l p u r i t i e s o f t h e a l d o l p r o d u c t s between some methyl ketones and a l d e h y d e s a r e summarized. I t i s a p p a r e n t t h a t t h e a l d o l p r o d u c t s o f methyl ketones were o b t a i n e d i n good t o e x c e l l e n t o p t i c a l p u r i t y . ( 3 ) Furthermore, t h i s r e a c t i o n was a p p l i e d t o t h e a l d o l r e a c t i o n of 3-pentanone. When t h e c h i r a l o x a z o l i d i n e £ was p r e p a r e d from 3-pentanone and t h e a l d o l r e a c t i o n was c a r r i e d o u t by t h e same p r o c e d u r e , t h e a, 3 - a n t i 3-hydroxy ketones 7. were produced p r e d o m i n a n t l y o v e r t h e syn-isomer J3 w i t h e x c e l l e n t o p t i c a l p u r i t i e s . ( 5 ) (See T a b l e 2.)
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
291
292
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
Ph Me }—\
0
1) 2LDA
NH
2) 5 n C l
X
* 2
3)
R'CHO
A)
H 0
>
5) acetone Et 0-BF
2
2
> 3
R Me ]_b R=Ph 1c
R= B u f
T a b l e 1.
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
RCOCH
Asymmetric A l d o l R e a c t i o n o f M e t h y l Ketones R'CHO
3
PhCOCH
Yield/%
Ph(CH ) CHO n-PrCHO c-C H CHO t-BucAo Ph(CH ) CHO c-C H CHO t-BucAo
3
t-BuCOCH 3
Optical
68 69 64 66 64 54 56
70 76
Purity/%ee 3
ιί 85
a
a
95
a) Determined by Η ΝMR o r F NMR measurement o f i t s MTPA ester{4) i n the presence o f E u ( f o d > . b) Determined by H NMR measurement i n t h e p r e s e n c e o f Eu(hfc) . 3
3
Me
Ph
1) 2LDA 2) SnCI
»
2
T a b l e 2. entry 1 2 3
* A) acetone BF -OEt 3
H-6
0
3) RCHO
0
QH
OH
R
2
Asymmetric A l d o l R e a c t i o n o f E t h y l Ketones RCHO
Ph(CH ) CHO c-C H CHO t-BucAo
Yield/% 77 75 56
antirsyn 7:1 9:1 6:1
Optical
Purity/%ee
92 92 95°
a) The r e l a t i v e s t e r e o c h e m i s t r y i n e n t r y 1 and 2 i s a s s i g n e d by t h e c o u p l i n g c o n s t a n t between t h e p r o t o n s on C-4 and C5.(6) I n t h e c a s e s o f e n t r y 2 and 3, i t was a l s o d e t e r m i n e d by t h e chemicaj. s h i f t ^ g f t h e methyl c a r b o n on C-4. ( 7 ) b) Determined by H and F NMR measurement o f i t s MTPA ester i n the pjesence of Eu(fod)^. c) Determined by H NMR measurement i n t h e p r e s e n c e o f Eu(hfc) . 3
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
16. NARASAKA
Asymmetric Reactions Toward Carbohydrate Synthesis
In o r d e r t o determine t h e a b s o l u t e s t e r e o c h e m i s t r y o f t h e a n t i - a l d o l ]_, a d i a s t e r e o i s o m e r o f t h e i n s e c t pheromone, (3S,4R)4-methylheptan-3-ol j l l was s y n t h e s i z e d from t h e ( + ) - o x a z o l i d i n e 6, The r e a c t i o n o f (+)-£ and p r o p a n a l gave a l d o l s 9a and 10a i n 61% y i e l d ( a n t i : s y n = 7.3:1). They were c o n v e r t e d t o t h e c o r r e s p o n d i n g a c e t a t e s 9 b 1 0 b and s e p a r a t e d by column chromatography. The o p t i c a l p u r i t y o f t h e a n t i - a c e t a t e 9b was determined as 95% ee u s i n g a c h i r a l s h i f t r e a g e n t . The a n t i a c e t a t e 9b was then c o n v e r t e d t o t h e a c e t a t e o f t h e d e s i r e d isomer o f t h e pheromone 1_1 as shown below. The a b s o l u t e c o n f i g u r a t i o n (3S,4R) and t h e o p t i c a l p u r i t y ( 95% ee) were p r o v e d by comparison w i t h t h o s e o f t h e l i t e r a t u r e . ( 8 ) Highly e n a n t i o s e l e c t i v e s y n t h e s i s o f a n t i - a l d o l s has remained as a f o r m i d a b l e s y n t h e t i c problem. The p r e s e n t asymmetric a l d o l r e a c t i o n a f f o r d s a u s e f u l method f o r t h e i r p r e p a r a t i o n .
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
f
Ph
Me " Ζ " * 2) S n C U
Λ
O ,NH v
3 ) E1CH0 A) acetone BF -OEt 3
^
X
A _
A
X „
—
.
H
?
Et
2
For t h e p r e p a r a t i o n o f o p t i c a l l y a c t i v e p o l y h y d r o x y compounds, such as s y n t h e t i c i n t e r m e d i a t e s o f monosaccharides, t h e
asymmetric a l d o l r e a c t i o n o f 1,3-dimethoxy-2-propane (Table 3) by Ph
Me
^ ^
W
a
12
OMe
4 BFa-EijO-
13
~
T a b l e 3. entry 1 2 3 4
OMe
acetone
Asymmetric A l d o l R e a c t i o n o f α-Methoxy Ketone RCHO
Ph(CH ) CHO n-C H CHO 9 19 c-C Η CHO t-BuCHO in
Y i e l d / ?S 72 74 64 45
a a n t i :: syn 7 9 7 10
:: :: :: ::
2 1 1 0
Optical Purity/%ee
< 95 95 95° C
a) The r e l a t i v e s t e r e o c h e m i s t r y i s a s s i g n e d by t h e c o u p l i n g c o n s t a n t between t h e p r o t o n s on C-3 and C-4 i n e n t r y 1 and 2, and i n t h e cases o f e n t r y 3 and 4 t h e s t e r e o c h e m i s t r y i s a s s i n g e d by t h e c o u p l i n g c o n s t a n t between t h e p r o t o n s on C-3 and C-4 o f ^ t h e i r a c e t a t e s . ( 6 ) b) Determined by H NMR measurement o f i t s a c e t a t e i n t h e presence of Eu^hfc) . c) Determined by H NMR measurement i n t h e p r e s e n c e o f Eu(hfc) . 3
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
293
294
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
t h i s methodology was examined. As i n t h e c a s e o f 3-pentanone, t h e r e a c t i o n o f a c h i r a l o x a z o l i d i n e 12^ w i t h a l d e h y d e s a f f o r d e d p r e d o m i n a n t l y t h e c o r r e s p o n d i n g a n t i - a l d o l a d d u c t s 13. Q u i t e h i g h e n a n t i o s e l e c t i v i t y was o b s e r v e d and i n p a r t i c u l a r one enantiomer was o b t a i n e d a l m o s t e x c l u s i v e l y i n t h e r e a c t i o n w i t h s e c o n d a r y and t e r t i a r y a l d e h y d e s . ( 9 ) The L - l y x o s e d e r i v a t i v e 14_ was p r e p a r e d from t h e a n t i - a d d u c t 13a o f 3 - p h e n y l p r o p a n a l as o u t l i n e d below, and t h e a b s o l u t e c o n f i g u r a t i o n was d e t e r m i n e d by comparison w i t h t h e o p t i c a l r o t a t i o n o f an a u t h e n t i c s a m p l e ( l O ) d e r i v e d from D - l y x o s e . 0
OH
Γι
0
τ"
MeOsJ^A^Ph
1 ) A c
H
0
OH OH
H
Μ θ Ο \ Λ Λ |
2) Dl BAL
OMe
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
20 'V ^
Ν
^
Ph
•
OMe
OMe
6
13a
15 1) H0" 2) A c 0 /
1 )(lmd) CO 2
2 ) separation of isomers
3) Β
2
Br3
V. OAc OAc Br
Q
AcON/\A^Ph ,
3) N B S
6 A 7. EtS
AgF /
Û
MeO^Av^A^wPh
OAc OAc Ac0> OAc
1) 0s04-Nal0 2) E t S H , H
A
OAc
SEt
H +OAc •OAc H AcO ·
51 7. ( 96 7. e.e. )
4
CH 0Ac 2
U±
65 /. e
MeO.
R e l a t i v e c o n f i g u r a t i o n s o f A and Β a r e d e t e r m i n e d by c o u p l i n g c o n s t a n t o f H NMR. As mentioned, t h e p r e s e n t methodology a f f o r d s an e f f e c t i v e means f o r t h e s y n t h e s i s o f o p t i c a l l y a c t i v e a l d o l s . A high l e v e l o f asymmetric i n d u c t i o n was o b s e r v e d w i t h a wide range o f ketones such as m e t h y l , e t h y l and α-methoxy. Furthermore, when (1S,2R)n o r e p h e d r i n e i s employed as a c h i r a l a u x i l i a r y , i t i s always t h e s i - f a c e o f a l d e h y d e s t h a t i s a t t a c k e d by t h e t i n ( I I ) enamine. Asymmetric D i e l s - A l d e r R e a c t i o n In t h e above asymmetric a l d o l r e a c t i o n , t h e i n t r o d u c t i o n and t h e removal o f t h e c h i r a l a u x i l i a r y a r e c a r r i e d o u t by s i m p l e p r o c e d u r e s , and h i g h asymmetric i n d u c t i o n i s a c h i e v e d even a t i c e - b a t h temperature. However, a t l e a s t a s t o i c h i o m e t r i c amount of a c h i r a l a u x i l i a r y i s r e q u i r e d i n such a s t e r e o d i f f e r e n t i a t i n g reaction ( c h i r a l a u x i l i a r y i s attached t o the reactant.).
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
16. NARASAKA
Asymmetric Reactions Toward Carbohydrate Synthesis
In o r d e r t o p e r f o r m asymmetric r e a c t i o n s more e f f i c i e n t l y , i t i s d e s i r a b l e t h a t a l a r g e amount o f an o p t i c a l l y a c t i v e compound s h o u l d be produced w i t h o n l y a s m a l l i n v e s t m e n t of c h i r a l a u x i l i a r y i n a c a t a l y t i c process. T h i s use o f asymmetric c a t a l y s t s i s an a r e a of i n v e s t i g a t i o n t h a t has d e v e l o p e d r a p i d l y i n the l a s t two decades, from which v e r y e f f i c i e n t methods have been d e v e l o p e d . Most of them, however, a r e c o n c e r n e d w i t h asymmetric f u n c t i o n a l group t r a n s f o r m a t i o n s , and l i t t l e has been done f o r the c o n s t r u c t i o n of o p t i c a l l y a c t i v e carbon skeletons.(11) In o r g a n i c s y n t h e s i s , Lewis a c i d s have been a p p l i e d t o a wide v a r i e t y of c a r b o n - c a r b o n bond f o r m i n g r e a c t i o n s . Therefore, i t i s e x p e c t e d t h a t i f we c o u l d d e s i g n an e f f e c t i v e c h i r a l Lewis a c i d , v a r i o u s c a r b o n - c a r b o n bond f o r m i n g r e a c t i o n s c o u l d be w e l l c o n t r o l l e d i n an e n a n t i o s e l e c t i v e manner. As i t i s w e l l known t h a t t i t a n i u m r e a g e n t s can be a p p l i e d t o a v a r i e t y o f c a r b o n carbon bond f o r m i n g r e a c t i o n s as Lewis a c i d s , the e x p l o r a t i o n of c h i r a l t i t a n i u m r e a g e n t s was i n i t i a l l y i n v e s t i g a t e d . One o f t h e e f f i c i e n t method f o r c o n s t r u c t i n g c a r b o h y d r a t e s i s t h e D i e l s - A l d e r r e a c t i o n , which g i v e s a v a r i e t y o f i m p o r t a n t s y n t h e t i c intermediates f o r the s y n t h e s i s of c y c l i t o l derivatives. We t h e r e f o r e were i n t e r e s t e d i n the development o f asymmetric D i e l s - A l d e r r e a c t i o n by t h e use o f c h i r a l t i t a n i u m reagents. Recent p r o g r e s s i n t h i s a r e a has l e d t o the development o f v a r i o u s , h i g h l y s e l e c t i v e , asymmetric r e a c t i o n s by employing c h i r a l d i e n e s and d i e n o p h i l e s i n the p r e s e n c e of Lewis a c i d s . ( 1 2 ) On the o t h e r hand, l i t t l e work has been done on asymmetric D i e l s A l d e r r e a c t i o n s promoted by c h i r a l Lewis a c i d s . ( 1 3 ) F i r s t l y , we m o d i f i e d the 01, (3-unsaturated a c i d s t o be used as d i e n o p h i l e s by c o n v e r t i n g them i n t o the c o r r e s p o n d i n g 1,3oxazolidin-2-one ( a b b r e v i a t e d as o x a z o l i d o n e ) d e r i v a t i v e s 15. T h i s m o d i f i c a t i o n i s based on the c o n s i d e r a t i o n t h a t such b i d e n t a t e d i e n o p h i l e s would form r i g i d complexes w i t h a c h i r a l Lewis a c i d , r e s u l t i n g i n h i g h r e a c t i v i t y and a good l e v e l of ïïf a c i a l s e l e c t i v i t y d u r i n g the c y c l o a d d i t i o n r e a c t i o n . As t h e c h i r a l Lewis a c i d s , c y c l i c d i a l k o x y d i c h l o r o t i t a n i u m s ( I V ) were chosen and p r e p a r e d i n s i t u from v a r i o u s c h i r a l 1,2- o r 1 , 4 - d i o l s and d i c h l o r o d i i s o p r o p o x y t i t a n i u m ( I V ) a c c o r d i n g t o the a l k o x y exchange method.(14)
r-0
r-OH
*(R) L-OH
+
TiCI (0-'Pr) 2
2
N
> *( R )
L-O'
TiCU +
2*ΡΓΟΗ
L
The r e a c t i o n o f 3 - c r o t o n o y l o x a z o l i d o n e 15a and c y c l o p e n t a d i e n e was examined i n t o l u e n e i n the p r e s e n c e o f an e q u i m o l a r amount of v a r i o u s c h i r a l a l k o x y titanium(IV) derivatives. I t was found t h a t the c o r r e s p o n d i n g endo-adduct 18a was o b t a i n e d i n 55% ee when the c h i r a l 2,3-0-isopropylidene1,1,4,4-tetraphenylbutanetetraol 17a(15) was i n t r o d u c e d as a chiral auxiliary. In t h i s t i t a n i u m c a t a l y s t , the c o n f o r m a t i o n o f
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
295
296
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
t h e 7-membered r i n g of t h e a l k o x y t i t a n i u m i s thought t o be important i n c o n t r o l l i n g the e n a n t i o s e l e c t i v i t y along with the c o n f o r m a t i o n o f t h e 5-membered a c e t a l r i n g . The r e a c t i o n was, t h e r e f o r e , examined f u r t h e r by u s i n g 1,1,4,4t e t r a p h e n y l b u t a n e t e t r a o l d e r i v a t i v e s which have v a r i o u s s u b s t i t u e n t s on t h e a c e t a l c e n t e r , and t h e t i t a n i u m r e a g e n t
ο ο
V7 - T i C l ( O i - P r ) 2
Me^Vo
+
Ο
.Me
2
0
toluene
A
CON 0
15a
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
18a Ph
Ph 5 5 % ee.
Me
Ο
VOH Ph Ph
Ph
^
Ph 757oe.e.
P
\ ° Y ^
Me
Ο
0
H
92%ee.
VOH Ph
Ph
17b
( 1 molar amounts of 17b )
d e r i v e d from 2 , 3 - O - p h e n y l e t h y l i d e n e d e r i v a t i v e 17b was found t o promote t h e asymmetric c y c l o a d d i t i o n r e a c t i o n i n a s e l e c t i v e manner y i e l d i n g 18a w i t h 75% o p t i c a l p u r i t y . Moreover, by t h e use o f 2 molar amounts o f t h e t i t a n i u m r e a g e n t , t h e p r o d u c t 18b was o b t a i n e d i n 92% ee.(15) The ( R ) - ( + ) - c h i r a l 1 , 4 - d i o l 17b was e a s i l y p r e p a r e d from L(+)-dimethyl t a r t r a t e . D i m e t h y l t a r t r a t e was c o n v e r t e d t o t h e c o r r e s p o n d i n g p h e n y l e t h y l i d e n e d e r i v a t i v e by t r e a t m e n t w i t h 1,1d i m e t h o x y - l - p h e n y l e t h a n e and c a t . p - t o l u e n e s u l f o n i c a c i d i n r e f l u x i n g benzene, f o l l o w e d by c o n v e r s i o n t o t h e d i o l 17b w i t h e x c e s s phenylmagnesium bromide. The d i o l was p u r i f i e d by column chromatography on s i l i c a g e l (hexane : e t h y l a c e t a t e = 5 : 1 ) , and r e c r y s t a l i z a t i o n from a m i x t u r e o f hexane and 2 - p r o p a n o l . The c r y s t a l s were o b t a i n e d as a adduct o f 17b and 2 - p r o p a n o l (mp 111-114 ° C ) . The a z e o t r o p i c removal o f 2 - p r o p a n o l w i t h benzene a f f o r d e d t h e d i o l 17b as a w h i t e amorphous s o l i d . S i n c e h i g h e n a n t i o s e l e c t i v i t y was a c h i e v e d by employing two molar e q u i v a l e n t s o f t h e c h i r a l t i t a n i u m r e a g e n t g e n e r a t e d from 17b, t h e asymmetric D i e l s - A l d e r r e a c t i o n o f v a r i o u s o x a z o l i d o n e d e r i v a t i v e s o f a, (3-unsaturated a c i d s JJ> and c y c l o p e n t a d i e n e was studied. The r e s u l t s a r e l i s t e d i n T a b l e 4. With the exception o f t h e a c r y l o y l d e r i v a t i v e 15b, v a r i o u s d i e n o p h i l e s r e a c t e d w i t h c y c l o p e n t a d i e n e t o g i v e t h e endo-adducts 18^ i n h i g h o p t i c a l purity.
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Asymmetric Reactions Toward Carbohydrate Synthesis297
16. NARASAKA
Ph Ph
T a b l e 4.
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
R
Asymmetric D i e l s - A l d e r R e a c t i o n o f _15 w i t h Cyclopentadiene React. Temp./ °C
Me H Ph n-Pr CH CH=CH
Yield/%
-15 -78 0 -15 rt
3
endo:exo
Optical Purity/%ee
90:10 86:14 92: 8 90:10 92: 8
92° (2S,3R) 38^ (2S) 81 90 82
93 69 97 82 77
d
β
θ
a) These isomers were s e p a r a t e d by s i l i c a g e l chromatography. b) Those o f endo i s o m e r s . c) The p r o d u c t s were c o n v e r t e d t o t h e c o r r e s p o n d i n g b e n z y l e s t e r s by Evans' p r o c e d u r e , ( 1 6 ) and t h e a b s o l u t e c o n f i g u r a t i o n and t h e o p t i c a l p u r i t y were determined by t h e o p t i c a l r o t a t i o n . ( 1 2 d ) d) The p r o d u c t was reduced t o an a l c o h o l w i t h l i t h i u m ^ a l u m i n u m h y d r i d e , and t h e o p t i c a l p u r i t y was determined by F NMR a n a l y s i s o f t h e c o r r e s p o n d i n g c h i r a l MTPA e s t e r . ( 4 ) e) The p r o d u c t s were reduced t o a l c o h o l s w i t h l i t h i u m aluminum h y d r i d e , and t h e o p t i c a l p u r i t y was determined by HPLC a n a l y s i s o f t h e c o r r e s p o n d i n g P i r k l e ' s carbamates.(17)
H i g h e n a n t i o s e l e c t i v i t y was a l s o a t t a i n e d upon a d d i t o n o f the c h i r a l t i t a n i u m reagent t o t h e r e a c t i o n o f a c y c l i c dienes w i t h o x a z o l i d o n e s o f 2 - b u t e n o i c a c i d 15a and f u m a r i c a c i d 19. The p r e s e n t t i t a n i u m r e a g e n t was n o t e d t o e x h i b i t a wide a p p l i c a b i l i t y t o t h e asymmetric D i e l s - A l d e r r e a c t i o n o f v a r i o u s p r o c h i r a l d i e n e s and d i e n o p h i l e s . p
M e ^ N O ^ 15a
4
M
h
Ph Ph O ^ O H
X J
V S
-
TTCyO+Prfe
>
46 7oy., 9 2 7*e.e.
Ph Ph
Me
o,c^N o+ ζ
P^OH χ«τ
n
u
_ ricyo-i-POa
A
Me
0 CON 0
v
toluene, r.t.
Ph
XX
toluene,r.t.
>
(J,
9
CON 0
19 86°/ey. 85 7oe.e. f
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
298
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
Next we i n v e s t i g a t e d t h e e f f e c t o f a l t e r i n g t h e r a t i o o f t h e t i t a n i u m r e a g e n t t o d i e n o p h i l e s . I t was found, however, t h e use o f two molar e q u i v a l e n t s o f t h e c h i r a l t i t a n i u m r e a g e n t i s i n d i s p e n s a b l e f o r a h i g h degree e n a n t i o s e l e c t i o n . That i s , when a c a t a l y t i c amount (10-17%) of t h e t i t a n i u m r e a g e n t i s used i n t h e r e a c t i o n o f 15a and c y c l o p e n t a d i e n e , t h e endo-adduct 18a i s o b t a i n e d i n h i g h y i e l d but i n low e n a n t i o s e l e c t i v i t y .
To improve t h i s p r o c e d u r e a h i g h l y e n a n t i o s e l e c t i v e p r o c e s s employing o n l y a t r u l y c a t a l y t i c amount o f t h e c h i r a l Lewis a c i d was d e s i r a b l e . I t was found t h a t t h e p r e s e n c e o f M o l e c u l a r S i e v e s 4A (MS 4A) i n t h e r e a c t i o n m i x t u r e enhances t h e e n a n t i o s e l e c t i v i t y i n the c h i r a l t i t a n i u m - c a t a l y z e d r e a c t i o n . ( 1 8 ) The c h i r a l t i t a n i u m a l k o x i d e was p r e p a r e d by t h e a l k o x y exchanging method, removing i s o p r o p a n o l a z e o t r o p i c a l l y from t h e r e f l u x i n g toluene s o l u t i o n . However, t h e same h i g h l e v e l o f asymmetric i n d u c t i o n was o b s e r v e d by t h e use o f t h e c h i r a l t i t a n i u m s p e c i e s g e n e r a t e d _in s i t u by m i x i n g t h e c h i r a l 1 , 4 - d i o l 17b and d i c h l o r o d i i s o p r o p o x y t i t a n i u m i n t o l u e n e a t room temperature i n t h e p r e s e n c e o f MS 4A. F o r example, t h e c h i r a l c a t a l y s t was p r e p a r e d from a 10.5% molar amount ( t o t h e d i e n o p h i l e ) o f t h e 1 , 4 - d i o l 17b and a 10% molar amount o f d i c h l o r o d i i s o p r o p o x y t i t a n i u m i n t o l u e n e a t room temperature, and then powdered MS 4A, 3 - c r o t o n o y l o x a z o l i d o n e 15a and c y c l o p e n t a d i e n e were added s u c c e s s i v e l y a t 0 °C. A f t e r b e i n g s t i r r e d f o r 24 hr, t h e endo-adduct 18a was produced i n 91% ee w i t h t h e same a b s o l u t e c o n f i g u r a t i o n (2S,3R) as t h a t o b s e r v e d i n the o r i g i n a l procedure. As can be seen i n T a b l e 5, v a r i o u s o x a z o l i d o n e s o f a c r y l i c a c i d d e r i v a t i v e s lj> r e a c t w i t h c y c l o p e n t a d i e n e t o a f f o r d t h e endo-adducts JL8 i n good t o h i g h (64-91%) e n a n t i o s e l e c t i v i t y by t h e combined use o f a c a t a l y t i c amount o f t h e c h i r a l t i t a n i u m r e a g e n t and MS 4A. Compared t o t h e p r e v i o u s p r o c e d u r e i n which 2 molar e q u i v a l e n t s o f t h e c h i r a l t i t a n i u m was employed, almost t h e same l e v e l o f e n a n t i o s e l e c t i v i t y was a t t a i n e d i n t h e D i e l s - A l d e r r e a c t i o n o f 15a, and t h e o p t i c a l p u r i t y o f t h e c y c l o a d d u c t 18b was improved s i g n i f i c a n t l y . On the o t h e r hand, t h e r e a c t i o n o f t h e o x a z o l i d o n e d e r i v a t i v e o f f u m a r i c a c i d 19_ and b u t a d i e n e was found t o p r o c e e d i n poor e n a n t i o s e l e c t i v i t y as compared w i t h t h e r e a c t i o n c a r r i e d out i n t h e p r e s e n c e o f e x c e s s amounts o f t h e c h i r a l t i t a n i u m r e a g e n t , and t h e c y c l o h e x e n e d i c a r b o x y l i c a c i d d e r i v a t i v e 20_ was o b t a i n e d i n 32-45% ee. In o r d e r t o a c h i e v e wide a p p l i c a b i l i t y f o r t h e c a t a l y t i c p r o c e d u r e , t h e r e a c t i o n c o n d i t i o n s were
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
16. NARASAKA
Asymmetric Reactions Toward Carbohydrate Synthesis 0.1
0
Ph Ph Ph O^-OH ^ Τ ' O^VOH Ph Ph
MB
0
mol TTCyO+Prfe
toluene M.S. A A
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
Table
5.
R Me Η n-Pr Ph
Asymmetric D i e l s - A l d e r R e a c t i o n of T i t a n i u m Reagent React. Temp./°C 0 -40 0 rt
endo: exo
a
U s i n g C a t a l y t i c Amount
Yield/%
92: 8 96: 4 91: 9 88: 12
b Optical
87 93 79 72
Purity/%ee
91 (2S,3R) 64 (2S) 72 64
a) These isomers were s e p a r a t e d by s i l i c a g e l chromatography. b) Determined by t h e same p r o c e d u r e s d e s c r i b e d i n t h e T a b l e 4.
examined i n d e t a i l . The r e a c t i o n o f 19_ and b u t a d i e n e was examined i n v a r i o u s s o l v e n t s i n t h e p r e s e n c e o f a 10% molar e q u i v a l e n t s o f t h e c h i r a l t i t a n i u m a l k o x i d e and powdered MS 4A. The e n a n t i o s e l e c t i v i t y d i s p l a y e d by t h e r e a c t i o n s i n v a r i o u s s o l v e n t s a r e summarized i n T a b l e 6. I t was n o t e d t h a t t h e e n a n t i o s e l e c t i v i t y i s i n f l u e n c e d s t r o n g l y by t h e s o l v e n t , and t h a t a l k y l s u b s t i t u t e d benzenes a r e v e r y s u i t a b l e s o l v e n t s f o r t h e p r e s e n t r e a c t i o n . The e n a n t i o s e l e c t i v i t y i s dependent on t h e number o f methyl groups on t h e benzene r i n g and t h e o p t i c a l p u r i t y o f t h e adduct 2_0 was g r e a t l y i n c r e a s e d i n t h e o r d e r o f t o l u e n e , x y l e n e s and t r i m e t h y l b e n z e n e s . Furthermore, r a t h e r h i g h e n a n t i o s e l e c t i v i t y was a t t a i n e d by employing h e x y l b e n z e n e as t h e s o l v e n t , and t h e t r a n s - 4 - c y c l o h e x e n e - l , 2 - d i c a r b o x y l i c a c i d d e r i v a t i v e 20 was o b t a i n e d i n 98% y i e l d w i t h 85% ee.(19)
phPh
Ν
01-
^
M
S
4 A , r.t.
0.1 mol
Ι Λ ρ η κ Λ
CON
19
0 \ /
20
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
299
300
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
T a b l e 6.
S o l v e n t E f f e c t on t h e E n a n t i o s e l e c t i v i t y a
a
Solvent
Solvent
Optical Purity/%ee 22 32-45 67 68 74
benzene toluene o-xylene g-xylene cumene
Optical Purity/%ee
CCI 4 b 1,2,3-TMB 1,3,5-TMB 1,3,5-TIPB hexylbenzene C
58 77 81 85 85
a) Determined by t h e NMR a n a l y s i s o f t h e c o r r e s p o n d i n g d i m e t h y l e s t e r (Mg(OMe) u s i n g c h i r a l s h i f t r e a g e n t E u i h f c ) ^ . b) TMB=trimethylbenzene. c) T I P B = t r i i s o p r o p y l b e n z e n e .
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
2
The g e n e r a l i t y o f t h e s o l v e n t e f f e c t on t h e e n a n t i o s e l e c t i v i t y was examined i n t h e f o l l o w i n g examples u s i n g 1,3,5t r i m e t h y l b e n z e n e (1,3,5-TMB) as t h e common s o l v e n t (under unoptimized r e a c t i o n c o n d i t i o n s ) . The r e a c t i o n o f 19_ w i t h i s o p r e n e was a l s o found t o p r o c e e d smoothly i n 1,3,5-TMB t o a f f o r d t h e 4 - m e t h y l c y c l o h e x e n e - l , 2 d i c a r b o x y l i c a c i d d e r i v a t i v e 2_1 i n 92% ee. PhPh
Ph P V ^ O H X J
M
e
0
2
c ^ l
N
X
0
P
. γ
h
m
P
-
T i C ,
o.1 m o l 2(0-
O H
U
" Ph Ph
TiCI (0-i-Pr) 2
2
1
1,3,5-TMB , 0°C 15
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
T a b l e 7. ~
R
Reaction Yield/%
Me Ph n-Pr
90 97 75
o f 15 w i t h
Cyclopentadiene
endo:exo 91: 9 92: 8 91: 9
a
b Optical Purity/%ee 91 82 75
a) These isomers were s e p a r a t e d by s i l i c a g e l chromatography. b) Determined by t h e p r o c e d u r e s d e s c r i b e d i n T a b l e 4.
As shown by T a b l e 7 above, t h e c h i r a l t i t a n i u m c a t a l y s t MS 4A system i s w i d e l y a p p l i c a b l e t o t h e r e a c t i o n s o f a v a r i e t y of d i e n o p h i l e s and d i e n e s when a s u i t a b l e a l k y l s u b s t i t u t e d benzene i s employed a s a s o l v e n t , and s y n t h e t i c a l l y i m p o r t a n t D i e l s - A l d e r a d d u c t s a r e p r e p a r e d i n h i g h e n a n t i o s e l e c t i v i t y by the present c a t a l y t i c process. Asymmetric H y d r o c y a n a t i o n R e a c t i o n The c h i r a l t i t a n i u m r e a g e n t p r e p a r e r d i n s i t u from t h e c h i r a l 1 , 4 - d i o l and d i c h l o r o d i i s o p r o p o x y t i t a n i u m i s e x p e c t e d t o be a p p l i c a b l e t o v a r i o u s r e a c t i o n s c a t a l y z e d by L e w i s a c i d s . We, t h e r e f o r e , i n v e s t i g a t e d t h e asymmetric s y n t h e s i s o f c y a n o h y d r i n s from a l d e h y d e s and c y a n o t r i m e t h y l s i l a n e employing t h e c h i r a l t i t a n i u m reagent.(20) Asymmetric s y n t h e s i s o f c y a n o h y d r i n s i s an i m p o r t a n t p r o c e s s i n o r g a n i c s y n t h e s i s because c y a n o h y d r i n s can be e a s i l y c o n v e r t e d i n t o a v a r i e t y o f v a l u a b l e s y n t h e t i c i n t e r m e d i a t e s such as 01hydroxy a c i d s , α-hydroxy ketones, and (3-amino a l c o h o l s . O p t i c a l l y a c t i v e c y a n o h y d r i n s a r e o b t a i n e d i n good s e l e c t i v i t y by the n u c l e o p h i l i c a t t a c k of cyanating reagents t o c h i r a l acetals.(21) However, t h e c h i r a l a u x i l i a r i e s a r e d e s t r o y e d , and not r e c o v e r e d . In c a t a l y t i c processes with c h i r a l b o r y l compounds,(22) D - o x y n i t r i l a s e , ( 2 3 ) and s y n t h e t i c p e p t i d e s , ( 2 4 ) t h e o p t i c a l p u r i t i e s of the r e s u l t i n g cyanohydrins are g e n e r a l l y not sufficient. F i r s t l y , we examined t h e asymmetric h y d r o c y a n a t i o n o f 3phenylpropanal. When 3 - p h e n y l p r o p a n a l was t r e a t e d w i t h c y a n o t r i m e t h y l s i l a n e using the c h i r a l t i t a n i u m a l k o x i d e prepared from d i c h l o r o d i i s o p r o p o x y t i t a n i u m and t h e c h i r a l 1 , 4 - d i o l 17b i n t o l u e n e a t room temperature, o n l y a t r a c e amount o f t h e
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
302
c y a n o h y d r i n 23a was g e n e r a t e d a f t e r 2 days. On t h e o t h e r hand, by t h e a d d i t i o n o f MS 4A t o t h i s s o l u t i o n , t h e r e a c t i o n p r o c e e d e d smoothly a t -65 °C t o g i v e 2 - h y d r o x y - 4 - p h e n y l b u t a n e n i t r i l e , which was i s o l a t e d i n 89% y i e l d w i t h 74% ee. The h y d r o c y a n a t i o n o f p r i m a r y , s e c o n d a r y and a r y l a l d e h y d e s was examined w i t h c y a n o t r i m e t h y l s i l a n e to g i v e the o p t i c a l l y a c t i v e cyanohydrins i n good o p t i c a l p u r i t y . In p a r t i c u l a r , benzaldehyde i s c o n v e r t e d i n t o ( R ) - m a n d e l o n i t r i l e 23b i n 96% ee. (See T a b l e 8.) PhPh
li r^ ao ! \. -, ™ - ™* ^ h
ο Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch016
R
X .
H
+ Me S.CN 3
HO
— —
•
R
' C
X
N
23
toluene, -65 *C, 2 days
T a b l e 8.
H
Asymmetric H y d r o c y a n a t i o n o f Aldehydes Cyanotrimethylsilane
with
a R
R e a c t i o n Time/h
Ph PhCH PhCH CH c-C H 6 11 C H,/ 8 17 f t
12 12 12 48 24
Yield/% 79 66 89 77 66
Optical 96 77 74
Purity/%ee
(R)£